МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАГО Декан дорожно-транскортного факультета Е.Л. Тюн

«31**»/**авгус**/**га 2

РАБОЧАЯ ПРОГРАММА

дисциплины

«Химия»

Направление подготовки 08.03.01 Строительство

Профиль Автомобильные дороги

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки <u>2021</u>

Автор программы ______/Артамонова О.В./

Заведующий кафедрой Химии и химической технологии материалов

_/Рудаков О.Б./

Руководитель ОПОП _____/Волокитина О.А./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

формирование у студентов целостного представления о процессах и явлениях в природе и технике, понимания возможностей современных научных методов познания материального мира и овладения этими методами для решения задач, возникающих при выполнении профессиональных функций.

Познание химии необходимо для формирования научного мировоззрения, развития логического мышления, профессионального роста будущих специалистов.

1.2. Задачи освоения дисциплины

- заложить основы для понимания химических процессов превращения веществ, которые будут способствовать принятию грамотных, научно обоснованных профессиональных решений в области строительной технологии, а также способствовать внедрению достижений химии при решении этих проблем;
- привить навыки осмысленного решения конкретных химических задач, научить находить оптимальные решения профессиональных задач, в том числе с использованием законов химии, химических процессов и веществ.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Химия» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Химия» направлен на формирование следующих компетенций:

ОПК-1 - Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-1	знать основы химии, свойства химических элементов и их соединений, составляющих основу строительных материалов
	уметь применять полученные знания по химии при изучении других дисциплин
	владеть основными знаниями, полученными в лекционном курсе химии, необходимыми для выполнения теоретического и экспериментального исследования

УК-1	знать и анализировать задачу, выделять её базовые составляющие
	уметь находить и критически анализировать информацию, необходимую для решения поставленной задачи; уметь грамотно, логично, аргументировано формировать собственные суждения и оценки. Отличать факты от мнений, интерпретаций, оценок и т.д. в рассуждениях других участников деятельности
	владеть методикой определения и оценивания практических последствий возможных решений

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Химия» составляет 5 з.е. Распределение трудоемкости дисциплины по видам занятий очила форма обущения

очная форма обучения

Виды учебной работы	Всего	Семестры
Виды учеоной работы	часов	1
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	36	36
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	72	72
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

№ π/π	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Введение в общую и неорганическую химию.	Основные законы химии. Строение атома и периодическая система Д.И. Менделеева. Химическая связь. Свойства химических элементов и их соединений.	6	6	12	24
2	Направленность химических процессов.	Химическая термодинамика. Химическая кинетика и катализ. Химическое равновесие.	6	6	12	24

3	Растворы электролитов и гетерогенные дисперсные системы	Коллигативные свойства растворов. Теория электролитической диссоциации. Равновесия в растворах электролитов. Гетерогенные дисперсные системы и поверхностные явления.	6	6	12	24	
4	Электрохимические процессы.	Химическая активность металлов. Гальванический элемент. Электролиз. Коррозия и защита металлов и сплавов.	6	6	12	24	
5	Основы органической химии и высокомолекулярных соединений	Неорганические и органические полимеры.	6	6	12	24	
6	Теоретические основы аналитической химии.	Качественный химический анализ. Количественный химический анализ. Физико-химические методы анализа.	6	6	12	24	
	Итого 36 36 72 144						

5.2 Перечень лабораторных работ

- 1. Атомно-молекулярное учение. Основные законы химии.
- 2. Основные классы неорганических соединений.
- 3. Строение вещества.
- 4. Основы химической термодинамики. Термохимия.
- 5. Химическая кинетика. Химическое равновесие.
- 6. Общие свойства растворов и равновесия в водных растворах электролитов.
 - 7. Гетерогенные дисперсные системы.
 - 8. Электрохимические процессы.
- 9. Свойства органических веществ и высокомолекулярных соединений (полимеров).
 - 10. Качественный и количественный химический анализ.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

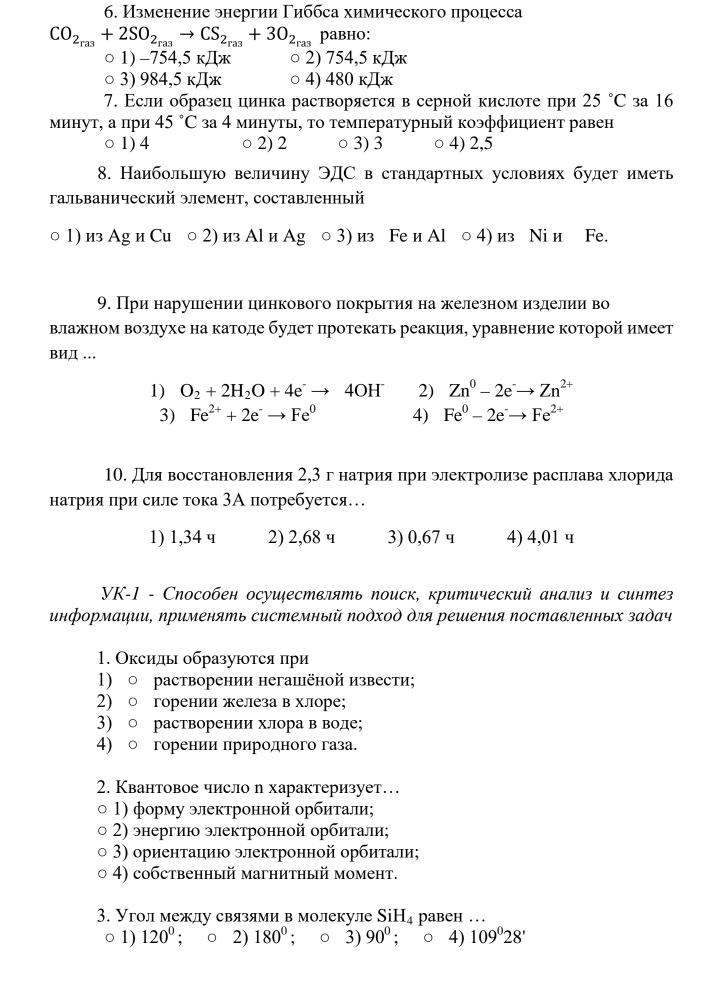
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	знать основы химии, свойства химических элементов и их соединений, составляющих основу строительных материалов уметь применять полученные знания по химии при	Активная работа на лабораторных занятиях и защита лабораторных работ в срок. Решение стандартных		Невыполнение работ в срок, предусмотренный в рабочих программах Невыполнение работ в срок,
	изучении других дисциплин	практических задач	предусмотре нный в рабочих программах	предусмотренн ый в рабочих программах
	владеть основными знаниями, полученными в лекционном курсе химии, необходимыми для выполнения теоретического и экспериментального исследования	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотре нный в рабочих программах	Невыполнение работ в срок, предусмотренн ый в рабочих программах
УК-1	знать и анализировать задачу, выделять её базовые составляющие	Активная работа на лабораторных занятиях и защита лабораторных работ в срок.	Выполнение работ в срок, предусмотре нный в рабочих программах	Невыполнение работ в срок, предусмотренн ый в рабочих программах
	уметь находить и критически анализировать информацию, необходимую для решения поставленной задачи; уметь грамотно, логично, аргументировано формировать собственные суждения и оценки. Отличать факты от мнений, оценок и т.д. в рассуждениях других участников деятельности	Решение стандартных практических задач	Выполнение работ в срок, предусмотре нный в рабочих программах	Невыполнение работ в срок, предусмотренн ый в рабочих программах

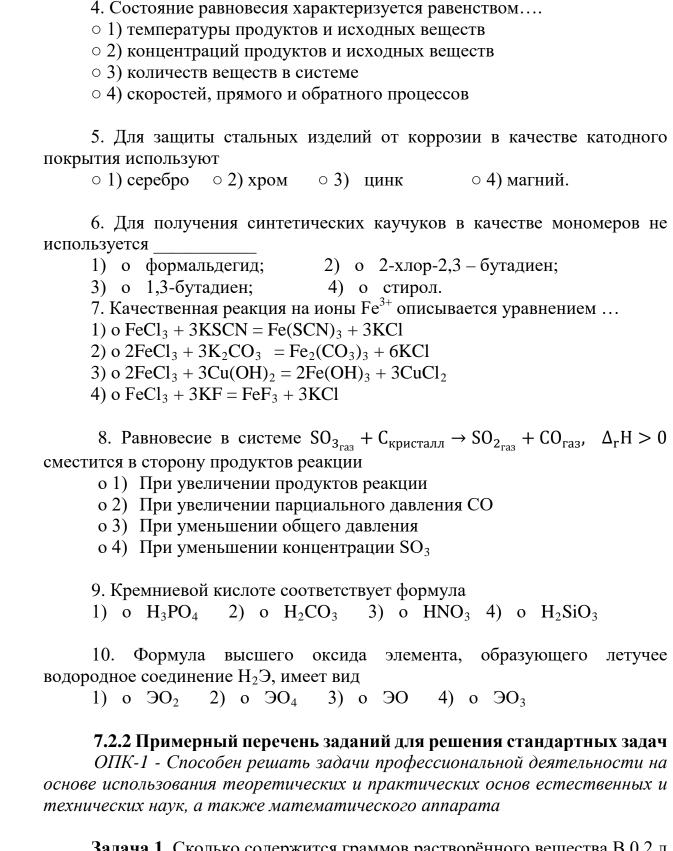
владеть методикой	Решение	Выполнение	Невыполнение
определения и оценивания	прикладных	работ в срок,	работ в срок,
практических последствий	задач в	предусмотре	предусмотренн
возможных решений	конкретной	нный в	ый в рабочих
	предметной	рабочих	программах
	области	программах	

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 1 семестре для очной формы обучения, 1 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;


«хорошо»;


«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-1	знать основы химии, свойства химических элементов и их соединений, составляющих основу строительных материалов	Тест	Выполнени е теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	уметь применять полученные знания по химии при изучении других дисциплин	Решение стандартных практически х задач	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	владеть основными знаниями, полученными в лекционном курсе химии, необходимыми для выполнения теоретического и экспериментального исследования	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
УК-1	знать и анализировать задачу, выделять её базовые составляющие	Тест	Выполнени е теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	уметь находить и критически анализировать информацию, необходимую для решения поставленной задачи; уметь грамотно, логично, аргументировано	Решение стандартных практически х задач	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

формировать собственные суждения и оценки. Отличать факты от мнений, интерпретаций, оценок и т.д. в рассуждениях других участников					
деятельности	_				-
владеть методикой определения и оценивания практических последствий возможных решений	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
7.2 Примернь контрольные задания знаний, умений, навы	или ины	ые матер	иалы, не	обходимые	`
7.2.1 Примерны	`	,		,	естированию
ОПК-1 - Способе	_				_
основе использования п	пеоретиче	ских и пр	актическі	их основ ест	пественных и
технических наук, а та	кже мате	<i>г</i> матичесн	кого аппар	pama	
1. Для растворени г соляной кислот 1) ○ 730 г; 2	Ы				
2. Для повыше необходимо, чтобы к составляла моль/кг 1) ○ 0,2; 2)	концентрал (E H ₂ O =	ция раст 0,52 (град	ворённого (· кг)/молі	5)	
3. В соответствии \leftrightarrow $CO_{2(r)} + 2H_2O_{(r)}$, инеобходимо сжечь \bigcirc 1) 56; \bigcirc 2	$\Delta_{\rm r}H = -8$	02 кДж	для получ	нения 500 г	. ,
4. Если увеличити $H_{2(r)} + Br_{2(r)} \leftrightarrow 2HBr_{(r)}, \pi$ \circ 1) 50; \circ 2	ри услови	и ее элем	ентарност	и, увеличито	
5. Коэффициент г HNO ₂ + KMnO ₄ + равен	$-H_2SO_4 \rightarrow$	→ HNO ₃ +	$MnSO_4 + 1$	$K_2SO_4 + H_2O_4$	O
○ 1) 5	7	03)2	0 4) 10.	

Задача 1. Сколько содержится граммов растворённого вещества В 0,2 л 0,1 М раствора сульфата калия?

Решение. 0,1 M означает раствор с молярной концентрацией $C_{\rm M} = 0,1$ моль/л.

$$c_M = \frac{m_2}{M_2 \cdot V}, \frac{MOЛb}{n}.$$

где

 m_2 — масса растворённого вещества, г;

 ${
m M}_2$ — молярная масса растворённого вещества, г/ моль;

V — объём раствора, л.

Масса растворённого вещества равна

$$m (K_2SO_4) = c_M \cdot V \cdot M = 0.1 \cdot 0.2 \cdot 174 = 3.48 (\Gamma)$$

Задача 2. При разбавлении 0,1 М раствора гидроксида бария в два раза, рН будет иметь значение?

Решение. Если разбавить 0,1 М раствор $Ba(OH)_2$ в два раза, то его концентрация станет равной 0,05 моль/л. При условии 100 %- ной диссоциации ($Ba(OH)_2$ — сильный электролит), концентрация ионов гидроксила будет в два раза больше концентрации раствора, т.е. 0,1 моль/л, т.к. при электролитической диссоциации

$$Ba(OH)_2 \rightarrow Ba^{2+} + 2OH^-$$

из одного моль гидроксида образуется два моль ионов ОН-.

Из значения ионного произведения воды: $K_W = c(H^+) \cdot c(OH^-) = 10^{-14}$ вычисляем концентрацию ионов H^+ и значение pH

$$c (H^{+}) = (10^{-14}) : (10^{-1}) = 10^{-13}$$
 и pH = - lg $10^{-13} = 13$.

Задача 3. При разложении 1 моль карбоната кальция поглощается 178,5 кДж теплоты. Какой объем газа выделяется при этом?

Решение. В соответствии с уравнением реакции

$$CaCO_3 = CaO + CO_2 \uparrow$$

при разложении 1 моль карбоната кальция выделяется 1 моль углекислого газа, занимающий при н.у. объём 22,4 л.

Задача 4. Температурный коэффициент реакции равен 3. Как изменится скорость химической реакции при охлаждении системы от 50°C до 30°C?...

Решение. С соответствие с правилом Вант-Гоффа

$$\frac{v_{t_2}}{v_{t_1}} = \gamma^{\frac{t_2 - t_1}{10}} = 3^{\frac{30 - 50}{10}} = 3^{-2} = \frac{1}{9}$$

скорость реакции уменьшиться в 9 раз.

Задача 5. Рассчитать ЭДС гальванического элемента, состоящего из медного и никелевого электродов, погруженных в 0,1 M растворы их нитратов $(E^0(Cu^{2+}/Cu) = 0.34 \text{ B}, E^0(Ni^{2+}/Ni) = -0.25 \text{ B}).$

Решение.

$$E_{Cu^{2+}/Cu^{0}} = E^{0}Cu^{2+}/Cu^{0} + \frac{0.059}{n} \cdot \lg c_{Cu^{2+}} = 0.34 B + \frac{0.059}{2} \lg 0.1 = 0.34 B + 0.03 \cdot (-1) = 0.31 B;$$

$$E_{Ni^{2+}/Ni^{0}} = E^{0}Ni^{2+}/_{Ni^{0}} + \frac{0.059}{n} \cdot \lg c_{Ni^{2+}} = -0.25 B + \frac{0.059}{2} \lg 0, 1 = -0.25 B + 0.03 \cdot (-1) = -0.28 B;$$
ЭДС= $E_{\text{катода}} - E_{\text{анода}} = (0.31 \text{ B}) - (-0.28 \text{ B}) = 0.59 \text{ B}$

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Задача 1. Какая электронная конфигурация соответствует сульфид-иону **Решение.** Электронная формула атома серы $_{16}$ S $_{16}$ S $_{26}$ S $_{29}$ S $_{39}$ C Сульфид-ион $_{30}$ S имеет на два электрона больше: $_{16}$ S $_{26}$ S $_{39}$ C $_{39}$ S $_{39}$ C $_{39}$ S $_{39}$ C $_{39}$ S $_{39}$ S

Задача 2. Как уменьшить степень диссоциации гидроксида аммония? Решение.

$$NH_4OH \leftrightarrow NH_4^+ + OH^-$$

Добавление продуктов реакции: сильной кислоты к раствору CH_3COOH и сильного основания к NH_4OH смещает равновесие в сторону недиссоциированных молекул, т.е. уменьшает степень диссоциации. Аналогично действует также добавление сильных электролитов:

 ${
m CH_3COONa}
ightarrow {
m CH_3COO}^- + {
m Na}^+ \ {
m u} \ {
m NaOH}
ightarrow {
m Na}^+ + {
m OH}^-,$ которые увеличивают концентрацию продуктов реакции и смещают равновесие влево.

Охлаждение затрудняет электролитическую диссоциацию, а разбавление усиливает.

Задача 3. В реакции $Cr_2O_3 + KNO_3 + KOH \rightarrow K_2CrO_4 + KNO_2 + H_2O$ окислителем является ?

Решение. Определим степени окисления всех элементов и подчеркнём те из них, которые изменили степень окисления

$$^{+3}$$
 $^{-2}$ $^{+1}$ $^{+5}$ $^{-2}$ $^{+1}$ $^{+5}$ $^{-2}$ $^{+1}$ $^{-2}$ $^{+1}$ $^{+6}$ $^{-2}$ $^{+1}$ $^{+3}$ $^{-2}$ $^{+1}$ $^{+3}$ $^{-2}$ $^{+1}$ $^{+3}$ $^{-2$

Составим электронные уравнения и найдём коэффициенты к окислителю и восстановителю

1 |
$$2Cr - 2 \cdot (3 \bar{e}) \rightarrow 2Cr$$
; процесс окисления;
3 | $N + 2 \bar{e} \rightarrow N$; процесс восстановления

Cr — восстановитель, окисляется. N — окислитель, восстанавливается.

Рассчитаем коэффициенты в уравнении реакции

$$Cr_2O_3 + 3KNO_3 + 4KOH \rightarrow 2K_2CrO_4 + 3KNO_2 + 2H_2O$$

Задача 4. Качественная реакция на ион аммония описывается уравнением?

Решение.
$$NH_4C1 + NaOH \rightarrow NaCl + NH_3\uparrow + H_2O$$

Задача 5. Продуктами, выделяющимися на инертных электродах при электролизе водного раствора бромида меди, являются?

Решение. В водном растворе идёт процесс электролитической диссоциации:

$$CuBr_2 \rightarrow Cu^{2+} + 2 Br^{-}$$
.

Ионы меди восстанавливаются на катоде. Инертный анод не принимает участия в процессе на аноде, на нём окисляется бромид-ион.

7.2.3 Примерный перечень заданий для решения прикладных задач

ОПК-1 - Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата

Задача 1. Определить расход минеральной пластифицирующей добавки – известкового теста (по массе и по объему) на 1 м³ песка, если расход портландцемента на 1 м³ песка составляет 200 кг, а плотность известкового теста равна 1450 кг/м^3 .

Решение.

Расход добавки по объёму на 1 м³ песка:

$$V^{\partial} = 0.17 \cdot (1 - 0.002 \cdot II) = 0.17 \cdot (1 - 0.002 \cdot 200) = 0.102 M^3$$

Расход добавки по массе на 1 м³ песка:

$$\mathcal{A} = V^{\grave{O}} \cdot \rho_m^{\grave{O}} = 0,102 \cdot 1450 = 147,9$$
кг .

Задача 2. Сколько необходимо растворить граммов соли ДЛЯ приготовления 300 г раствора с массовой долей карбоната натрия 15 %?

Решение.

Массовая доля растворённого вещества выражается формулой

$$\omega = \frac{m_2}{m_1 + m_2} \cdot (100 \%)$$
, доли единицы (или %),

где сумма:

$$m_1 + m_2 - m_{pacmeopa}$$
.

 $m_2 = 100.9\% \Rightarrow m_1 = \frac{15\% \cdot 300 c}{15\% \cdot 300 c} = 45$

 $m_1 + m_2 = m_{pacmsopa}.$ $15 \% = \frac{m_2}{300} \cdot 100 \%, \implies m_2 = \frac{15 \% \cdot 300 \ \varepsilon}{100 \%} = 45 \ \varepsilon.$

Задача 3 Определить объем раствора соляной кислоты с молярной концентрацией 0,5моль/л, необходимый для нейтрализации 50 мл раствора гидроксида натрия с молярной концентрацией 0,2 моль/л.

Решение. В соответствии с законом эквивалентов

$$c_{\mathfrak{I}(HCl)} \cdot V_{HCl} = c_{\mathfrak{I}(NaOH)} \cdot V_{NaOH} \\ 0,5 \text{ моль/л} \cdot V_{HCl} = 0,2 \text{ моль/л} \cdot 50 \text{ мл, откуда} \quad V_{HCl} = 20 \text{ мл.}$$

Задача 4. В соответствии с термохимическим уравнением сколько необходимо затратить кДж теплоты для получения 560 г железа?

$${
m FeO_{(r)}} + {
m H_{2(r)}} \ = {
m Fe_{(r)}} + {
m H_2O_{(r)}}, \qquad \Delta_r \, {
m H}^0 = 23 \,\, {
m кДж}$$

Решение. Тепловой эффект $\Delta_{\rm r}$ ${\rm H}^0=23$ кДж, указанный в термохимическом уравнении, относится к количеству вещества, указанному в уравнении реакции, т.е. к 1 моль ${\rm Fe}_{({\rm r})}$. Число моль железа ν (Fe) = 560 г : 56 г/моль = 10 моль, следовательно, для получения 560 г железа необходимо затратить 230 кДж теплоты.

Задача 5. Какой объем углекислого газа необходимо отвести из печи при обжиге 1 т кальцита ${\rm CaCO_3}$ при ${\rm 800~^0C}$ и давлении 1,4 атм. и какова будет масса образующейся извести?

Решение

При термическом разложении кальцита протекает реакция

$$CaCO_3 = CaO + CO_2$$
.

При этом из 1 моль CaCO₃ получается по 1 моль CaO и CO₂.

Молярные массы участников реакции:

$$M (CaCO_3) = 40 + 12 + 16 \cdot 3 = 100 г/моль;$$

$$M (CO_2) = 12 + 16 \cdot 2 = 44 \Gamma / MOЛЬ; M (CaO) = 40 + 16 = 56 \Gamma / MOЛЬ.$$

Составим пропорции:

$$100$$
 Γ $CaCO_3$ – 56 Γ CaO_3

1000 Γ CaCO₃ –
$$x$$
 Γ CaO, $x = \frac{1000 \cdot 56}{100} = 560$ Γ CaO;

$$100 \, \Gamma$$
 CaCO₃ – 44 Γ CO₂,

1000
$$\Gamma$$
 CaCO₃ - $y \Gamma$ CO₂, $y = \frac{1000 \cdot 44}{100} = 440 \Gamma$ CO₂.

Для расчета объема образовавшегося ${\rm CO_2}$ воспользуемся уравнением Менделеева – Клапейрона:

$$V(CO_2) = \frac{m \cdot R \cdot T}{p \cdot M} = \frac{440 \cdot 8,314 \cdot 1073}{1,4 \cdot 101325 \cdot 44} = 48,1 \, \text{m}^3.$$

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Задача 1. Как подвергается гидролизу соль FeSO₄?

Решение. Гидролизу подвергаются соли, образованные слабыми кислотами и слабыми основаниями. $FeSO_4$ образована слабым основанием и сильной кислотой, гидролизуется по катиону

FeSO₄ + 2HOH
$$\leftrightarrow$$
 Fe(OH)₂ + H₂SO₄
Fe²⁺ + SO₄²⁻ +2HOH \leftrightarrow Fe(OH)₂ + 2H⁺ + SO₄²⁻
Fe²⁺ +2HOH \leftrightarrow Fe(OH)₂ + 2H⁺

Реакция среды в растворе данной соли кислая, pH < 7.

Задача 2. При разбавлении 0,5 M раствора соляной кислоты в пять раз, рН будет иметь значение?

Решение. Если разбавить 0,5 M раствор HCl в пять раз, то его

концентрация станет равной 0,1 моль/л. При условии 100 %- ной диссоциации (HCl — сильный электролит) концентрация ионов водорода будет равна концентрации раствора, т.е. 0,1 моль/л.

$$c(H^{+}) = 10^{-1}$$
 моль/л и $pH = -1g(10^{-1}) = 1$.

Задача 3. При работе гальванического элемента, состоящего из никелевого и кадмиевого электродов, погруженных в 0,01 М растворы их хлоридов, какая реакция будет протекать на катоде? какой она имеет вид?

Решение. В данном гальваническом элементе более активный металл кадмий будет анодом, и на нём идёт окисление: $Cd^0 - 2e^- = Cd^{2+}$.

На никелевом катоде идёт восстановление: $Ni^{2+} + 2e^{-} = Ni^{0}$

Задача 4. Определите в каком случае при взаимодействии образуется средняя соль

- 1) 1 моль Ca(OH)₂ и 2 моль HCl 2) 1 моль Ba(OH)₂ и 1 моль HCl
- 3) 2 моль $Mg(OH)_2$ и 1 моль HCl 4) 1 моль $Cu(OH)_2$ и 2 моль H_2SO_4

Решение. Уравнения химических реакций, написанные в соответствии с заданными условиями, приводят к образованию следующих солей:

- 1) $Ca(OH)_2 + 2 HCl \rightarrow 2H_2O + CaCl_2 -$ средняя соль, хлорид кальция
- 2) $Ba(OH)_2 + HCl \rightarrow (BaOH)Cl + H_2O-$ основная соль, хлорид гидроксобария, образуется в избытке основания
- 3) 2 Mg(OH)₂ + HCl в избытке основания образуется основная соль
- 4) $Cu(OH)_2 + 2 H_2SO_4 \rightarrow 2 H_2O + Cu(HSO_4)_2$ кислая соль, гидросульфат меди, образуется в избытке кислоты

Задача 5. Вычислить массу меди, выделившейся на катоде при электролизе хлорида меди (II), проведённого при токе 10 А в течение 30 мин.

Решение. Согласно законам Фарадея:

$$m = (M_9 \times I \times t) : 96500,$$

где m — масса вещества, окисленного или восстановленного на электроде, г; M_9 — молярная масса эквивалента вещества, г/моль; I — сила тока. A; t — время электролиза, c; 96500 — число Фарадея, Кл/моль ($A \cdot c$ /моль).

Подставим числовые значения:

$$m = [67 \ \Gamma/\text{моль} \cdot 10 \ \text{A} \cdot 30 \cdot 60 \ \text{c}] : 96500 \ \text{A} \cdot \text{c} / \text{моль} = 12,5 \ \Gamma,$$
 где $67 \ \Gamma/\text{моль} = M_{\ 3} \ (\text{CuCl}_2) = (\frac{1}{2} \ \text{M} \ \text{CuCl}_2) = \frac{1}{2} \cdot 134 \ \Gamma / \text{моль}.$

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- ОПК-1 Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата
- 1. Основные законы атомно-молекулярной теории: закон сохранения массы веществ, закон постоянства состава, закон Авогадро и следствие из

него. Закон эквивалентов.

- 2. Параметры и функции состояния термодинамической системы. Внутренняя энергия и энтальпия. Стандартная энтальпия образования сложного вещества. Тепловой эффект реакции. Закон Гесса и следствие из него.
- 3. Химическая кинетика в гомогенных системах. Средняя скорость реакции. Закон действия масс. Влияние температуры на скорость химической реакции. Энергия активации и активные молекулы. Правило Вант-Гоффа. Сущность катализа.
- 4. Процессы обратимые и необратимые. Константа химического равновесия и её значение для характеристики полноты протекания реакции. Условия смещения гомогенных и гетерогенных равновесий. Использование принципа Ле-Шателье в технологических процессах производства минеральных вяжущих и изделий на их основе.
- 5. Самопроизвольно протекающие процессы. Энтропия как мера неупорядоченности системы. Изменение энергии Гиббса как критерий самопроизвольного протекания процессов в неизолированных системах.
- 6. Коллигативные свойства растворов. Понижение температуры замерзания растворов и использование этого явления в строительной практике.
- 7. Электролитическая диссоциация воды. Ионное произведение воды Кw. Водородный показатель pH как характеристика активной реакции среды. Методы определения pH среды. Гидролиз солей. Соли гидролизующиеся по аниону, по катиону, негидролизующиеся соли. Степень и константа гидролиза. Влияние внешних факторов на степень полноты гидролиза.
- 8. Дисперсные системы. Классификация дисперсных систем. Золи, гели. Принципиальная неустойчивость гетерогенных дисперсных систем. Кинетический и молекулярно-адсорбционный фактор устойчивости. Структура мицеллы. Электрокинетический потенциал, заряд коллоидной частицы. Использование дисперсных систем в практике строительного материаловедения.
- 9. Принцип действия гальванического элемента. Измерение и расчет ЭДС элемента.
- 10. Коррозия металлов и ущерб, наносимый протеканием коррозионных процессов. Химическая коррозия металлов. Электрохимическая коррозия металлов. Протекание коррозионных процессов при контакте двух металлов и при работе коррозионных микроэлементов. Особенности коррозии арматуры в железобетоне и влияние на долговечность материалов.
- 11. Методы защиты металлов от коррозии. Выбор сплава и конструкции. Неметаллические и металлические защитные покрытия. Протекторная и катодная защита. Ингибиторы коррозии.
- 12. Электролиз. Порядок разрядки ионов на электродах. Электролиз с неактивными и активными электродами. Применение электролиза.
- 13. Химическая идентификация. Алгоритм идентификации. Классификация методов идентификации. Химические и физико-химические методы

идентификации, применяемые для изучения строительных материалов и изделий из них.

- УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач
- 14. Классы неорганических соединений: оксиды, кислоты, основания, соли. Получение, свойства, применение в строительной практике.
- 15. Общие квантово-механические представления о строение атома. Волновая функция, электронное облако, типы атомных орбиталей.
- 16. Квантовые числа как характеристика состояния электронов в атоме: главное, орбитальное, магнитное, спиновое.
- 17. Принципы распределение электронов в атоме. Принцип Паули и правило Гунда. Последовательность заполнения атомных орбиталей в соответствии с их энергией. Правила Клечковского.
- 18. Периодический закон и периодическая система элементов Д.И. Менделеева. Структура периодической системы Д.И. Менделеева, принцип ее построения в соответствии со строением электронных оболочек.
- 19. Периодичность изменение свойств элементов. Зависимость окислительно-восстановительных свойств элементов от их положения в периодической системе. Энергия ионизации, сродство к электрону, электроотрицательность.
- 20. Квантово-механическое описание химической связи методом валентных схем (ВС). Механизм образования ковалентной связи. Свойства ковалентной связи: сигма- и пи-связи, направленность и энергия связи. Ковалентная связь полярная и неполярная. Ионная и металлическая связь.
- 21. Теория растворов, термодинамика растворения. Способы выражения концентрации растворов.
- 22. Сущность электролитической диссоциации. Электролиты сильные и слабые. Степень и константы диссоциации. Электролитическая диссоциация сильных и слабых электролитов: кислот и оснований; средних, кислых и основных солей. Реакции в растворах электролитов. Условия протекания практически необратимых реакций двойного обмена.
- Механизм возникновения скачка потенциала границе на электрод-раствор. Определение электродных потенциалов помощью \mathbf{c} электрода сравнения. Факторы, влияющие на величину электродного Уравнение Нернста. Стандартный потенциала. реальный электрохимической активности металлов.
- 24. Неорганические и органические полимеры. Классификация, методы получения, физико-химические свойства. Основные представители. Области их применения в строительной отрасли.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по билетам, каждый из которых содержит 2

вопроса и задачу. Каждый правильный ответ на вопрос оценивается 2 баллами, задача оценивается в 1 балл. Максимальное количество набранных баллов – 5.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 1-2 балла.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал 3 балла.
 - 3. Оценка «Хорошо» ставится в случае, если студент набрал 4 балла.
 - 4. Оценка «Отлично» ставится, если студент набрал 5 баллов.

7.2.7 Паспорт оценочных материалов

	1	T	
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Введение в общую и	ОПК-1, УК-1	Тест, защита лабораторных
	неорганическую химию.		работ, защита реферата
2	Направленность химических	ОПК-1, УК-1	Тест, защита лабораторных
	процессов.		работ, защита реферата
3	Растворы электролитов и	ОПК-1, УК-1	Тест, защита лабораторных
	гетерогенные дисперсные		работ, защита реферата
	системы		
4	Электрохимические процессы.	ОПК-1, УК-1	Тест, защита лабораторных
			работ, защита реферата
5	Основы органической химии и	ОПК-1, УК-1	Тест, защита лабораторных
	высокомолекулярных соединений		работ, защита реферата
6	Теоретические основы	ОПК-1, УК-1	Тест, защита лабораторных
	аналитической химии.		работ, защита реферата

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ

ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
- 1. Коровин, Н. В. Общая химия / Н.В. Коровин. М.: Высш. шк., 2008. 556 с.
- 2. Глинка, Н.Л. Общая химия / Н.Л. Глинка. М.: КНОРУС, 2011. 746 c.
- 3. Лабораторный практикум по химии: учеб. пособие / О.Р. Сергуткина, О.В. Артамонова, Л.Г. Барсукова и др.; под общ. ред. О.Р. Сергуткиной; Воронеж. гос. арх.-строит. ун-т. Воронеж, 2011. 109 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
- 1. Химический каталог. Общая химия. Сайты и книги http://www.ximicat.com
- 2. Химический каталог. Неорганическая химия. Сайты и книги http://www.ximicat.com
- 3. Химический каталог. Органическая химия. Сайты и книги http://www.ximicat.com
- 4. Химический каталог. Высокомолекулярные соединения. Сайты и книги http://www.ximicat.com
- 5. Chemnet официальное электронное издание Химического факультета МГУ http://www.chem.msu.ru/rus
- 6. Справочно-информационный сайт по химии http://www.alhimikov.net

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебно-лабораторное оборудование

Оборудование: приборы, химреактивы, химическая посуда, стенды, кино- и видеофильмы, диапроекторы, видеопроектор. Оборудование: приборы, химреактивы, химическая посуда, хроматограф 111, сканирующий зондовый микроскоп, рентгеновский дифрактометр (бизнес-инкубатор), учебно-лабораторный комплекс «Химия», фотометр фотоэлектрический КФК-3, электропечь SNOL, иономер И-160, стенды.

Технические средства обучения Ноутбук, медиапроектор

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Химия» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Лабораторная работа	
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.