МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан ФЭМИТ Баркалов С.А. «31» 08 20 21 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Диагностика и надежность строительных процессов»

 Направление
 подготовки
 15.03.04
 АВТОМАТИЗАЦИЯ

 ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ

Профиль <u>Автоматизация и управление робототехническими комплексами и системами в строительстве</u>

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2021

Автор программы

/Минаков А.С./

Заведующий кафедрой Систем управления и информационных технологий в строительстве

/Десятирикова Е.Н./

Руководитель ОПОП

Акимов В.И./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Обучение студентов основам, связанным с обеспечением надежности и технической диагностики автоматизированных Изучение основных положений по оценке, обеспечению и повышению надежности автоматизированных систем с целью обеспечения высокого их качества и исключения ущерба от недостаточной надежности. Приобретение анализа автоматизированных знаний области систем управления технологическими процессами и оборудованием строительной отрасли. Усвоение студентами современных методов диагностики и исследования объектов и систем автоматизации производства. Закрепление навыков решения типовых задач диагностики и повышения надежности проектировании и эксплуатации автоматизированных систем управления объектами и технологическими процессами.

Особое внимание уделяется оценке вопросов надёжности при разработке систем управления основными объектами промышленности строительного комплекса. В процессе изучения дисциплины студент приобретает теоретических знаний и практические навыки при работе с современными средствами автоматики на базе микропроцессорной техники, вычислительной техники, информационных систем, алгоритмов и программ, исполнительных устройств, обеспечивающих требуемое безотказное функционирование конкретных систем автоматизации, применяемых в России и за рубежом.

1.2. Задачи освоения дисциплины

Задачами изучения дисциплины являются: приобретение знаний в области автоматизированного автоматического управления И технологическими процессами и оборудованием строительной отрасли; усвоение студентами современных построения методов систем автоматического управления; закрепление навыков анализа дифференциальных уравнений, применения математических методов к решению задач автоматического управления; усвоение взаимосвязей между структурно-топологическим и/или алгоритмическим обеспечением систем автоматического реализуемым переходных управления И качеством процессов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Диагностика и надежность строительных процессов» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Диагностика и надежность строительных процессов» направлен на формирование следующих компетенций:

ПК-6 - способностью проводить диагностику состояния и динамики производственных объектов производств с использованием необходимых методов и средств анализа

ПК-10 - способностью проводить оценку уровня брака продукции, анализировать причины его появления, разрабатывать мероприятия по его устранению, совершенствованию предупреждению И ПО продукции, процессов, средств автоматизации управления технологических процессами, жизненным циклом продукции и ее качеством, систем экологического менеджмента предприятия, по сертификации продукции, процессов, средств автоматизации и управления

ПК-26 - способностью участвовать в организации приемки и освоения вводимых в эксплуатацию оборудования, технических средств и систем

автоматизации, контроля, диагностики, испытаний и управления

примитизиции, коп	гроля, диагностики, испытании и управления Результаты обучения, характеризующие
Компетенция	
	сформированность компетенции
ПК-6	Знать важные конкретные понятия (сигналы,
	измерительные шкалы, «большие» и «сложные» систем,
	эмерджентность)
	Уметь применять методы: направленные на
	формализацию (экспериментальные исследования,
	моделирование) и слабо формализованные (экспертные
	оценки, коллективный выбор)
	Владеть методами, направленными на формализацию
ПК-10	Знать мероприятия по совершенствованию средств
	автоматизации и управления
	Уметь разрабатывать мероприятия по
	совершенствованию средств автоматизации и
	управления процессами
	Владеть: навыками по сертификации средств
	автоматизации и управления
ПК-26	Знать организацию приемки и освоения вводимого в
	эксплуатацию оборудования
	Уметь участвовать в приемке вводимого в
	эксплуатацию оборудования
	Владеть навыками приемки вводимого в эксплуатацию
	оборудования

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Диагностика и надежность строительных процессов» составляет 4 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Ριστι τημοδικού ποδοπιτ	Всего	Семестры
Виды учебной работы	часов	5

Аудиторные занятия (всего)	70	70
В том числе:		
Лекции	16	16
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	74	74
Виды промежуточной аттестации - зачет с оценкой	+	+
Общая трудоемкость:		
академические часы	144	144
зач.ед.	4	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Основные понятия и определения надежности.	Основные понятия теории надежности. Требования ГСП. Требования ГОСТ. Показатели надежности неремонтируемых объектов. Описание производственного процесса как объекта автоматизированного управления. Проблема надежности в технике, технологиях, автоматике. Задачи, решаемые теорией надежности, математический аппарат теории надежности. Показатели надежности ремонтируемых объектов, не восстанавливаемых в процессе применения и их составляющие: безотказность, восстанавливаемость (ремонтопригодность), сохраняемость и долговечность. Пересчет средней наработки до отказа на различные условия применения объектов.	4	2	6	12	24
2	-Методы определения показателей надежности.	Техническое задание на проектирование локальных систем автоматизации и на создание АСУ ТП. Стадии и этапы расчета надежности при проектировании. Способы и этапы предсказания надежности проектируемых систем. Методы расчета надежности систем различных типов. Расчет надежности неремонтируемых систем. Оценка надежности автоматизированных систем управления. Оценка надежности программ цифровых ЭВМ.	4	2	6	12	24
3	Надежность и эффективность систем автоматизации.	Показатели качества функционирования. Выбор показателей качества функционирования систем. Оценка качества функционирования систем. Переход от оценки качества функционирования к оценке надежности систем.	2	2	6	12	22
4	Схема формирования отказов в системах автоматизации,	Возможные модели процессов возникновения отказов. Теоретические законы безотказности и	2	4	6	12	24

	управления и	восстанавливаемости:					
	программно-технических	экспоненциальный, нормальный,					
	средств. Классификация	усеченный нормальный, логарифмически					
	отказов.	нормальный; Вейбулла. Особенности случайных процессов					
		старения, изнашивания,					
		разрегулирования. Принципы					
		моделирования процессов возникновения					
		отказов элементов. Анализ надежности					
		резервированных восстанавливаемых систем, методы их решения для					
		определения: функций и коэффициентов					
		готовности системы или средней					
		наработки на отказ.					
		Факторы определяющие надежность					
		программного обеспечения. Защита					
		программного обеспечения от вирусов. Надежностные модели технических					
		средств и алгоритмов функционирования					
		АСУ.					
5	Система обеспечения	Некоторые опасные нагрузки и способы					
	надежности. Методы	их уменьшения. Мероприятия по					
	повышения надежности и	повышению надежности проектируемых					
	эффективности систем автоматизации,	объектов. Пути повышения надежности при изготовлении объекта. Программы					
	управления и	обеспечения надежности и других					
	программно-технических	эксплуатационных свойств объектов.					
	средств.	Свойства резервированных					
		невосстанавливаемых и					
		восстанавливаемых систем.	2	4	(12	24
		Резервирование в технических системах и его виды:. Структурные схемы	2	4	6	12	24
		повышения надёжности для различных					
		видов резервирования. Методы расчета					
		надежности резервированных					
		невосстанавливаемых систем по					
		известным характеристикам элементов.					
		Показатели эффективности резервирования, способы их					
		определения. Эксплуатационные					
		свойства автоматизированных систем.					
6	Диагностирование как	Общие сведения и задачи					
	средство повышения	диагностирования. Система технического					
	надежности на стадии	диагностирования. Критерии и точность оценки работоспособности. Техническое					
	эксплуатации. Методы диагностирования систем	диагностирование – этап повышения					
	автоматизации,	надежности. Задачи организации					
	управления и	диагностического обеспечения. Общая					
	программно-технических	методика решения задач					
	средств. Алгоритмы	диагностирования. Показатели и					
	диагностирования.	критерии эффективности диагностирования. Диагностические					
		модели определения работоспособности	2	4		1.4	26
		систем автоматики. Модели	2	4	6	14	26
		работоспособности непрерывных					
		линейных систем и особенности их					
		анализа. Модели работоспособности дискретных					
		систем: сохранения работоспособности,					
		поиска дефекта. Оптимизация поиска.					
		Надежность технических систем с					
		операторами. Технические и					
		программные средства для диагностики и наладки оборудования. Диаграммы					
		наладки ооорудования. диаграммы прохождения сигналов.					
		Итого	16	18	36	74	144

5.2 Перечень лабораторных работ

№	№ разд	ела Наименование лабораторных работ	Трудоемкость
---	--------	-------------------------------------	--------------

п/п	дисциплины		(час)
1.	1	Системы непрерывного регулирования температуры. Критерии и точность оценки работоспособности. Построения математических моделей надежности, проведения расчетов показателей надежности	4
2.	3	Программное регулирование температуры. Критерии и точность оценки работоспособности. Построения математических моделей надежности, проведения расчетов показателей надежности	4
3.	4,5	Техническое диагностирование САР непрерывного действия. Анализ надежности САР программного регулирования температуры. Построения математических моделей надежности, проведения расчетов показателей надежности	7
4.	4	Погико-программное управление. Критерии оценки работоспособности дискретных систем. Построения математических моделей надежности, проведения расчетов показателей надежности	4
5.	5	Алгоритмы диагностирования дискретных систем. Анализ надежности системы логико-программного управления. Построения математических моделей надежности, проведения расчетов показателей надежности	5
6.	6	Исследование, программирование и диагностика контура автоматического контроля с использованием контроллера 2TPM1. Построения математических моделей надежности, проведения расчетов показателей надежности	4
7.	6	Исследование, программирование и диагностика контура автоматического регулирования с использованием контроллера 2TPM1 Построения математических моделей надежности, проведения расчетов показателей надежности	4

8.	6	Исследование, программирование и диагностика контура автоматического регулирования при поддержании разности температур, используя по двум каналам регулирования разности двух измеряемых величин измерителя-регулятора 2TPM1.	6
		Построения математических моделей надежности, проведения расчетов показателей надежности	
	итого		38

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-6	Знать важные конкретные понятия (сигналы, измерительные шкалы, «большие» и «сложные» систем, эмерджентность)	своевременное выполнение и отчет лабораторных работ и практических заданий.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь применять методы: направленные на формализацию (экспериментальные исследования, моделирование) и слабо формализованные (экспертные оценки, коллективный выбор)	своевременное выполнение и отчет лабораторных работ и практических заданий.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть методами, направленными на формализацию	своевременное выполнение и отчет лабораторных работ и практических заданий.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

ПК-10	Знать мероприятия по	своевременное выполнение и	Выполнение работ	Невыполнение
	совершенствованию	отчет лабораторных работ и	в срок,	работ в срок,
	средств автоматизации	практических заданий.	предусмотренный в	предусмотренный в
	и управления		рабочих	рабочих
			программах	программах
	Уметь разрабатывать	своевременное выполнение и	Выполнение работ	Невыполнение
	мероприятия по	отчет лабораторных работ и	в срок,	работ в срок,
	совершенствованию	практических заданий.	предусмотренный в	предусмотренный в
	средств автоматизации		рабочих	рабочих
	и управления процессами		программах	программах
	Владеть: навыками по	своевременное выполнение и	Выполнение работ	Невыполнение
	сертификации средств	отчет лабораторных работ и	в срок,	работ в срок,
	автоматизации и	практических заданий.	предусмотренный в	предусмотренный в
	управления		рабочих	рабочих
			программах	программах
ПК-26	Знать организацию	своевременное выполнение и	Выполнение работ	Невыполнение
	приемки и освоения	отчет лабораторных работ и	в срок,	работ в срок,
	вводимого в	практических заданий.		предусмотренный в
	эксплуатацию оборудования		рабочих	рабочих
	ооорудования		программах	программах
	Уметь участвовать в	своевременное выполнение и	Выполнение работ	Невыполнение
	приемке вводимого в	отчет лабораторных работ и	в срок,	работ в срок,
	эксплуатацию	практических заданий.		предусмотренный в
	оборудования		рабочих	рабочих
			программах	программах
	Владеть навыками	своевременное выполнение и	Выполнение работ	Невыполнение
	приемки вводимого в	отчет лабораторных работ и	в срок,	работ в срок,
	эксплуатацию	практических заданий.		предусмотренный в
	оборудования		рабочих	рабочих
			программах	программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 5 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-6	Знать важные конкретные понятия (сигналы, измерительные шкалы, «большие» и «сложные» систем, эмерджентность)	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	Уметь применять методы: направленные на формализацию (экспериментальные исследования, моделирование) и слабо формализованные (экспертные оценки, коллективный выбор)	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

	Владеть методами,	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	направленными на	прикладных	решены в	ирован	ирован верный	решены
	формализацию	*	-	ирован верный ход	ход решения в	решены
	T - F	задач в	полном	решения всех,	большинстве	
		конкретной	объеме и			
		предметной	получены	но не получен	задач	
		области	верные	верный ответ		
			ответы	во всех		
	-			задачах		
ПК-10	Знать мероприятия	Тест	Выполнение	Выполнение	Выполнение	В тесте
	по совершенствованию		теста на 90-	теста на 80-	теста на 70-	менее 70%
	средств		100%	90%	80%	правильных
	автоматизации и					ответов
	управления					
	Уметь	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	разрабатывать	стандартных	решены в	ирован	ирован верный	решены
	мероприятия по	практических	полном	верный ход	ход решения в	P
	совершенствованию	задач	объеме и	решения всех,	большинстве	
	средств		получены	но не получен	задач	
	автоматизации и		верные	верный ответ	34,441	
	управления		ответы	во всех		
	процессами		0154151	задачах		
	Владеть: навыками	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	по сертификации	прикладных	решены в	ирован	ирован верный	решены
	средств	задач в	полном	верный ход	ход решения в	решены
	автоматизации и	конкретной	объеме и	решения всех,	большинстве	
	управления	предметной	получены	но не получен	задач	
		области	верные	верный ответ	зиди 1	
		ооласти	ответы	во всех		
			ОТВСТВІ	задачах		
ПК-26	Знать организацию	Тест	Выполнение	Выполнение	Выполнение	В тесте
11IX-20	приемки и освоения	1001	теста на 90-	теста на 80-	теста на 70-	менее 70%
	вводимого в		100%	90%	80%	
	эксплуатацию		100%	90%	8070	правильных
	оборудования					ответов
	Уметь участвовать	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	в приемке	стандартных	решены в	ирован	ирован верный	решены
	вводимого в	практических	полном	верный ход	ход решения в	
	эксплуатацию	задач	объеме и	решения всех,	большинстве	
	оборудования		получены	но не получен	задач	
			верные	верный ответ		
			ответы	во всех		
				задачах		
	Владеть навыками	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	приемки вводимого	прикладных	решены в	ирован	ирован верный	решены
	в эксплуатацию	задач в	полном	верный ход	ход решения в	1
	оборудования	конкретной	объеме и	решения всех,	большинстве	
		предметной	получены	но не получен	задач	
		области	верные	верный ответ		
			ответы	во всех		
			0120121	задачах		
	I			эидичил		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Теория надежности это...
- научная дисциплина, изучающая общие закономерности, которых следует придерживаться при проектировании, испытаниях, изготовлении, приемке и эксплуатации, систем для получения максимальной эффективности их использования;
 - научная дисциплина, изучающая частные теории, которых следует

придерживаться только при испытаниях систем

- научная дисциплина, изучающая общие закономерности, которых следует придерживаться при изготовлении, приемке и эксплуатации, систем для получения сведений о качестве.
 - 2. На рисунке показана ...

- Общая схема эксплуатации системы
- Структура надежности системы
- Частный случай иерархии системы хранения, использования и ремонта системы.
- 3. Под надежностью системы автоматического управления понимается...
- ее защищенность от случайных или преднамеренных вмешательств в нормальный процесс ее функционирования, выражающийся в хищении или изменении информации (программная надежность), а также в нарушении ее работоспособности из-за отказов (аппаратная надежность).
- ее защищенность только от преднамеренных вмешательств в нормальный процесс ее функционирования, выражающийся в хищении или изменении информации (программная надежность), а также в нарушении ее работоспособности из-за отказов (аппаратная надежность).
- ее защищенность только от случайных вмешательств в нормальный процесс ее функционирования, выражающийся в хищении или изменении информации (программная надежность), а также в нарушении ее работоспособности из-за отказов (аппаратная надежность).
 - 4. Под безотказностью понимается...
- свойство системы сохранять свою работоспособность без вынужденных перерывов в течение некоторого периода времени, оцениваемого наработкой (длительность и объем выполненной работы до первого отказа).
- свойство системы восстанавливать свою работоспособность при кратковременном отказе
- свойство системы сохранять свою работоспособность при незначительном перерыве в течение некоторого периода времени, оцениваемого наработкой (длительность и объем выполненной работы до первого отказа).
 - 5. Под работоспособностью понимается...
- состояние системы, при котором она нормально выполняет заданные функции с заданными технической документацией параметрами.
- состояние системы, при котором она нормально выполняет заданные функции с заданными оператором параметрами.
- состояние системы, при котором она определенное оператором время выполняет заданные функции.
 - 6. Под долговечностью понимается...
- свойство системы к длительной эксплуатации при необходимом техническом обслуживании и ремонте
- свойство системы к длительной эксплуатации без необходимости в техническом обслуживании и ремонте
 - свойство системы к длительной эксплуатации при незначительном ремонте
 - 7. Под ремонтопригодностью понимается...

- приспособленность системы к предупреждению, обнаружению и ликвидации отказов
- свойство системы к длительной эксплуатации при необходимом техническом обслуживании и ремонте
- состояние системы, при котором она нормально выполняет заданные функции с заданными технической документацией параметрами.
 - 8. Под сохраняемостью понимается...
- -свойство системы (и составляющих ее элементов) сохранять свои параметры неизменными при определенных условиях (колебаниях температуры, действии влажности, вибрациях и т.п.) и сроках хранения и транспортировки
- -приспособленность системы к предупреждению, обнаружению и ликвидации отказов
- свойство системы к длительной эксплуатации при необходимом техническом обслуживании и ремонте
 - 9. Временный отказ...
- могут самопроизвольно исчезать без вмешательства обслуживающего персонала после устранения вызвавшей их причины
- продолжается короткое время, затем система самовосстанавливается и работает надежно
- при котором аппаратура либо становится неработоспособной, либо ее характеристики выходят за допустимые пределы на все время, пока не будет устранен отказ
 - 10. Перемежающийся отказ...
- продолжается короткое время, затем система самовосстанавливается и работает надежно
- может самопроизвольно исчезать без вмешательства обслуживающего персонала после устранения вызвавшей их причины
- при котором аппаратура либо становится неработоспособной, либо ее характеристики выходят за допустимые пределы на все время, пока не будет устранен отказ

7.2.2 Примерный перечень заданий для решения стандартных задач

- не предусмотрено

7.2.3 Примерный перечень заданий для решения прикладных задач

1

Система состоит из трех блоков, среднее время безотказной работы которых равно: $m_{t1}=160~\rm q.$; $m_{t2}=320~\rm q.$; $m_{t3}=600~\rm q.$ Для блоков справедлив экспоненциальный закон надежности. Требуется определить среднее время безотказной работы системы.

- 91ч

-85ч

-48ч

2.

На испытание поставлено 1000 однотипных подшипников качения; за 3000 ч отказало 80 подшипников. Требуется определить p(t), q(t) при t=3000 ч.

- 0.08
- 0,05
- 1,84

3.

На испытание поставлено 500 изделий. За время 3000 ч отказало 300 изделий, т.е. n(t) = 500 - 300=200. За интервал времени $(t, t+\Delta t)$, где $\Delta t = 100$ ч, отказало еще 100 изделий, т.е. $\Delta n(t) = 100$. Требуется определить $p(3000), p(3100), f(3000), \lambda(3000)$.

- 0.4
- 0,3
- 1,5

4.

На испытание поставлено шесть однотипных изделий. Получены следующие значения t_i (t_i — время безотказной работы i-го изделия): $t_1 = 280$ ч; $t_2 = 350$ ч; $t_3 = 400$ ч; $t_4 = 320$ ч; $t_5 = 380$ ч; $t_6 = 330$ ч.

Определить статистическую оценку среднего времени безотказной работы изделия.

- 343,33
- 1025,14
- 15,21

5.

Средняя наработка до отказа L_1 автоматического регулятора равна 640 часов. Предполагается, что справедлив экспоненциальный закон надежности.

Определить вероятность безотказной работы, частоту отказов и интенсивность отказов за 120 часов работы системы.

- $-1.29*10^{-3}$
- $-1,85*10^{-3}$
- $-4.29*10^{-5}$

5.

Система управления состоит из 6000 элементов, соединенных последовательно, средняя интенсивность отказов которых $\lambda_{cp}(t)=0.2\cdot 10^{-6}~{\rm y}^{-1}$. Необходимо определить вероятность безотказной работы $P_c(t)$ в течение $T=50~{\rm y}$ и среднее время безотказной работы системы m_{tc} .

- 833,3
- 544,28
- -365,1

6.

Система состоит из трех устройств. Интенсивность отказов электронного устройства равна $\lambda_1 = 0.16 \cdot 10^{-3} \left(u^{-1} \right) = const$. Интенсивности отказов двух электромеханических устройств линейно зависят от времени и определяются следующими формулами

$$\lambda_2 = 0.23 \cdot 10^{-4} t \, \left(u^{-1} \right), \, \lambda_3 = 0.06 \cdot 10^{-6} t^{2.6} \, \left(u^{-1} \right).$$

Необходимо рассчитать вероятность безотказной работы изделия в течение 100 часов.

- 0.33
- 0,11
- -0.22
- 7.

Система состоит из трех блоков, среднее время безотказной работы которых равно: $m_{t1}=160\,$ ч.; $m_{t2}=320\,$ ч.; $m_{t3}=600\,$ ч. Для блоков справедлив экспоненциальный закон надежности. Требуется определить среднее время безотказной работы системы.

- 91
- 88
- 89
- 8.

Система состоит из двух устройств. Вероятности безотказной работы каждого из них в течение времени t=100 ч. равны: P1(100)=0.95; P2(100)=0.97. Справедлив экспоненциальный закон надежности. Необходимо найти среднее время безотказной работы системы.

- 1200
- 1000
- 1400
- 9.

Вероятность безотказной работы одного элемента в течение времени t равна P(t) = 0.9997. Требуется определить вероятность безотказной работы системы, состоящей из n = 100 таких же элементов.

- 0.97
- 0.98
- 0,96

10.

Вероятность безотказной работы системы в течение времени t равна $P_c(t) = 0.95$. Система состоит из n = 120 равнонадежных элементов. Необходимо найти вероятность безотказной работы элемента.

- 0,9996
- 0,6669

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Основные положения теории надежности
- 2. Общая схема эксплуатации системы
- 3.Свойства надежности технических средств системы
- 4.Проблемы надежности
- 5. Обеспечение надежности на стадии проектирования
- 6. Классификация отказов
- 7. Второстепенные неисправности
- 8. Динамика возможных состояний системы
- 9. Разновидности надежности
- 10. Назначение ремонта
- 11. Виды ремонтов
- 12. Виды избыточности
- 13. Методы резервирования
- 14. Классификация резервирования
- 15. Срок службы

7.2.5 Примерный перечень заданий для решения прикладных задач

- не предусмотрено

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по вопросам, приведенным в п. 7.2.4. Как правило, студенту задается 2 вопроса. При неполном ответе на поставленные вопросы студенту могут задаваться дополнительные вопросы.

Ответ на каждый вопрос (включая дополнительные) оценивается по четырех бальной системе:

«отлично» (5 баллов);

«хорошо» (4 балла);

«удовлетворительно» (3 балла);

«неудовлетворительно» (2 балла).

Оценка «отлично» (5 баллов) выставляется в случае, если студент демонстрирует полное понимание заданий. Все требования, предъявляемые к заданию выполнены.

Оценка «хорошо» (4 балла) выставляется в случае, если студент демонстрирует значительное понимание заданий. Все требования, предъявляемые к заданию выполнены.

Оценка «удовлетворительно» (3 балла) выставляется в случае, если студент демонстрирует частичное понимание заданий. Основные требования, предъявляемые к заданию, выполнены.

Оценка «не удовлетворительно» (2 балла) выставляется в случае, если студент демонстрирует непонимание заданий; нет ответа, не было попытки выполнить задание.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины				Код контролируемой компетенции	Наименование оценочного средства
1	Основные по надежности.	R ИТRН(И	определения	ПК-6, ПК-10, ПК- 26	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому

			проекту
2	надежности.	ПК-6, ПК-10, ПК- 26	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
3	Надежность и эффективность систем автоматизации.	ПК-6, ПК-10, ПК- 26	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
4	Схема формирования отказов в системах автоматизации, управления и программнотехнических средств. Классификация отказов.	26	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
5	Система обеспечения надежности. Методы повышения надежности и эффективности систем автоматизации, управления и программно-технических средств.	26	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
6	Диагностирование как средство повышения надежности на стадии эксплуатации. Методы диагностирования систем автоматизации, управления и программнотехнических средств. Алгоритмы диагностирования.	26	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Сарвин, А.А. Диагностика и надежность автоматизированных систем: письменные лекции / А.А. Сарвин, Л.И. Абакулина, О.А. Готшальк. СПб: СЗТУ, 2003. 69 с. Режим доступа: http://window.edu.ru./resource/006/25006
- 2. Хмельницкий, А.К. Задачник по диагностике и надежности автоматизированных систем: учеб. пособие / А.К. Хмельницкий, В.В. Пожитков, Г.А. Кондрашкова. СПб.: ГОУ ВПО СПбГТУРП. 2005. 64 с. Режим доступа: http://window.edu.ru./resource/367/76367/files/zadachnpodiagn.pdf
- 3. Лисунов, Е.А. Практикум по надежности технических систем [Электронный ресурс]: учеб. пособие. Электрон. дан. Санкт- Петербург: Лань, 2015. 240 с. Режим доступа: https://e.lanbook.com/book/56607. Загл. с экрана.
- 4. Малафеев, С.И. Надежность технических систем. Примеры и задачи [Электронный ресурс]: учеб. пособие / С.И. Малафеев, А.И. Копейкин. Электрон. дан. Санкт-Петербург: Лань, 2016. 316 с. Режим доступа: https://e.lanbook.com/book/87584. Загл. с экрана.
- 5. Сборник задач по теории надежности / Под редакцией А.М. Половко и И.М. Маликова. М.: Советское радио, 1972.
- 6. Барметов, Ю. П. Диагностика и надежность автоматизированных систем: учебное пособие / Ю. П. Барметов. Воронеж: Воронежский государственный университет инженерных технологий, 2020. 148 с. ISBN 978-5-00032-486-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/106437.html (дата обращения: 21.01.2022). Режим доступа: для авторизир. пользователей
- 7. Диагностика и надежность автоматизированных..www.iprbookshop.ru
- 8. Балькин, В. М. Диагностика технического состояния и обеспечение безопасности строительных конструкций: учебно-методическое пособие / В. М. Балькин, С. В. Зубанов, И. Г. Фролова. Самара: Самарский государственный технический университет, ЭБС АСВ, 2021. 102 с. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/111758.html (дата обращения: 21.01.2022). Режим доступа: для авторизир. пользователей
- 9. Диагностика технического состояния и обеспечение безопасности строительных конструкцийwww.iprbookshop.ru
- 10. Дмитриев, В. А. Надежность и диагностика технологических систем: лабораторный практикум / В. А. Дмитриев. Самара : Самарский государственный технический университет, ЭБС АСВ, 2019. 123 с. Текст: электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/105217.html (дата обращения: 21.01.2022). Режим доступа: для авторизир. пользователей

- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - Консультирование посредством электронный почты/Zoom/Discord.
 - Образовательный портал ВГТУ https://old.education.cchgeu.ru/
 - Использование презентаций при проведении лекционных занятий.
 - Электронная библиотека http://www.iprbookshop.ru/85987.html
 - Единое окно доступа к образовательным ресурсам http://window.edu.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Ауд. № 1305а. Лаборатория автоматизированного проектирования (Компьютер на базе Celeron® 2.5Ггц ОЗУ 2Гб - 10шт. Проектор BENQ -1шт. Экран. Маркерная доска. Плоттер.)

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Диагностика и надежность строительных процессов» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета надежности автоматизированных систем. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.

Лабораторная	Лабораторные работы позволяют научиться применять теоретические
работа	знания, полученные на лекции при решении конкретных задач. Чтобы
риооти	наиболее рационально и полно использовать все возможности
	<u> </u>
	лабораторных для подготовки к ним необходимо: следует разобрать
	лекцию по соответствующей теме, ознакомится с соответствующим
	разделом учебника, проработать дополнительную литературу и
	источники, решить задачи и выполнить другие письменные задания.
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения
работа	учебного материала и развитию навыков самообразования.
1	Самостоятельная работа предполагает следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	1 1
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные
	перед зачетом с оценкой три дня эффективнее всего использовать для
	повторения и систематизации материала.