На правах рукописи

СТЕКЛЕНЕВА Любовь Сергеевна

ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТЕТРАХЛОРЦИНКАТА РУБИДИЯ В НАНОПОРИСТЫХ МАТРИЦАХ ОКСИДА КРЕМНИЯ И ОКСИДА АЛЮМИНИЯ

Специальность: 1.3.8. Физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Воронеж – 2022

Работа выполнена в ФГБОУ ВО «Воронежский государственный технический университет»

Научный руководитель	Коротков Леонид Николаевич, доктор физико-математических наук, профессор		
Официальные оппоненты:	Сидоркин Александр Степанович, доктор физико-математических наук, профессор, профессор кафедры экспе- риментальной физики ФГБОУ ВО «Воро- нежский государственный университет»		
	Таланов Михаил Валерьевич , доктор физико-математических наук, ве- дущий научный сотрудник НИИ физики ФГАОУ ВО «Южный федеральный уни-		

Ведущая организация

ФГБОУ ВО «Тверской государственный университет»

Защита состоится «28» февраля 2023 г. в 14⁰⁰ часов в конференц-зале на заседании диссертационного совета 24.2.286.01, созданного на базе ФГБОУ ВО «Воронежский государственный технический университет», по адресу: г. Воронеж, Московский просп., д. 14, ауд. 216.

верситет»

С диссертацией можно ознакомиться в научной библиотеке и на сайте ФГБОУ ВО «Воронежский государственный технический университет» <u>https://cchgeu.ru</u>.

Автореферат разослан «23» декабря 2022 г.

Учёный секретарь диссертационного совета

Com.

Стогней Олег Владимирович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Необычные физические явления, наблюдаемые в сегнетоэлектриках с несоразмерными фазами, побудили значительный интерес физиков и материаловедов к этим материалам в 70-х - 80-х годах прошлого столетия. В сегнетоэлектрических кристаллах с несоразмерными фазами ниже температуры (T_i), развиваются локальные смещения отдельных атомов решетки из исходных положений, формирующие пространственную волну с длиной λ , которая несоизмерима с периодом решетки a, т. е. отношение λ/a иррационально. Длина волны λ возрастает с понижением температуры, достигая вблизи температуры сегнетоэлектрического фазового перехода T_C величины сопоставимой с размерами сегнетоэлектрических доменов, как, например, в модельном кристалле тетрахлорцинката рубидия (Rb₂ZnCl₄).

К настоящему времени физические свойства монокристаллического Rb_2ZnCl_4 в значительной степени изучены теоретически и экспериментально, однако исследования, связанные с выяснением проявлений размерного эффекта в этом кристалле, не проводились. Вместе с тем, резонно предположить, что в ультрадисперсных кристаллах Rb_2ZnCl_4 увеличению длины волны λ по мере приближения к температуре Кюри будут препятствовать размеры кристаллита. В связи с этим можно ожидать, что физические свойства нанокристаллического тетрахлорцинката рубидия будут существенно отличаться от свойств объемного образца.

Бурно развивающиеся в настоящие дни технологии нанообъектов позволяют сравнительно легко получать наноразмерные кристаллы сегнетоэлектриков, включая сегнетоэлектрики с несоразмерными фазами. Это делает доступным экспериментальное исследование закономерностей проявления размерного эффекта в различных материалах, включая сегнетоэлектрики с несоразмерными фазами, что представляет собой важную в академическом и прикладном аспектах физическую и материаловедческую задачу.

Вышеизложенное обосновывает актуальность темы данной диссертации.

<u>Цель и задачи исследования.</u> Цель работы – установление закономерностей влияния размеров кристаллитов тетрахлорцинката рубидия, инкорпорированного в пористые диэлектрические матрицы с нанометровыми размерами пор, на его физические свойства.

В соответствии с поставленной целью были сформулированы следующие задачи:

1. Приготовить и аттестовать образцы моно- и поликристаллического Rb_2ZnCl_4 , а также композитов $Rb_2ZnCl_4 - SiO_2$ и $Rb_2ZnCl_4 - Al_2O_3$ путем внедрения тетрахлорцинката рубидия в пористые матрицы из оксидов кремния и алюминия с размерами пор от 5 до 320 нм.

2. Провести экспериментальное исследование особенностей структуры кристаллической решетки, диэлектрических, тепловых, упругих и неупругих свойств полученных нанокомпозитов в интервале температур 100 - 350 К.

3. Исследовать влияние термической предыстории на диэлектрические свойства $Rb_2ZnCl_4 - Al_2O_3$.

4. Установить закономерности влияния размеров пор и материала матриц на фазовые состояния, реализующиеся в кристаллитах тетрахлорцинката рубидия, содержащегося в порах.

Тема диссертации соответствует Перечню приоритетных направлений фундаментальных исследований, утвержденному Президиумом РАН (раздел 1.2 – «Физика конденсированного состояния вещества»).

В качестве <u>объектов исследований</u> использовали образцы моно- и поликристаллического Rb_2ZnCl_4 , а также образцы композитов $Rb_2ZnCl_4 - SiO_2$ и $Rb_2ZnCl_4 - Al_2O_3$, полученные путем внедрения тетрахлорцинката рубидия в пористые матрицы оксида кремния со средними размерами пор около 5, 46, и 320 нм, а также в пористые матрицы оксида алюминия со средними размерами пор около 30, 90, и 300 нм.

<u>Выбор материалов</u> для экспериментов был мотивирован следующими обстоятельствами:

Кристалл Rb₂ZnCl₄, является модельным сегнетоэлектриком с несоразмерной фазой, устойчивой в широком интервале температур. Структурные фазовые переходы в нем реализуются в удобном для эксперимента температурном диапазоне. Помимо этого, тетрахлорцинкат рубидия хорошо растворяется в воде, что облегчает процедуру его внедрения в пористые матрицы.

Выбор матриц был обусловлен их доступностью, а также различием геометрии их пор и заметным различием химических и физических свойств материала матриц.

<u>Научная новизна</u>

Результаты экспериментальных исследований нанокристаллического тетрахлорцинката рубидия в нанопористых матрицах оксидов кремния и алюминия получены автором впервые и заключаются в следующем:

1. Впервые синтезированы нанокомпозиты на основе сегнетоэлектрика с несоразмерной фазой Rb_2ZnCl_4 и пористых оксидов кремния и алюминия. Получена совокупность экспериментальных данных относительно их структуры, тепловых, диэлектрических, и инфранизкочастотных упругих и неупругих свойств.

2. Обнаружен аномально широкий температурный гистерезис диэлектрической проницаемости при циклическом изменении температуры для всех исследованных композиционных материалов.

3. Экспериментально показано, что в нанокристаллитах тетрахлорцинката рубидия, внедренных в пористые стеклянные матрицы со средним размером сквозных пор около 46 и 320 нм, реализуется сегнетоэлектрический фазовый переход, температура которого значительно выше, чем в объемном Rb₂ZnCl₄.

4. Установлено, что в нанокристаллитах Rb_2ZnCl_4 , инкорпорированных в пористые матрицы диоксида кремния со средним размером пор около 46 и 320 нм и оксида алюминия со средним диаметром пор около 300 нм, при низких температурах формируется доменная структура, подвижность которой «замораживается» при температуре $T^* \approx 160$ К, как и в объемном материале.

5. Показано, что в нанокристаллитах Rb_2ZnCl_4 в пористых матрицах SiO_2 и Al_2O_3 с «малыми» размерами пор (5 нм для матриц SiO_2 и 90 нм для матриц Al_2O_3) сегнетоэлектрическая фаза не реализуется, из-за взаимодействия внедренного материала с внутренней поверхностью пор, наиболее сильного в случае матриц Al_2O_3 .

Практическая значимость работы

Установленные в ходе исследований физические закономерности углубляют представления о природе физических явлений в сегнетоэлектриках с несоразмерными фазами и наноразмерных ферроиках. Результаты данной работы могут быть востребованы в научных лабораториях, занимающихся проблемами сегнетоэлектрических явлений и нанотехнологиями при разработке электронных устройств на основе нанокомпозиционных материалов.

Основные положения, выносимые на защиту

1. Температура перехода в несоразмерную фазу T_i в нанокристаллах Rb_2ZnCl_4 в пористом стекле (средний размер пор около 5, 46 и 320 нм) и в пористом оксиде алюминия (средний диаметр пор около 90 и 320 нм) близка к T_i в массивном тетрахлорцинкате рубидия.

2. В нанокристаллах Rb_2ZnCl_4 , инкорпорированных в пористые матрицы диоксида кремния со средним размером пор около 46 и 320 нм и оксида алюминия со средним размером пор около 300 нм, при низких температурах формируется доменная структура, подвижность которой «замораживается» вблизи температуры $T^* \approx 160$ К.

3. Значительное расширение температурного интервала сегнетоэлектрический фазы в нанокристаллах тетрахлорцинката рубидия в порах диоксида кремния (размеры пор около 46 и 320 нм) за счет сужения области несоразмерной фазы.

4. Аномально широкий температурный гистерезис диэлектрической проницаемости для нанокомпозитов, полученных внедрением Rb₂ZnCl₄ в пористые матрицы обусловлен долговременными процессами релаксации неравновесных состояний.

5. Существенное увеличение глубины дисперсии диэлектрической проницаемости в композите, полученном внедрением Rb_2ZnCl_4 в пористые матрицы SiO₂ с размерами пор около 46 нм, при понижении температуры в интервале 160 – 310 К.

Методы исследования

Экспериментальные исследования структуры и фазовый анализ осуществляли с использованием рентгеновской дифрактометрии и сканирующей электронной микроскопии. Диэлектрические измерения в широком интервале температур и частот проводили посредством измерения электрического иммитанса образцов. Внутренне трение и упругий модуль изучали с помощью обратного маятника изгибных колебаний. Обработка экспериментальных результатов осуществлялась с использованием программного пакета Origin 8.

Измерения теплоемкости, теплопроводности и ренгенодифракционный эксперимент в широком интервале температур были проведены в НИИФ

им. Киренского СО РАН, г. Красноярск под руководством д. ф.-м. н., профессора Флерова И. Н.

<u>Достоверность полученных результатов</u> обеспечивается применением поверенных и калиброванных средств измерений, аттестованных методик измерений, надежной статистикой экспериментов, применением современных и независимых методов обработки экспериментальных данных, согласием с результатами других авторов и непротиворечивостью известным физическим моделям.

<u>Апробация работы</u>

Отдельные результаты и положения работы обсуждались и докладывались на следующих конференциях и семинарах: 57-62 Отчетные научнотехнические конференции ВГТУ (Воронеж, 2017-2022); VIII Всероссийская конференция «Образовательный, научный и инновационный процессы в нанотехнологиях» (Курск, 2017); 19 Всероссийская молодежная конференция по физике полупроводников и наноструктур, полупроводниковой опто- и наноэлектроники (Санкт-Петербург, 2017); 14th Russia/ CIS/ Baltic/ Japan Symposium on Ferroelectricity (Санкт-Петербург, 2018); II International Conference «Scanning Probe Microscopy» (Екатеринбург, 2018); The Ninth International Seminar on Ferroelastic Physics (Воронеж, 2018); XXIV Международная конференция «Релаксационные явления в твердых телах» (Воронеж, 2019); VIII Международная молодежная научная конференция «Физика. Технологии. Инновации» (Екатеринбург, 2021); Международная конференция «Фазовые переходы, критические и нелинейные явления в конденсированных средах» (Махачкала, 2021), IV семинар «Современные нанотехнологии» (Екатеринбург, 2022); XXV Международная конференция «Релаксационные явления в твердых телах» (Воронеж, 2022).

<u>Публикации</u>

По теме диссертации опубликовано 22 научные работы, в том числе 5 – в изданиях, рекомендованных ВАК РФ. Полный список публикаций автора приведен в конце диссертации. В работах, опубликованных в соавторстве, лично соискателю принадлежат: подготовка образцов к эксперименту, получение и анализ экспериментальных данных, обсуждение полученных результатов и подготовка работ к печати. Определение направления исследований, обсуждение экспериментальных результатов и подготовка публикаций осуществлялись совместно с научным руководителем доктором физико-математических наук Л. Н. Коротковым.

<u>Личный вклад автора</u>

Автор принимал участие в постановке задач. Им осуществлялась подготовка и проведение эксперимента, обработка полученных результатов и их обсуждение. Автор непосредственно участвовал в подготовке публикаций к печати.

Структура и объем работы

Диссертация состоит из введения, четырех глав, выводов и списка литературы из 130 наименований. Основная часть работы изложена на 108 страницах, содержит 64 рисунка и 3 таблицы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цель и задачи исследования, определены объекты исследования; показана научная новизна полученных результатов, их практическая и научная значимость, изложены основные положения, выносимые на защиту, приведены сведения об апробации работы, публикациях, личном вкладе автора, структуре и объеме диссертации.

В первой главе представлен подробный литературный обзор по теме диссертации, который включает в себя общую информацию о сегнетоэлектриках с несоразмерной фазой, структуре и физических свойствах объемного тетрахлорцинката рубидия. Изложены сведения о физических явлениях в наноразмерных сегнетоэлектриках, внедренных в пористые матрицы различного химического состава и топологии.

Во второй главе приведены сведения о методах изготовления образцов, их структуре и экспериментальных методах изучения их диэлектрических, тепловых, упругих и неупругих свойств.

Для проведения экспериментов использовали образцы композитов, полученных внедрением тетрахлорцинката рубидия из насыщенного водного раствора в пористые матрицы двух типов:

1) SiO₂ с нерегулярной разветвленной структурой, полученные во Вроцлавском технологическом университете (г. Вроцлав, Польша). Стекла, используемые в работе, имели средний диаметр пор около 320, 46 и 5 нм, пористость их составляла 40 - 50 %;

2) Al₂O₃ с упорядоченной столбчатой структурой, изготовленные компанией TopMembranes Technology (г. Шэньчжэнь, Китай). Матрицы, используемые в исследованиях, имели средний диаметр пор около 300, 90 и 30 нм, пористость их составляла также 40 – 50 %.

Для удобства здесь и далее будут использованы сокращенные обозначения композитов: RS-320, RS-46 и RS-5 для композитов $Rb_2ZnCl_4 - SiO_2$ с диаметрами пор исходной матрицы 320, 46 и 5 нм, соответственно. Аналогично для нанокомпозитов $Rb_2ZnCl_4 - Al_2O_3$: RA-300, RA-90, RA-30.

Перед заполнением матриц и после выполнения данной процедуры проводилось их взвешивание пористых. Из полученных результатов определялась объемная доля тетрахлорцинката рубидия, кристаллизовавшегося в порах матриц.

Объемная доля внедренного вещества составила 17-25 % в композитах на основе пористого диоксида кремния и ~8,5 % в материалах с пористым оксидом алюминия. Аналогичные значения по заполняемости матриц дал энергодисперсионный анализ, проведенный с помощью анализатора Oxford Instruments x-act.

Наличие кристаллизовавшегося в порах тетрахлорцинката рубидия было подтверждено результатами структурных исследований, проведенных с использованием рентгеновского дифрактометра Bruker D8 ADVANCE (СиКα-излучение) и сканирующего электронного микроскопа Tescan MIRA 3 LMH (рис. 1).

Рисунок 1 - Изображения сколов композитов RS-46 (а) и RA-300 (б), полученные с помощью сканирующего электронного микроскопа

Оценка размеров кристаллитов Rb_2ZnCl_4 по формуле Дебая-Шеррера в программе TOPAS 4.2 дала значения 18, 50 и 71 нм для RS-5, RS-46 и RS-320, соответственно. Для всех образцов композитов $Rb_2ZnCl_4 - Al_2O_3$ размеры кристаллитов составили ~ 65 нм в независимости от среднего диаметра пор заполняемых матриц.

Наряду с данными об объектах исследования, в главе 2 представлено описание экспериментальных установок для изучения диэлектрических, тепловых, упругих и неупругих свойств, сделаны оценки погрешностей измерений.

Третья глава посвящена изучению особенностей кристаллической структуры, диэлектрических, акустических и тепловых свойств тетрахлорцинката рубидия в пористых стеклах на основе диоксида кремния.

Анализ спектров рентгеновского рассеяния для композита RS-46, полученных для интервала температур 140 - 320 К, показал (рис. 2) появление ниже температуры $T_i \approx 310$ К сверхструктурного пика (2/3 2 0), интенсивность которого плавно увеличивается от нуля по мере охлаждения образца (рис. 2, б), что свидетельствует о фазовом переходе второго рода.

Других сверхструктурных линий в ходе эксперимента не наблюдалось, в отличие от монокристалла Rb₂ZnCl₄, что может быть связано с весьма небольшим количеством сегнетоэлектрического компонента в композите.

Определена структура кристаллитов Rb₂ZnCl₄ в условиях «ограниченной геометрии» при температурах 320 K, 205 K и 143 K (табл. 1). Сравнение параметров элементарной ячейки при комнатной температуре с данными для моно-кристаллического образца показало их хорошее совпадение.

Рисунок 2 - а) Фрагмент рентгеновской дифрактограммы для композита RS-46 при различных температурах. Стрелкой помечен сверхструктурный пик (2/3 2 0);

б) Температурная зависимость интенсивности сверхструктурного пика (2/3 2 0)

	unon 16 mg		
стого стекла со средним диаметром	пор 40 нм		
ΤΤ.Ι	220	205	142

Температура Т, К		320	205	143
Пространственная группа		Pnma	Pnma: - 1ss	Pn2 ₁ a
Параметры ячейки	<i>a</i> , Å	9,2759 (3)	27,681 (2)	27,603 (3)
	b, Å	7,2926 (2)	7,2557 (5)	7,2328 (8)
	<i>c</i> , Å	12,7523 (4)	12,6613 (7)	12,616 (1)
Объем ячейки V, Å ³		862,64 (5)	2543,0 (3)	2518,7 (5)
Формульное число Z		4	12	12
$V/Z, Å^3$		215,66	211,92	209,92

Для идентификации фазовых переходов были проведены измерения удельной теплоемкости (C_P) образца композита RS-46 (рис. 3, б). Видно, что C_P является растущей функцией температуры, на которой присутствуют два максимума. Небольшой размытый максимум C_P , локализованный около 285 К, может быть связан с переходом из несоразмерной в нормальную параэлектрическую фазу. Четкий пик C_P около 232 К имеет такой же вид, что и аномалия теплоемкости для монокристаллического тетрахлорцинката рубидия в окрестностях T_C . Это говорит о том, что данный пик теплоемкости обусловлен сегнетоэлектрическим фазовым переходом.

Температурные зависимости диэлектрической проницаемости, полученные для образцов исследуемых материалов, представлены на рис. 3, а. Кривые $\varepsilon'(T)$ для композитов RS-46 и RS-320 имеют почти одинаковый вид. Очевидно, это связано с тем, что, несмотря на заметное различие среднего диаметра пор матриц, доля внедренного вещества, а также средние размеры частиц Rb₂ZnCl₄ в порах различаются незначительно. На зависимостях $\varepsilon'(T)$ наблюдаются три аномалии вблизи температур 160, 245 и 307 К. Максимум ε' около 307 К близок к температуре T_i в объемном тетрахлорцинкате рубидия. Это позволяет связать его с переходом между несоразмерной и параэлектрической фазами. Как видим, температура T_i в композитах RS-46 и RS-320 мало изменяется по сравнению с массивным монокристаллическим образцом.

В окрестностях температуры 245 К, на зависимостях $\epsilon'(T)$, полученных в ходе охлаждения композитов RS-46 и RS-320, регистрируется ступенькообразная аномалия, которая приблизительно соответствует максимуму удельной теплоемкости С_P. Таким образом, температура сегнетоэлектрического фазового

Рисунок 3 - а) Температурные зависимости диэлектрической проницаемости для RS-320 (1, 2) и RS-46 (3, 4), полученные в ходе охлаждения (1, 3) и нагрева (2, 4); б) Температурная зависимость теплоемкости композита RS-46

держанием дефектов.

перехода в условиях ограниченной геометрии повышается на величину $\Delta T_C \approx 50$ К по сравнению с монокристаллом Rb₂ZnCl₄. Можно предположить, что сегнетоэлектрический фазовый переход в отдельной наночастице Rb₂ZnCl₄ реализуется, когда длина волны пространственных смещений атомов λ , возрастающая по мере удаления от T_i в сторону низких температур, становится сопоставимой с размером частицы d.

Размытый максимум диэлектрической проницаемости $T^* \approx 160$ К не сопровождапри ется особенностями на температурной зависимости Ср. Это показывает, что он не связан со структурным фазовым переходом, а, по-видимому, обусловлен перестройкой в доменной структуре. Такой максимум є около 160 К ранее обнаружен для монокристалла Rb₂ZnCl₄ с высоким со-

Температурный гистерезис диэлектрической проницаемости выше некоторой температуры $T_0 \approx 151$ К обусловлен закреплением солитонов и доменных границ дефектами кристаллической решетки. Однако, в отличие от монокристаллического Rb₂ZnCl₄, в случае композитов RS-46 и RS-320 гистерезис ϵ' про-

стирается существенно выше T_i, что, по всей видимости, связано с вкладом релаксации упругих напряжений, возникающих во внедренных частицах вследствие различия температурных коэффициентов линейного расширения α компонентов композита.

Анализ частотных зависимостей комплексной диэлектрической проницаемости показал, что с понижением частоты измерительного поля диэлектрическая проницаемость материала возрастает (рис. 4). При этом максимумы ε' , обусловленные несоразмерным и сегнетоэлектрическим фазовыми переходами, становятся более отчетливыми.

Рисунок 4 - Температурные зависимости диэлектрической проницаемости для композита RS-46, полученные в режиме охлаждения на частотах 5 (1), 10 (2), 50 (3) и 500 (4) кГц

Следует отметить, что максимума ε′ позиция в окрестностях Т_і практически не смещается при измерениях на различных частотах, тогда как положение максимума диэлектрической проницаемости вблизи Т_С слабо зависит от частоты. Наибозаметно дисперсия 3 лее проявляется вблизи температуры «замораживания» подвижности доменной структуры Т*. При этом кинетика замораживания подвижности доменных границ хорошо описывается эмпирическим соотношением Фогеля – Фулчера:

 $\tau = \tau_0 \exp[U/k(T - T_0)]$, где τ_0 – время, обратное частоте попыток преодоления потенциального барьера U, k – постоянная Больцмана, T_0 – температура Фогеля – Фулчера. Найденное значение $T_0 \approx 149$ К практически совпадает с температурой Фогеля – Фулчера в монокристаллическом Rb₂ZnCl₄.

Глубина дисперсии диэлектрической проницаемости $\Delta \varepsilon \approx \varepsilon'(f = 5 \ \kappa \Gamma \mu) - \varepsilon'(f = 500 \ \kappa \Gamma \mu)$ в условиях эксперимента заметно возрастает с понижением температуры (рис. 5). При этом она является немонотонной функцией температуры и проходит через максимумы при температурах T_i , T_C , T^* . Рост $\Delta \varepsilon$ в несоразмерной фазе, по-видимому, обусловлен динамикой зарядов, локализованных на поверхности нанокристаллитов Rb_2ZnCl_4 , возникших вследствие «обрыва волны» несоразмерно модулированной волны смещений ионов.

Рост $\Delta \varepsilon$ с понижением температуры свидетельствует об увеличении эффективного момента электрических диполей и их концентрации в составе композита, поскольку наблюдаемая в эксперименте сильная дисперсия ε' обусловлена тепловой поляризацией и приближённо может быть описана суммой Дебаевских релаксаторов $\varepsilon'(\omega) = \varepsilon_{\infty} + \Sigma[(\varepsilon_{si} - \varepsilon_{\infty})/(1+\omega^2 \tau_i^2)]$, где ε_{si} - статическая диэлектрическая проницаемость, даваемая і-й группой релаксаторов, ε_{∞} - частотнонезависимая составляющая ε' . Полная статическая проницаемость определяется выражением: $\varepsilon_s = \Sigma p_i^{2} n_i/3 kT$. Если допустить, что преобладающий вклад в диэлектрический отклик дает какой-то один тип диполей, то поляризуемость материала будет характеризоваться параметром, зависящим только от концентрации этих диполей и их величины, что отражает параметр $s = p \cdot n^{1/2} = [3kT(\varepsilon_s - \varepsilon_{\infty})]^{1/2} \approx (3kT\Delta\varepsilon)]^{1/2}$. Возрастание параметра s в интервале 160 – 350 K (рис. 6) с понижением температуры показывает, что наблюдаемое в эксперименте увеличение глубины $\Delta\varepsilon$ при охлаждении образца обусловлено не столько увеличением поляризуемости вследствие ослабления тепловых флуктуаций, сколько ростом концентрации «релаксаторов» и ростом значения их дипольного момента. Можно предположить, что основными «релаксаторами» являются полярные микрообласти, возникающие при сегнетоэлектрическом фазовом переходе; сегнетоэлектрические домены, а также не скомпенсированные в пределах нанокристаллитов области несоразмерной фазы.

Рисунок 5 - Температурная зависимость глубины дисперсии диэлектрической проницаемости в композите RS-46

Рисунок 6 - Температурная зависимость параметра s для композита RS-46

Для композита RS-5 были получены кардинально отличные результаты. На температурных зависимостях диэлектрической проницаемости (рис. 7) каких-либо особенностей диэлектрического отклика, свидетельствующих о сегнетоэлектрическом фазовом переходе или переходе в доменной структуре, обнаружено не было.

Однако в окрестностях T_i виден небольшой максимум диэлектрической проницаемости. На кривой охлаждения его позиция соответствует температуре ≈ 268 K, а на кривой нагрева ≈ 307 K. Обнаруженный температурный гистерезис T_i говорит в пользу того, что в данном материале переход из нормальной параэлектрической фазы в несоразмерную приобрел черты фазового перехода

первого рода. По-видимому, гистерезис T_i обусловлен закреплением несоразмерной волны атомных смещений дефектами решетки, включая дефекты, локализованные на поверхности частиц, и последующим ее отрывом от стопоров при «перегреве» или «переохлаждении» образца относительно температуры фазового равновесия.

Рисунок 7 - Зависимости ε'(T) для композита RS-5 на частоте 10 кГц, полученные при его нагреве (1) и охлаждении (2)

Рисунок 8 - Температурные зависимости внутреннего трения Q⁻¹(1) и упругого модуля Е (2) для композита RS-5 на частоте 15 Гц, полученные при его нагреве

Заметим, что температурный гистерезис ε' для композита RS-5 распространяется на всю область температур, доступных в эксперименте, что указывает на наличие метастабильных состояний в материале и их релаксацию в широком интервале температур.

Исследования внутреннего трения и упругого модуля (рис. 8) обнаружили, что несоразмерному фазовому переходу соответствуют пик внутреннего трения Q^{-1} , который сопровождаются характерным в случае структурного фазового перехода смягчением упругого модуля Е.

Анализ полученных результатов показал, что температура перехода в несоразмерную фазу в частицах Rb₂ZnCl₄, внедренных в пористую матрицу, несущественно изменяется по сравнению с массивным образцом, однако фазовый переход протекает в существенно неравновесных условиях и приобретает черты фазового перехода первого рода. Сегнетоэлектрический фазовый

переход в наночастицах Rb_2ZnCl_4 в матрице с размерами пор ≈ 5 нм в условиях эксперимента не выявлен.

В главе 4 обсуждаются диэлектрические свойства тетрахлорцинката рубидия в пористых пленках оксида алюминия.

Температурные зависимости ε' для композитов RA-30 и RA-90 (рис. 9) как при нагреве, так и при охлаждении являются возрастающими функциями температуры. Они образуют температурный гистерезис, отчетливо видимый в

 гисунок 9 - температурные зависимости
ε' для композитов RA-30 (а), RA-90 (б) и
RA-300 (в) на частоте 10 кГц при охлаждении (1) и нагреве (2)

интервале температур 225–370 К.

Для композита RA-30 какихлибо аномалий, которые можно связать с сегнетоэлектрическим фазовым переходом, либо переходом в несоразмерную фазу, в ходе эксперимента не обнаружено.

На зависимостях $\varepsilon'(T)$ для RA-90 отчетливо виден максимум, соответствующий переходу в несоразмерную фазу. В случае нагрева он наблюдается при $T_{ih} \approx 323$ K, а при охлаждении при $T_{ic} \approx 303$ K. Однако никаких аномалий, свидетельствующих о переходе в сегнетоэлектрическое состояние, отмечено не было.

Диэлектрическая проницаемость в области температур, доступных в эксперименте, существенно неравновесна, о чем свидетельствует, как широкий температурный гистерезис є[/], так и необратимое поведение зависимости є[/](T) при циклическом изменении температуры.

Для композита RA-300 наблюдалась совершенно иная картина (рис. 9, в).

При охлаждении из параэлектрической фазы зависимость $\varepsilon'(T)$ проходит через размытый максимум в окрестности температуры $T_{mc} \approx 293$ К. В ходе нагрева образца из сегнетоэлектрической фазы этот максимум ε появляется вблизи $T_{mh} \approx 240$ К. Природа этих максимумов не установлена. Данные максимумы не сопровож-

даются заметными пиками tg δ (рис. 10). Это говорит о том, что они не связаны с процессами Максвелл – Вагнеровской поляризации, которая может приводить к появлению мощных аномалий ε' в параэлектрической фазе некоторых сегнетоэлектриков. Однако на зависимостях tg $\delta(T)$, полученных в ходе охлаждения и нагрева, наблюдается максимум в окрестности характерной температуры $T^* \approx 160$ К. Найденное значение T^* практически совпадает с температурой замораживания подвижности доменных границ в монокристаллическом образце и в частицах тетрахлорцинката рубидия в составе композита Rb₂ZnCl₄ – SiO₂.

Рисунок 10 - Температурные зависимости tgб для композита RA-300 на частоте 10 кГц при охлаждении (1) и нагреве (2)

Еще один пик диэлектрической проницаемости на зависимости $\varepsilon'(T)$, обусловленный переходом из несоразмерной фазы в параэлектрическую, наблюдается в окрестностях $T_i \approx 295$ К. На кривой охлаждения он не заметен, вероятно, из-за его наложения на мощный максимум диэлектрической проницаемости при $T_{mc} \approx 293$ К.

Положение диэлектрических аномалий при T_{mc} и T_{mh} на оси температур существенно зависит от термической предыстории материала (рис. 11), что позволяет пред-

полагать их связь с метастабильными состояниями, возникающими в исследуемом материале. Существование таких состояний подтверждается наличием широкого гистерезиса диэлектрической проницаемости и тангенса угла диэлектрических потерь во всем доступном в эксперименте диапазоне температур (110 - 350 K), свидетельствующего о неравновесном состоянии исследуемого материала.

Вместе с тем, максимумы ϵ' при температурах T_{mh} и T_{mc} не связаны с сегнетоэлектрическим фазовым переходом в кристаллитах Rb_2ZnCl_4 , входящих в состав исследуемого композита. Об этом свидетельствуют результаты калориметрических измерений (рис. 12). Видно, что на температурной зависимости удельной теплоемкости отсутствуют какие-либо особенности, которые можно было бы связать со структурным фазовым переходом.

Рисунок 11 - Температурные зависимости є' для композита RA-300, полученные на частоте 100 кГц при нагреве (а) и охлаждении (б) от разных температур, до которых образец предварительно охлаждался или нагревался. На

вставке показана зависимость $T_{mh}(T_{cool})$

Рисунок 12 - Температурная зависимость теплоемкости композита RA-300

Поэтому можно предположить, что переход из несоразмерной в сегнетоэлектрическую фазу в частицах Rb₂ZnCl₄ в составе композита RA-300 развивается перманентно с понижением температуры.

В заключении изложены основные результаты работы.

1. Впервые синтезированы нанокомпозиты на основе сегнетоэлектрика с несоразмерной фазой Rb₂ZnCl₄ и пористых оксидов кремния и алюминия. Получена совокупность экспериментальных данных относительно их структуры, тепловых, диэлектрических, инфранизкочастотных упругих и неупругих свойств. 2. Установлено, что температура перехода в несоразмерную фазу T_i в частицах Rb_2ZnCl_4 , внедренных в пористые матрицы оксида кремния со средним размером пор 5, 46 и 320 нм и пористые матрицы оксида алюминия со средним размером пор 90 и 300 нм незначительно изменяется по сравнению с массивным монокристаллическим образцом тетрахлорцинката рубидия.

3. Показано, что температурные зависимости диэлектрической проницаемости, упругого модуля и внутреннего трения, полученные для всех исследованных композиционных материалов в условиях циклического изменения температуры, характеризуются широким температурным гистерезисом. В случае композитов RS-46 и RS-320 гистерезис ε' ограничен снизу температурой замораживания подвижности доменных границ T^{*} 160 K. В случае композита RS-5 гистерезис ε' наблюдался во всем интервале температур, доступном в эксперименте.

Предполагается, что за наблюдаемые гистерезисные явления ответственна солитонная структура, взаимодействующая с дефектами кристаллической решетки.

4. На примере композитов RS-5 и RA-90 показана зависимость температуры перехода между нормальной параэлектрической и несоразмерной фазами (T_i) от термической предыстории образца. Предполагается, что наблюдаемый эффект обусловлен тем, что несоразмерный фазовый переход реализуется в системе, не достигшей состояния термодинамического равновесия из-за чрезвычайно длительного времени его установления.

5. Анализ экспериментальных результатов показал, что в нанокристаллитах тетрахлорцинката рубидия в составе композитов RS-46 и RS-320 реализуется сегнетоэлектрический фазовый переход, температура которого приблизительно на 50 К выше, чем в объемном материале.

Обосновано предположение, что столь значительное повышение T_C связано с ограничением увеличения длины пространственной модуляции конечными размерами нанокристаллитов.

6. Показано, что в нанокристаллитах Rb_2ZnCl_4 в пористых матрицах SiO_2 и Al_2O_3 с «малыми» размерами пор (5 нм для матриц SiO_2 и 90 нм для матриц Al_2O_3) сегнетоэлектрическая фаза не реализуется, из-за взаимодействия внедренного материала с внутренней поверхностью пор, наиболее сильного в случае матриц Al_2O_3 .

7. Установлено, что в сегнетоэлектрической фазе наночастиц Rb_2ZnCl_4 входящих в композиты RS-46, RS-320 и RA-300 образуется доменная структура, которая «замораживается» при $T^* \approx 160$ К, приблизительно такой же, как и в объемном материале.

8. Для композита RS-46 выявлена заметная дисперсия диэлектрического отклика на частотах 5 – 500 кГц, глубина которой существенно возрастает с понижением температуры вплоть до $T^* \approx 160$ К. Анализ полученных результатов свидетельствует об увеличении эффективного дипольного момента «релаксаторов» и их концентрации с понижением температуры, а также достаточно медленных процессах релаксации поляризации.

9. Обнаружено, что характерное время диэлектрической релаксации, наблюдаемой в композите RS-46 в области замораживания подвижности доменной структуры, подчиняется закону Фогеля – Фулчера с температурой Фогеля – Фулчера такой же, как и в монокристалле Rb₂ZnCl₄.

10. Уменьшение объема ячейки монокристаллического Rb₂ZnCl₄ и кристаллитов Rb₂ZnCl₄ в матрице диоксида кремния при охлаждении до 140 К практически не различимы. Это показывает, что возможные механические деформации во внедренных кристаллитах, обусловленные различными значениями температурного коэффициента линейного расширения, невелики.

11. Аномально широкий гистерезис диэлектрической проницаемости и необратимость ее температурной зависимости, наблюдаемая на примере композита RA-90, говорит о неэргодичности реализовавшегося в композиционных материалах состояния.

Основные результаты диссертации опубликованы в следующих работах Публикации в изданиях, рекомендованные ВАК РФ

1 Короткова, Т. Н. Диэлектрические свойства нанокомпозитов Rb₂ZnCl₄ - SiO₂ / Т. Н. Короткова, Л. С. Стекленева, Е. Рысякиевич - Пасек, Л. Н. Коротков // Вестник Воронежского государственного технического университета. – 2017. – № 5. – С. 127-132.

2 Коротков, Л. Н. Структура, диэлектрические и тепловые свойства тетрахлорцинката рубидия в пористых стеклах / Л. Н. Коротков, Л. С. Стекленева, И. Н. Флеров, Е. А. Михалева, Е. Рысякевич-Пасек, М. С. Молокеев, В. С. Бондарев, М. В. Горев, О. И. Сысоев // Известия РАН. Серия физическая. – 2019. – Т. 83. – № 9. – С. 1182-1186.

3 Korotkov, L. N. Dielectric response of Rb_2ZnCl_4 within porous aluminum oxide / L. N. Korotkov, L. S. Stekleneva, M. A. Pankova, E. M. Logoshina // Ferroe-lectrics. – 2020. – Vol. 567. – P. 74-81.

4 Стекленева, Л. С. Влияние размеров пор на фазовые переходы в наночастицах тетрахлорцинката рубидия в пористых стеклянных матрицах / Л. С. Стекленева, А. А. Брянская, М. А. Панкова, С. В. Попов, Л. Н. Коротков // Конденсированные среды и межфазные границы. – 2022. – Т. 24. – № 3. – С. 362-368.

5 Стекленева, Л. С. Диэлектрические свойства нанокомпозитов Rb₂ZnCl₄ - Al₂O₃ / Л. С. Стекленева, М. А. Панкова, Л. Н. Коротков // Вестник ВГУ. Серия: Физика. Математика. – 2022. – № 3.– С. 19-28.

Материалы конференций

6 Stekleneva, L. S. Phase Transitions in Rb_2ZnCl_4 Particles under Restricted Geometry Conditions / L. S. Stekleneva, E. Rysiakiewicz-Pasek, I. N. Flerov, V. S. Bondarev, M. S. Molokeev, L. N. Korotkov // OAJ Materials and Devices. – 2019. – Vol. 4 (1). – 1506. – P. 46. 7 Стекленева, Л. С. Диэлектрические свойства тетрахлорцинката рубидия в условиях ограниченной геометрии / Л. С. Стекленева, Л. Н. Коротков, А. Н. Дудина // Тезисы докладов 57-й отчетной научно-технической конференции ВГТУ, секция «Физика твердого тела». – Воронеж: ВГТУ, 2017. – С. 15.

8 Стекленева, Л. С. Диэлектрические свойства тетрахлорцинката рубидия в условиях ограниченной геометрии / Л. С. Стекленева, Л. Н. Коротков, E. Rysiakiewicz-Pasek // Сборник докладов участников VIII Всероссийской конференции «Образовательный, научный и инновационный процессы в нанотехнологиях».– Курск, 2017. – С. 30–33.

9 Стекленева, Л. С. Диэлектрические свойства нанокомпозитов Rb₂ZnCl₄ – SiO₂ / Л. С. Стекленева, Л. Н. Коротков // Тезисы докладов 19 Всероссийской молодежной конференции по физике полупроводников и наноструктур, полупроводниковой опто- и наноэлектроники. – Санкт-Петербург: СПбПУ, 2017. – С. 122.

10 Стекленева, Л. С. Диэлектрические и тепловые свойства нанокомпозитов Rb₂ZnCl₄ - SiO₂ / Л. С. Стекленева, Л. Н. Коротков, И. Н. Флеров, А. Н. Рябцев, Н. А. Азарных // Тезисы докладов 58-й отчетной научнотехнической конференции ВГТУ. – Воронеж: ВГТУ, 2018. – С. 6.

11 Stekleneva, L. S. Relaxor behavior of confined Rb_2ZnCl_4 / L. S. Stekleneva, E. Rysiakiewicz-Pasek, I. N. Flerov, M. S. Molokeev, T. N. Korotkova, L. N. Korotkov // Abstract Book of 14th Russia/ CIS/ Baltic/ Japan Symposium on Ferroelectricity. – Санкт-Петербург: Институт Иоффе, 2018. – С. 179.

12 Stekleneva, L. S. Restricted geometry effect on phase transition in Rb₂ZnCl₄ / L. S. Stekleneva, E. Rysiakiewicz-Pasek, V. S. Bondarev, I. N. Flerov, M. S. Molokeev, L. N. Korotkov // Scanning Probe Microscopy. Abstract Book of International Conference. – Ekaterinburg: Ural Federal University, 2018. – P. 212.

13 Стекленева, Л. С. Фазовые переходы в частицах Rb₂ZnCl₄ в условиях ограниченной геометрии / Л. С. Стекленева, Е. Рысякевич-Пасек, И. Н. Флеров, М. S. Molokeev, V. S. Bondarev, Л. Н. Коротков // The Ninth International Seminar on Ferroelastic Physics. Abstract Book. –Voronezh, 2018. – P. 54.

14 Стекленева, Л. С. Диэлектрические и тепловые свойства тетрахлорцинката рубидия в пористых стеклах / Л. С. Стекленева, Л. Н. Коротков, И. Н. Флеров, Е. А. Михалева, Е. Rysiakiewicz-Pasek, М. С. Молокеев, В. С. Бондарев, М. В. Горев // Тезисы докладов 59-й отчетной научно-технической конференции ВГТУ, секция «Физика твердого тела». – Воронеж: ВГТУ, 2019. – С. 6.

15 Стекленева, Л. С. Диэлектрическая релаксация в нанокомпозите Rb₂ZnCl₄ - SiO₂ / Л. С. Стекленева, Л. Н. Коротков, Е. Рысякевич-Пасек // Релаксационные явления в твердых телах. Материалы XXIV международной конференции. – 2019. – С. 119-120.

16 Стекленева, Л. С. Диэлектрический отклик Rb₂ZnCl₄ в пористом оксиде алюминия / Л. С. Стекленева, Л. Н. Коротков, Е. М. Логошина // Тезисы докладов 60-й отчетной научно-технической конференции ВГТУ, секция «Физика твердого тела». – Воронеж: ВГТУ, 2020. – С. 39.

17 Стекленева, Л. С. Диэлектрические свойства Rb₂ZnCl₄ в нанопористых матрицах Al₂O₃ / Л. С. Стекленева, Тхай Тхи Ми Зуен, Е. М. Логошина,

Л. Н. Коротков // Тезисы докладов 61-й отчетной научно-технической конференции ВГТУ, секция «Физика твердого тела». – Воронеж: ВГТУ, 2021. – С. 44-45.

18 Стекленева, Л. С. Диэлектрические свойства нанокомпозита Rb₂ZnCl₄ - Al₂O₃ // Л. С. Стекленева, Л. Н. Коротков // Тезисы докладов VIII Международной молодежной научной конференции «Физика. Технологии. Инновации». – Екатеринбург, 2021. – С. 309-310.

19 Стекленева, Л. С. Фазовые состояния в нанокристаллах тетрахлорцинката рубидия в условиях ограниченной геометрии / Л. С. Стекленева, Л. Н. Коротков // Фазовые переходы, критические и нелинейные явления в конденсированных средах. Сборник трудов международной конференции посвященной 90-летию Дагестанского государственного университета. – Махачкала: Институт физики Дагестанского ФИЦ РАН, 2021. – С. 116.

20 Брянская, А. А. Диэлектрические свойства композита Rb₂ZnCl₄ – SiO₂ с диаметром пор матрицы 5 нм / А. А. Брянская, Л. С. Стекленева, Л. Н. Коротков // Тезисы докладов 62-й отчетной научно-технической конференции ВГТУ, секция «Физика твердого тела». – Воронеж: ВГТУ, 2022. – С. 32-33.

21 Короткова, Т. Н. Диэлектрические свойства нанокомпозитов на основе тетрахлорцинката рубидия и оксида алюминия / Т. Н. Короткова, Л. С. Стекленева, Л. Н. Коротков // Сборник тезисов IV семинара «Современные нанотехнологии». – Екатеринбург: Уральский федеральный университет, 2022. – С. 21.

22 Коротков, Л. Н. Инфранизкочастотное внутреннее трение в нанокомпозите Rb₂ZnCl₄ – SiO₂ / Л. Н. Коротков, Л. С. Стекленева, Т. Н. Короткова, И. И. Попов, А. А. Камынин // Релаксационные явления в твердых телах. Материалы XXV Международной конференции. – Воронеж: ВГТУ, 2022. – С. 119-121.

Подписано в печать 20.12.2022. Формат А5. Бумага писчая. Усл. печ. л. 1,0. Тираж 100 экз. Заказ № 463 ФГБОУ ВО «Воронежский государственный технический университет» Отдел оперативной полиграфии издательства ВГТУ 394006 Воронеж, ул. 20-летия Октября, 84