МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ _____ Ряжских В.И. Декан ФМАТ_ «25» ноября 2022 г. РАБОЧАЯ ПРОГРАММА дисциплины «Расчет и проектирование сварных соединений» Направление подготовки 15.03.01 МАШИНОСТРОЕНИЕ Профиль Технологии и оборудование сварочного производства Квалификация выпускника бакалавр Нормативный период обучения 4 года /Корчагин И.Б./ /Селиванов В.Ф./

/Селиванов В.Ф./

Форма обучения очная

Автор программы

Год начала подготовки 2023

Заведующий кафедрой Технологии сварочного произ-

водства и диагностики

Руководитель ОПОП

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

- **1.1. Цели дисциплины** формирование специалиста в области сварочного производства, вооруженного современными знаниями вопросов прочности и работоспособности конструкций в обычных условиях их эксплуатации и современных, характеризующихся высокими энергетическими параметрами, сложными нагружениями, агрессивными средами и т.д.
- 1.2. Задачи освоения дисциплины усвоение терминов и определений в области проектирования сварных конструкций; выявления причинно-следственных связей между конструктивными, технологическими и эксплуатационными факторами и работоспособностью сварных соединений и конструкций; усвоение принципов расчета сварных конструкций с различными видами соединений в условиях нагружения статического, динамического характера, при наличии температурных воздействий; приобретение навыков расчета и проектирования соединений и конструкций наиболее часто встречаемых в практике, таких как балки, стойки, сосуды внутреннего давления.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Расчет и проектирование сварных соединений» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Расчет и проектирование сварных соединений» направлен на формирование следующих компетенций:

ПК-3 — способен участвовать в работах по доводке и освоению технологических процессов сварки и родственных процессов в ходе подготовки производства новой продукции.

ПК-5 — способен к метрологическому обеспечению технологических процессов, к использованию типовых методов контроля качества выпускаемой продукции в сварочном производстве.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-3	знать влияние основных факторов конструктивного, техноло-
	гического, эксплуатационного характера на свойства и физи-
	ко-механические характеристики основного металла и метал-
	ла сварного соединения конструкции; термины и определения
	в области напряжений, деформаций и перемещений сварных
	конструкций; факторы, оказывающие влияние на характер и
	величину распределения напряжений, деформаций и переме-
	щений в сварных конструкциях; факторы конструктивного
	технологического и эксплуатационного характера, оказы-
	вающие влияние на уровень и характер распределения на-
	пряжений в сварных соединениях; способы снижения напря-
	жений и деформаций в сварных соединениях.

уметь грамотно и обоснованно назначить материал конструкции, ее термообработку, оценить значимость возможных дефектов материала конструкции; предложить наиболее рациональное конструктивное исполнение изделия, с учетом его высокой технологичности и работоспособности; рационально подобрать геометрию (сечение) соединения при обеспечении его высокой технологичности и работоспособности; обоснованно выявлять причинно-следственные связи между напряжениями, деформациями и перемещениями; назначать меры на стадии разработки проекта конструкции, в процессе ее исполнения и при ее последующей обработке с целью снижения уровня напряжений и деформаций; рационально назначить способы снижения напряжений и деформаций в сварных соединениях.

владеть навыком определения напряжений и деформаций простейших конструктивных элементов; навыком отработки технологических параметров с целью снижения уровня напряжений и деформаций в простейших сварных конструкциях.

ПК-5

знать основные термины и определения в области проектирования сварных соединений; основные положения, по которым ведут расчет сварных соединений и конструкции; методы расчета сварных конструкций в машиностроении и строительстве; терминологический аппарат, применяемый в строительных нормах и правилах (СНиП).

уметь грамотно разработать техническое задание на проектирование сварной конструкции согласно назначению изделия, условиям его работы, соответствующей нормативной документации; грамотно и обосновано выбрать схему расчета конструктивного элемента.

владеть расчетной базой и навыком расчета конструкций согласно установленных норм и правил; расчетной базой сварных деталей машин, листовых конструкций в виде оболочек, стоек, балок; навыками расчета на прочность стыковых, нахлесточных, тавровых соединений, соединений получаемых контактной сваркой, при статическом нагружении, а также соединений, испытывающих сложное напряженное состояние, знакопеременные, вибрационные и ударные нагрузки; навыком расчета и проектирования подкрановой сварной балки двутаврового профиля и сварной колонны составного сечения.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Расчет и проектирование сварных соединений» составляет 8 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Рини унобиой роботи	Всего	Семе	стры
Виды учебной работы	часов	5	6
Аудиторные занятия (всего)	110	46	54
В том числе:			
Лекции	36	18	18
Практические занятия (ПЗ), в том числе в форме практической подготовки	38/14	10/-	28/14
Лабораторные работы (ЛР), в том числе в форме практической под-готовки	36/8	18/8	18/-
Самостоятельная работа	151	134	17
Курсовой проект	+		+
Часы на контроль	27	-	27
Виды промежуточной аттестации - экзамен, зачет с оценкой	+	зачет с оцен- кой	экза- мен
Общая трудоемкость: академические часы зач.ед.	288 8	180 5	108

заочная форма обучения

D	Всего	Семестр
Виды учебной работы	часов	10
Аудиторные занятия (всего)	28	28
В том числе:		
Лекции	8	8
Практические занятия (ПЗ),		
в том числе в форме практической подго-	12/4	12/4
товки		
Лабораторные работы (ЛР),		
в том числе в форме практической подго-	8/4	8/4
товки		
Самостоятельная работа	251	251
Курсовой проект	+	+
Часы на контроль	9	9
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	288	288
зач.ед.	8	8

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

		o man dopina ooy temm					
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Напряжения, деформации, перемещения.	Собственные напряжения при сварке. Сварочные деформации и перемещения конструкций. Способы снижения сварочных напряжений, деформаций и перемещений	8	ı	20	24	52
		в том числе, практическая подготовка обучающихся	-	-	8	-	8
2		Механическая неоднородность сварных соединений. Усталость сварных конструкций. Влияние концентраторов напряжений на работоспособность сварных конструкций. Распределение напряжений в сварных швах при приложении рабочих нагрузок	4	ı	8	24	36
3	Основные понятия в прочностных расчетах	Принципы расчета и допускаемые напряжения в сварных соединениях. Расчетная и конструктивная прочность. Причины несовпадения расчетной и конструктивной прочности.	4	ı	ı	24	28
4	Расчет прочности сварных соединений при статических нагрузках	Стыковые соединения при электродуговой сварке. На- хлесточные соединения. Тавровые соединения. Соеди- нения, выполненные точечной контактной сваркой. Соединения, работающие на изгиб и сложное сопро- тивление.	8	18	ı	24	50
		в том числе, практическая подготовка обучающихся	-	4	-	-	4
5	Хрупкие разрушения сварных конструкций	Характеристика хрупкого разрушения. Методы оценки сопротивляемости хрупким разрушениям. Причины хрупких разрушений сварных конструкций. Влияние низких температур на свойства материалов. Пути повышения сопротивляемости хрупким разрушениям.	4	ı	8	24	36
6	Принципы расчета балок, стоек, сосудов	Понятие и классификация балочных конструкций. Основные этапы проектирования. Понятие и классификация стоек. Основные этапы проектирования. Расчет стоек при центральном и эксцентричном сжатии. Тонкостенные сосуды, работающие под внутренним давлением. Назначение и условия работы, выбор материала. Конструктивное оформление, схема расчета, технологичность.	8	20	-	31	59
		в том числе, практическая подготовка обучающихся	-	10	-	-	10
		Итого	36	38	36	151	261
		в том числе, практическая подготовка обучающихся	-	14	8	-	22

заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Напряжения, деформации, перемещения.	Собственные напряжения при сварке. Сварочные деформации и перемещения конструкций. Способы снижения сварочных напряжений, деформаций и перемещений	2	ı	8	42	52
		в том числе, практическая подготовка обучающихся	1	-	4	-	4
2		Механическая неоднородность сварных соединений. Усталость сварных конструкций. Влияние концентраторов напряжений на работоспособность сварных конструкций. Распределение напряжений в сварных швах при приложении рабочих нагрузок	2	-	-	42	44
3	Основные понятия в прочностных расчетах	Принципы расчета и допускаемые напряжения в свар- ных соединениях. Расчетная и конструктивная проч- ность. Причины несовпадения расчетной и конструк- тивной прочности.	2	ı	ı	42	44
4	Расчет прочности сварных соединений при статических нагрузках	Стыковые соединения при электродуговой сварке. На- хлесточные соединения. Тавровые соединения. Соеди- нения, выполненные точечной контактной сваркой. Соединения, работающие на изгиб и сложное сопро- тивление. в том числе, практическая подготовка обучающихся	2	4	-	42	48
5	Хрупкие разрушения	Характеристика хрупкого разрушения. Методы оценки	_	-	_	42	42

	сварных конструкций	сопротивляемости хрупким разрушениям. Причины хрупких разрушений сварных конструкций. Влияние низких температур на свойства материалов. Пути повышения сопротивляемости хрупким разрушениям.					
6	Принципы расчета балок, стоек, сосудов	Понятие и классификация балочных конструкций. Основные этапы проектирования. Понятие и классификация стоек. Основные этапы проектирования. Расчет стоек при центральном и эксцентричном сжатии. Тонкостенные сосуды, работающие под внутренним давлением. Назначение и условия работы, выбор материала. Конструктивное оформление, схема расчета, технологичность.	1	8	-	41	49
		в том числе, практическая подготовка обучающихся	•	2	•	-	2
		Итого	8	12	8	251	279
		в том числе, практическая подготовка обучающихся	•	4	4	-	8

Практическая подготовка при освоении дисциплины (модуля) проводится путем непосредственного выполнения обучающимися отдельных элементов работ, связанных с будущей профессиональной деятельностью, способствующих формированию, закреплению и развитию практических навыков и компетенций по профилю соответствующей образовательной

программы на практических занятиях и (или) лабораторных работах:

No	Перечень выполняемых обучающимися	Формируемые профес-
П	отдельных элементов работ,	сиональные компетен-
П	связанных с будущей профессиональной деятельностью	ции
1	Определение величины остаточных деформаций сварного соединения при сварке листовых элементов	ПК-3, ПК-5
2	Определение наибольшего усилия, которое способно выдержать сварное соединение при сохранении эксплуатационных характеристик	ПК-3, ПК-5
3	Определение высоты балки из условия жесткости и условия прочности	ПК-3, ПК-5
4	Подбор поперечного сечения конструкции	ПК-3, ПК-5
5	Проверка прочности поперечного сечения конструкции	ПК-3, ПК-5
6	Определение устойчивости конструкции	ПК-3, ПК-5

5.2 Перечень лабораторных работ

- 1. Собственные температурные и остаточные напряжения.
- 2. Определение величины усадочной силы и прогиба при наплавке валика на кромку полосы в свободном состоянии и с предварительным изгибом.
- 3. Определение угловой деформации при сварке втавр.
- 4. Уменьшение остаточных напряжений отпуском.
- 5. Определение поперечной усадки при сварке пластины.
- 6. Изгиб балок от поперечной усадки швов.
- 7. Деформации при сварке балок.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта в 6 семестре для очной формы обучения, в 10 семестре для заочной формы обучения.

Тематика курсового проекта - «Расчет и проектирование сварной подкрановой балки двутаврового профиля и (или) сварной колонны составного сечения». Исходные данные по вариантам.

Курсовой проект предполагает выполнение расчета и проектирования двух наиболее часто используемых на практике сварных конструкций - сварной подкрановой балки и (или) сварной колонны.

Задачи, решаемые при выполнении курсового проекта:

- Определение расчетной схемы балки с указанием действующих нагрузок; построение эпюр изгибающих моментов М и перерезывающих сил Q в характерных сечениях балки.
- Выбор материала балки; определение высоты балки h и выбор типа сечения; конструирования сечения балки; проверка прочности сечения балки.
- Проверка общей устойчивости балки; проверка местной устойчивости элементов балки.
- Конструирование и расчет сварных соединений балки; конструирование и расчет опорных плит балки; разработка графической части проекта сварной балки.
- Определение расчетной схемы колонны с указанием действующих нагрузок; выбор материала колонны; расчет и конструирование сечения колонны, проверка прочности колонны.
 - Проверка устойчивости колонны.
- Расчет и конструирование соединительных элементов и диафрагм колонны.
- Расчет и конструирование оголовка колонны; расчет и конструирование базы колонны; расчет и конструирование сварных соединений колонны; разработку графической части проекта сварной колонны.

Курсовой проект включает в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе - тенци я	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Неаттесто ван
ПК-3	знать влияние основных факторов конструктивного,	Знание терминов и	Выполне-	Невыпол-
	технологического, эксплуатационного характера на	определений, поня-	ние тесто-	нение тес-

	I v 1	l v		
	свойства и физико-механические характеристики ос-	тий.	вого зада-	тового за-
	новного металла и металла сварного соединения кон-	Знание основных	ния в необ-	дания
	струкции; термины и определения в области напря-	принципов, законо-	ходимом	
	жений, деформаций и перемещений сварных конст-	мерностей и соот-	объеме	
	рукций; факторы, оказывающие влияние на характер	ношений.		
	и величину распределения напряжений, деформаций	Полнота ответов.		
	и перемещений в сварных конструкциях; факторы			
	конструктивного технологического и эксплуатаци-			
	онного характера, оказывающие влияние на уровень			
	и характер распределения напряжений в сварных со-			
	единениях; способы снижения напряжений и дефор-			
	маций в сварных соединениях.			
	уметь грамотно и обоснованно назначить материал	Умение решать	Выполне-	Невыпол-
	конструкции, ее термообработку, оценить значи-	стандартные прак-	ние тесто-	нение тес-
	мость возможных дефектов материала конструкции;	тические задачи.	вого зада-	тового за-
	предложить наиболее рациональное конструктивное	Умение проверять	ния в необ-	дания
	исполнение изделия, с учетом его высокой техноло-	решение и анализи-	ходимом	Autilia
	гичности и работоспособности; рационально подоб-	ровать результаты.	объеме	
	рать геометрию (сечение) соединения при обеспече-	P SSMIS POSJVIBILITIES.		
	нии его высокой технологичности и работоспособно-			
	сти; обоснованно выявлять причинно-следственные			
	связи между напряжениями, деформациями и пере-			
	мещениями; назначать меры на стадии разработки			
	проекта конструкции, в процессе ее исполнения и			
	при ее последующей обработке с целью снижения			
	уровня напряжений и деформаций; рационально на-			
	значить способы снижения напряжений и деформа-			
	ций в сварных соединениях.	I I	D	TT
	владеть навыком определения напряжений и дефор-	Навыки решения	Выполне-	Невыпол-
	маций простейших конструктивных элементов; на-	стандарт-	ние тесто-	нение тес-
	выком отработки технологических параметров с це-	ных/нестандартных	вого зада-	тового за-
	лью снижения уровня напряжений и деформаций в	задач.	ния в необ-	дания
	простейших сварных конструкциях.		ходимом	
TTTC 7		n	объеме	T.T.
ПК-5	знать основные термины и определения в области	Знание терминов и	Выполне-	Невыпол-
	проектирования сварных соединений; основные по-	определений, поня-	ние тесто-	нение тес-
	ложения, по которым ведут расчет сварных соедине-	тий.	вого зада-	тового за-
	ний и конструкции; методы расчета сварных конст-	Знание основных	ния в необ-	дания
	рукций в машиностроении и строительстве; терми-	принципов, законо-	ходимом	
		мерностей и соот-	объеме	
	нормах и правилах (СНиП).	ношений.		
		Полнота ответов.		
	уметь грамотно разработать техническое задание на	Умение решать	Выполне-	Невыпол-
	проектирование сварной конструкции согласно на-	стандартные прак-	ние тесто-	нение тес-
	значению изделия, условиям его работы, соответст-	тические задачи.	вого зада-	тового за-
	вующей нормативной документации; грамотно и	Умение проверять	ния в необ-	дания
	обосновано выбрать схему расчета конструктивного	решение и анализи-	ходимом	
	элемента.	ровать результаты.	объеме	
	владеть расчетной базой и навыком расчета конст-	Навыки решения	Выполне-	Невыпол-
	рукций согласно установленных норм и правил; рас-	стандарт-	ние тесто-	нение тес-
	четной базой сварных деталей машин, листовых кон-	ных/нестандартных	вого зада-	тового за-
	струкций в виде оболочек, стоек, балок; навыками	задач.	ния в необ-	дания
	расчета на прочность стыковых, нахлесточных, тав-		ходимом	
	ровых соединений, соединений получаемых контакт-		объеме	
	ной сваркой, при статическом нагружении, а также			
	соединений, испытывающих сложное напряженное			
	состояние, знакопеременные, вибранионные и удар-			
	состояние, знакопеременные, вибрационные и ударные нагрузки: навыком расчета и проектирования			
	ные нагрузки; навыком расчета и проектирования			

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 5, 6 семе-

стре для очной формы обучения, 10 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе	«неудовлетворительно».	TC				
- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудо вл.
ПК-3	знать влияние основных факторов конструктивного, технологического, эксплуатационного характера на свойства и физикомеханические характеристики основного металла и металла сварного соединения конструкции; термины и определения в области напряжений, деформаций и перемещений сварных конструкций; факторы, оказывающие влияние на характер и величину распределения напряжений, деформаций и перемещений в сварных конструкциях; факторы конструктивного технологического и эксплуатационного характера, оказывающие влияние на уровень и характер распределения напряжений в сварных соединениях; способы снижения напряжений и деформаций в сварных соединениях.	Знание терминов и определений, понятий. Знание основных принципов, закономерностей и соотношений. Полнота ответов.	Полный ответ на теоретические во-просы	ческие	Частич тич- ный ответ на тео- рети- ческие вопро- сы	Отсут- ствие ответа на тео- рети- ческие вопро- сы
	уметь грамотно и обоснованно назначить материал конструкции, ее термообработку, оценить значимость возможных дефектов материала конструкции; предложить наиболее рациональное конструктивное исполнение изделия, с учетом его высокой технологичности и работоспособности; рационально подобрать геометрию (сечение) соединения при обеспечении его высокой технологичности и работоспособности; обоснованно выявлять причинноследственные связи между напряжениями, деформациями и перемещениями; назначать меры на стадии разработки проекта конструкции, в процессе ее исполнения и при ее последующей обработке с целью снижения уровня напряжений и деформаций; рационально назначить способы снижения напряжений и деформаций; осединениях.	Умение решать стандартные практические задачи. Умение проверять решение и анализировать результаты.	Задачи решены в полном объеме и получены верные ответы	не полу-	де-	Задачи не решен ы
	владеть навыком определения напряжений и деформаций простейших конструктивных элементов; навыком отработки технологических параметров с целью снижения уровня напряжений и деформаций в простейших сварных конструкциях.	стандарт- ных/нестандартн ых задач.	Задачи решены в полном объеме и получены верные ответы	чен вер- ный от- вет во всех за- дачах	ирован верный ход реше- ния в боль- шинст- ве за- дач	Задачи не решен ы
ПК-5	знать основные термины и определения в	Знание терминов	Полный	Непол-	Частич	Отсут-

ний; основные положения, по которым ведут расчет сварных соединений и конструкции; методы расчета сварных конструкций в машиностроении и строительстве; терминологический аппарат, применяемый в строительных нормах и правилах (СНиП).	ствие ответа на тео- рети- ческие вопро-
дут расчет сварных соединений и конструкции; методы расчета сварных конструкций в машиностроении и строительстве; терминологический аппарат, применяемый в строительных нормах и правилах (СНиП).	на тео- рети- ческие вопро-
рукции; методы расчета сварных конструкций в машиностроении и строительстве; терминологический аппарат, применяемый в строительных нормах и правилах (СНиП).	рети- ческие вопро-
ций в машиностроении и строительстве; кономерностей и терминологический аппарат, применяемый в строительных нормах и правилах Полнота ответов. (СНиП).	ческие вопро-
терминологический аппарат, применяемый соотношений. ческие в строительных нормах и правилах Полнота ответов. (СНиП).	вопро-
в строительных нормах и правилах Полнота ответов. вопро- (СНиП).	-
(СНиП).	
	сы
	Задачи
	не
рукции согласно назначению изделия, ус- практические за- полном прован монстр р	решен
ловиям его работы, соответствующей нор- дачи. объеме и верный ирован и	Ы
мативной документации; грамотно и обос- Умение прове- получены ход ре- верный	
новано выбрать схему расчета конструк- рять решение и верные шения ход	
тивного элемента. анализировать ответы задач, но реше-	
результаты. не полу- ния в	
чен вер- боль-	
ный от- шинст-	
вет во ве за-	
всех за- дач	
дачах	
	Задачи
	не
и правил; расчетной базой сварных деталей ных/нестандартн полном ирован монстр р	решен
машин, листовых конструкций в виде обо- ых задач. объеме и верный ирован в	Ы
лочек, стоек, балок; навыками расчета на получены ход реверный	
прочность стыковых, нахлесточных, тавро-	
вых соединений, соединений получаемых ответы задач, но реше-	
контактной сваркой, при статическом на-	
гружении, а также соединений, испыты-	
вающих сложное напряженное состояние, ный от- шинст-	
знакопеременные, вибрационные и удар-	
ные нагрузки; навыком расчета и проекти-	
рования подкрановой сварной балки дву-	
таврового профиля и сварной колонны со-	

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Средняя интенсивность внутренних сил, действующих на некоторой площади, называется
 - А. Напряжением на данной площади.
 - Б. Деформацией данной площади.
 - В. Перемещением данной площади.
- 2. Если вектор напряжений совпадает с нормалью рассматриваемой площади, то
- А. Нормальное напряжение на рассматриваемой площади является максимальным и равно полному напряжению.
 - Б. Касательное напряжение на рассматриваемой площади равно нулю.
 - В. Оба ответа верны.
- 3. Можно ли говорить о напряжении в точке, не указывая площади, на которой это напряжение действует.
 - А. Да.
 - Б. Нет.

- 4. Главными площадками элементарного кубика выделенного в объеме нагруженного тела являются площадки, на которых
 - А. Нормальные напряжения максимальны, а касательные равны нулю.
 - Б. Касательные напряжения максимальны, а нормальные равны нулю.
 - В. Нормальные и касательные напряжения максимальны.
- 5. При одноосном растяжении наибольшие нормальные напряжения возникают в плоскости, расположенной
 - А. Перпендикулярно оси стержня.
 - Б. Параллельно оси стержня.
 - В. Под углом к оси стержня.
- 6. При одноосном растяжении наибольшие касательные напряжения возникают в плоскости, расположенной
 - А. Под углом 30^{0} к оси стержня.

 - Б. Под углом 45^{0} к оси стержня. В. Под углом 60^{0} к оси стержня.
- 7. Двухосное напряженное состояние обладает следующим свойством.
- А. Сумма напряжений по двум взаимно перпендикулярным площадкам элементарного кубика выделенного в точке постоянна и равна сумме главных напряжений.
- Б. Наибольшее и наименьшее нормальные напряжения в данной точке это главные напряжения, это главные напряжения, действующие по взаимно перпендикулярным площадкам.
 - В. Оба ответа верны.
- 8. Совокупность трех нормальных напряжений, действующих на трех взаимно перпендикулярных площадках и трех касательных напряжений, в общем случае описывает
 - А. Линейное напряженное состояние
 - Б. Плоскостное напряженное состояние.
 - В. Объемное напряженное состояние.
 - 9. Под деформацией понимают
 - А. Изменение формы и размеров тела.
 - Б. Изменение формы и размеров тела без изменения его массы.
 - В. Изменение формы, размеров и массы тела.
- 10. Относительная линейная деформация в упругой области прямо пропорционально связана с
 - А. Нормальными напряжениями.
 - Б. Касательными напряжениями.
 - В. Оба ответа верны.
 - 11. Под перемещением подразумевают
 - А. Изменение положения (координат) точки тела при деформации.
 - Б. Отношение изменения длины линейного элемента к его первоначальной длине.
- В. Изменение прямого угла между двумя бесконечно малыми линейными элементами, выходящими из одной точки.
 - 12. Закон Гука устанавливает связь между
 - А. Нормальными напряжениями и относительными линейными деформациями.
 - Б. Касательными напряжениями и деформациями сдвига.
 - В. Оба ответа верны.
 - 13. Модуль упругости характеризует.
 - А. Напряжения в материале.

- Б. Жесткость материала.
- В. Пластичность материала.
- 14. Коэффициент поперечной деформации (Пуассона) используют для оценки свойств материала в области
 - А. Упругих деформаций.
 - Б. Упруго пластических деформаций.
 - В. Пластических деформаций.
- 15. При механических испытаниях с увеличением скорости приложения нагрузки у большинства металлов наблюдается
 - А. Увеличение предела прочности и увеличение полной деформации.
 - Б. Увеличение предела прочности и уменьшение полной деформации.
 - В. Уменьшение предела прочности и увеличение полной деформации.
- 16. Истинная и условная диаграммы растяжения, полученные при механических испытаниях близки друг к другу у
 - А. Материалов образующих «шейку» при растяжении.
 - Б. Материалов не образующих «шейку» при растяжении.
 - В. Наличие «шейки» не влияет на характер диаграммы растяжения.
- 17. Изменение формы и размеров тела при неравномерном температурном воздействии на него называется
 - А. Температурным расширением.
 - Б. Температурной деформацией.
 - В. Температурным перемещением.
- 18. Чем объяснить сложность оценки напряженного состояния материала при воздействии на него высоких температур
 - А. Изменчивостью физико-механических характеристик, свойств материала.
 - Б. Проявлением ползучести материала.
 - В. Оба ответа верны.
- 19. Какое из воздействий оказывается более значимым с точки зрения поведение конструкции, в момент потери ею устойчивости
 - А. Силовое.
 - Б. Температурное.
- В. Не существует разницы между влиянием силового и температурного воздействий.
 - 20. Под ползучестью понимают
- А. Процесс непрерывного роста пластической деформации материала, происходящего под действием постоянного усилия, при постоянной температуре.
- Б. Процесс непрерывного роста пластической деформации материала, происходящего под действием растущего усилия, при постоянной температуре.
- В. Процесс непрерывного роста пластической деформации материала, происходящего под действием постоянного усилия, при возрастающей температуре.
- 21. Чем объяснить снижение скорости деформирования на участке неустановившейся ползучести кривой ползучести.
 - А. Упрочнением материала.
 - Б. Ослаблением межатомных связей.
 - В. Изменением кристаллической структуры материала.
- 22. Почему на стадии установившейся ползучести кривой наблюдается рост деформации, при неизменном силовом воздействии.
- А. В связи с ростом напряжений, связанных с изменением поперечного сечения образца.
 - Б. В связи со снижением физико-механических характеристик материала.

- В. В связи с изменением кристаллической структуры материала.
- 23. Релаксацией называется
- А. Процесс постепенного снижения напряжений в металле, полная деформация которого остается неизменной во времени.
- Б. Процесс постепенного снижения напряжений в металле, полная деформация которого остается почти неизменной во времени.
- В. Процесс постепенного снижения деформаций в металле, напряжения которого остаются неизменными.
 - 24. Явление релаксации связано с
- А. Уменьшением упругой составляющей полной деформации и увеличением пластической составляющей на туже величину.
- Б. Уменьшением пластической составляющей полной деформации и увеличением упругой составляющей на туже величину.
 - В. Изменением кристаллической структуры материала.
 - 25. С ростом температуры наблюдается
 - А. Снижение предела прочности и предела текучести металла.
 - Б. Увеличение предела прочности и предела текучести металла.
 - В. Снижение предела прочности и увеличение предела текучести металла.
 - 26. Собственными напряжениями называются
 - А. Напряжения в металле, создаваемые при приложении силового воздействия.
- Б. Напряжения в металле, создаваемые при приложении температурного воздействия.
- В. Напряжения, существующие в металле при отсутствии приложенных к нему поверхностных или объемных сил.
 - 27. Собственные напряжения могут быть вызваны
- А. Деформированием металла в результате силового или температурного воздействий.
 - Б. Изменением объема металла при фазовых превращениях.
 - В. Оба ответа верны.
- 28. Собственные напряжения, существующие в период протекания технологического процесса обработки металла, называются
 - А. Мгновенными.
 - Б. Временными.
 - В. Остаточными.
- 29. При температурном воздействии на стержень, жестко закрепленный с одной стороны и другим торцом опирающийся на абсолютно жесткую стенку, к моменту полного охлаждения в нем будут наблюдаться
 - А. Остаточные напряжения сжатия.
 - Б. Остаточные напряжения растяжения.
 - В. Деформации укорочения.
- 30. При температурном воздействии на стержень, жестко закрепленный с обоих концов, к моменту полного охлаждения в нем будут наблюдаться
 - А. Остаточные напряжения сжатия.
 - Б. Остаточные напряжения растяжения.
 - В. Деформации укорочения.
- 31. Если при температурном воздействии на стержень, жестко закрепленный с обоих концов, к моменту полного охлаждения один из концов освободить, в нем будут наблюдаться
 - А. Деформации укорочения.

- Б. Деформации удлинения.
- В. Стержень сохранит свои размеры.
- 32. При температурном воздействии на стержень, жестко закрепленный с обоих концов
- А. Деформации сжатия, полученные на стадии нагрева, будут больше деформаций растяжения, полученных на стадии охлаждения.
- Б. Деформации сжатия, полученные на стадии нагрева, будут меньше деформаций растяжения, полученных на стадии охлаждения.
- В. Деформации растяжения, полученные на стадии нагрева, будут больше деформаций сжатия, полученных на стадии охлаждения.
- 33. При сварке двух пластин встык, в результате усадки металла высоко нагретой области, в ней образуются остаточные напряжения
 - А. Сжатия.
 - Б. Растяжения.
 - В. Остаточных напряжений не образуется.
- 34. При сварке двух пластин встык, в результате усадки металла высоко нагретой области, в металле удаленном от оси шва образуются остаточные напряжения
 - А. Сжатия.
 - Б. Растяжения.
 - В. Остаточных напряжений не образуется.
- 35. Для каких сталей характерно наличие остаточных напряжений сжатия в зоне, испытавшей высокотемпературный нагрев при сварке
 - А. Низкоуглеродистых.
 - Б. Высокопрочных среднелегированных.
- 36. При многослойной сварке металла наибольший уровень остаточных напряжений наблюдается в
 - А. Поверхностных слоях металла шва.
 - Б. Средней части металла шва.
 - В. Корневой части металла шва.
- 37. При электрошлаковой сварке металла наибольший уровень остаточных напряжений наблюдается в
 - А. Поверхностных слоях металла шва.
 - Б. Средней части металла шва.
 - В. Корневой части металла шва.
- 38. При приварке элемента к конструкции круговым швом по замкну-тому контуру можно наблюдать следующую тенденцию развития остаточных напряжений.
- А. Поперечная усадка металла шва вызывает во внутренней и наружной зонах растягивающие напряжения; продольная усадка создает во внутренней зоне напряжения сжатия, во внешней зоне напряжения растяжения.
- Б. Поперечная усадка металла шва вызывает во внутренней и наружной зонах сжимающие напряжения; продольная усадка создает во внутренней зоне напряжения сжатия, во внешней зоне напряжения растяжения.
- В. Поперечная усадка металла шва вызывает во внутренней и наружной зонах растягивающие напряжения; продольная усадка создает во внутренней зоне напряжения растяжения, во внешней зоне напряжения сжатия.
 - 39. Можно ли повлиять на характер распределения остаточных на-

пряжений в соединении, выполненном круговым швом по замкнутому контуру, изменив жесткость внутреннего и (или) наружного элементов.

- А. Да.
- Б. Нет.
- 40. При сварке стальных элементов кольцевым швом в металле, испытавшем пластическую деформацию, будут наблюдаться остаточные напряжения
 - А. Сжатия.
 - Б. Растяжения.
 - В. Остаточных напряжений не будет.
- 41. Деформации вызывающие первоначальное изменение размеров свариваемых элементов в направлении оси шва называются
 - А. Продольными.
 - Б. Поперечными.
 - В. Угловыми.
 - 42. Под усадочной силой понимают
- А. Сосредоточенную силу, которая эквивалентна распределенной по площади поперечного сечения зоны пластических деформаций силе и способна устранить эти пластические деформации.
- Б. Сосредоточенную силу, которая эквивалентна распределенной по площади поперечного сечения зоны упругих деформаций силе и способна устранить эти упругие деформации.
- В. Распределенную по площади поперечного сечения зоны пластических деформаций силу.
 - 43. Величина усадочной силы не зависит от
 - А. Длины сварного шва.
 - Б. Режима сварки.
 - В. Геометрии свариваемых элементов.
- 44. Деформации вызывающие первоначальное изменение размеров свариваемых элементов в направлении перпендикулярном оси шва называются
 - А. Продольными.
 - Б. Поперечными.
 - В. Угловыми.
- 45. Наибольший уровень деформаций поперечного укорочения наблюдается
 - А. На оси шва.
 - Б. Внутри зоны пластических деформаций металла.
 - В. За зоной пластических деформаций металла.
 - 46. Величина поперечной усадки зависит от
 - А. Толщин свариваемых элементов.
 - Б. Теплофизических свойств свариваемого материала.
 - В. Оба ответа верны.
- 47. Деформации, заключающиеся в выходе свариваемых элементов из собственной плоскости, называются
 - А. Продольными.
 - Б. Поперечными.
 - В. Угловыми.
 - 48. Угловая деформация свариваемых элементов вызвана
 - А. Неравномерностью поперечной усадки по толщине свариваемых элементов.
 - Б. Неравномерностью продольной усадки по толщине свариваемых элементов.

- В. Неравномерностью поперечной усадки по длине свариваемых элементов.
- 49. Величина угловой деформации тем больше, чем
- А. Больше глубина проплавления металла соединения.
- Б. Больше катет шва.
- В. Меньше угол раскрытия кромок соединения.
- 50. Упорядочите последовательность действий по решению задачи возможности потери устойчивости тонколистовых элементов сварных конструкций.
 - А. Определение схемы закрепления элементов конструкции.
 - Б. Определение мест приложения усадочной силы.
 - В. Определение сжимающих напряжений в конструкции.
 - Г. Определение критических напряжений в конструкции.
 - Д. Сравнение сжимающих и критических напряжений в конструкции.
- 51. Каким образом можно уменьшить перемещения и деформации скручивания сварных конструкций
 - А. Использовать жесткие приспособления для сварки.
 - Б. Снизить неравномерность теплового воздействия на элементы конструкции.
 - В. Оба ответа верны.
- 52. Прогиб балочной конструкции при выполнении продольного шва будет тем больше, чем
- А. Длиннее шов и ближе он расположен к центру тяжести поперечного сечения балки.
- Б. Короче шов и дальше он находится от центра тяжести поперечного сечения балки.
- В. Длиннее шов и дальше он находится от центра тяжести поперечного сечения балки.
- 53. При определении углового излома балки от поперечного шва необходимо учитывать
- А. Статический момент сечения элемента, привариваемого поперечным швом и момент инер-ции всего сечения балки.
 - Б. Статический момент сечения и момент инерции всего сечения балки.
- В. Статический момент сечения балки, и момент инерции элемента привариваемого поперечным швом.
- 54. При прочих равных условиях прогиб оболочки при выполнении продольного шва тем больше, чем
 - А. Меньше радиус оболочки.
 - Б. Больше радиус оболочки.
 - В. Радиус оболочки не влияет на величину прогиба.
- 55. При сварке элементов насыщения с оболочкой круговыми швами по замкнутому контуру будут наблюдаться перемещения
 - А. В радиальном направлении от центральной оси оболочки.
 - Б. В радиальном направлении к центральной оси оболочки.
 - 56. Деформации в сварной конструкции могут быть снижены за счет
 - А. Уменьшения длины и катета шва.
 - Б. Увеличения длины и катета шва.
 - В. Уменьшения длины и увеличения катета шва.
- 57. При проектировании поперечного сечения конструкции стремятся располагать сварные швы
 - А. Ближе к центру тяжести поперечного сечения конструкции.
 - Б. Дальше от центра тяжести поперечного сечения конструкции.

- В. Расположение швов относительно центра тяжести конструкции не влияет на величину ее деформации.
- 58. Деформации в сварной конструкции будут меньше, если использовать
- А. Сборку и сварку конструкции последовательным наращиванием отдельных элементов.
 - Б. Сборку всей конструкции на прихватках и последующую сварку.
 - В. Поузловую сборку и сварку конструкции.
- 59. Сборочно-сварочное приспособление должно отвечать требованию.
 - А. Жесткость приспособления должна превышать жесткость сварной конструкции.
- Б. Жесткость приспособления должна быть меньше жесткости сварной конструкшии.
 - В. Жесткость конструкции и приспособления должны быть равны.
 - 60. Для снижения деформаций в конструкции рекомендуют
 - А. Начинать сварку от наиболее жесткого элемента.
 - Б. Начинать сварку от элемента с наименьшей жесткостью.
- В. Жесткость свариваемых элементов не влияет на величину деформации конструкции.
 - 61. При создании поперечного сечения конструкции рекомендуют
 - А. Первоначально выполнить стыковое сварное соединение, а затем нахлесточное.
 - Б. Первоначально выполнить нахлесточное сварное соединение, а затем стыковое.
- В. Последовательность выполнения соединений не влияет на уровень деформации сварной конструкции.
- 62. Выберите оптимальный способ устранения угловой деформации стыкового соединения полученного многопроходной сваркой.
 - А. Использование сборочно-сварочного приспособления.
 - Б. Использование прихваток.
- В. Использование предварительного излома в противоположную от ожидаемой угловой деформации сторону.
 - 63. Можно ли снизить деформации балочных конструкций за счет
- А. Предварительного растяжения металла, который будет испытывать усадку от сварки.
 - Б. Регулированием теплового воздействия на металл.
 - В. Оба ответа верны.
- 64. Прокатку роликами, как способ устранения сварочных деформаций, эффективно использовать для листовых конструкций толщиной до
 - А. 12 мм.
 - Б. 20 мм.
 - В. 40 мм.
- 65. Можно ли говорить о том, что при выполнении операций прокатки или проковки зон металла, испытавших пластическую деформацию, кроме ее устранения будет происходить и снижение остаточных напряжений в металле.
 - А. Да.
 - Б. Нет.
 - 66. При осуществлении термической правки необходимо выполнить
 - А. Быстрый нагрев металла наиболее растянутых участков конструкции.
 - Б. Медленный нагрев металла наиболее растянутых участков конструкции.

- В. Быстрый нагрев металла наиболее сжатых участков конструкции.
- 67. При выполнении отпуска в зажимных приспособлениях их жест-кость должна быть
 - А. Меньше жесткости сварной конструкции.
 - Б. Равной жесткости сварной конструкции.
 - В. Много больше жесткости сварной конструкции.
- 68. При выполнении отпуска в зажимных приспособлениях устранение деформаций сварной конструкции осуществляется за счет
- А. Перехода предварительно созданных упругих деформаций в пластические деформации.
 - Б. Перехода остаточных упругих деформаций в пластические деформации.
- В. Перехода предварительно созданных пластических деформаций в упругие деформации.
- 69. Если подвергнуть отпуску, нагрев до температуры 500 0С зону металла сварного соединения конструкции, выполненной из низкоуглеродистой стали, то такой отпуск будет называться
 - А. Местным средним.
 - Б. Поэлементным средним.
 - В. Местным высоким.
- 70. При отпуске сварных конструкций, кроме снижения остаточных напряжений будет наблюдаться
 - А. Увеличение предела текучести металла.
 - Б. Уменьшение предела текучести металла.
 - В. Предел текучести металла не изменится.
- 71. Отличием какой механической характеристики в первую очередь определяется механическая неоднородность.
 - А. Предел пропорциональности.
 - Б. Предел текучести.
 - В. Предел прочности.
 - 72. В чем причина отличия свойств металла ЗТВ и основного металла.
 - А. Термическое воздействие на металл.
 - Б. Различие свойств основного и присадочного металлов.
 - В. Оба ответа верны.
- 73. Как расположены участки соединения с примерно одинаковыми механическими свойствами относительно оси шва.
 - А. Параллельно.
 - Б. Перпендикулярно.
 - В. Неопределенно.
- 74. В чем заключается влияние механической неоднородности на поведение соединения под нагрузкой.
 - А. Различие напряженного состояния отдельных участков соединения.
 - Б. Различие деформации отдельных участков соединения.
 - В. Различие физических свойств отдельных участков соединения.
- 75. Мягкая прослойка по отношению к прилежащим слоям металла имеет.
 - А. Повышенный предел прочности.
 - Б. Повышенный предел текучести.
 - В. Пониженный предел текучести.
 - 76. В каком случае одни участки соединения будут сдерживать де-

формацию других участков соединения.

- А. При продольном растяжении соединения.
- Б. При поперечном растяжении соединения.
- В. В обоих случаях.
- 77. Явлением контактного упрочнения называют
- А. Явление, когда усилие необходимое для разрушения образца по зоне мягкой прослойки оказывается большим, нежели чем для разрушения образца, выполненного целиком из пластичного металла.
- Б. Явление, когда усилие необходимое для разрушения образца по зоне твердой прослойки оказывается большим, нежели чем для разрушения образца, выполненного целиком из пластичного металла.
- В. Явление, когда усилие необходимое для разрушения образца по зоне мягкой прослойки оказывается большим, нежели чем для разрушения образца, выполненного целиком из высокопрочного металла.
 - 78. Чем определяется коэффициент контактного упрочнения.
 - А. Различием механических характеристик участков соединения.
 - Б. Относительным размером мягкой прослойки.
 - В. Оба ответа верны.
 - 79. Под усталостью понимают
- А. Процесс постепенного накопления повреждений и разрушение металла под действием многократно приложенных нагрузок.
- Б. Процесс накопления повреждений и разрушение металла под действием однократного приложения нагрузки.
- В. Процесс постепенного накопления повреждений не приводящий к разрушению металла под действием многократно приложенных нагрузок.
- 80. Отличительной особенностью усталостного разрушения являются.
- А. Пониженный уровень необходимых для этого напряжений по сравнению с их уровнем, приводящим к разрушению при однократном приложении нагрузки.
 - Б. Незначительный уровень пластической деформации в зоне разрушения.
 - В.Оба ответа верны.
- 81. В какой из указанных периодов процесса усталостного разрушения наблюдается прогрессивное снижение механических характеристик материала.
 - А. Инкубационный период.
 - Б. Период разрыхления.
 - В.Период усталости.
 - Г. Период окончательного разрушения.
- 82. Максимальное напряжение, при котором образец не разрушился от усталости при данном базовом числе циклов нагружения, называют
 - А. Выносливостью.
 - Б. Пределом выносливости.
 - В. Пределом прочности.
- 83. Какой показатель используют для характеристики предела выносливости.
 - А. Наибольшее напряжение цикла.
 - Б. Наименьшее напряжение цикла.
 - В. Коэффициент амплитуды цикла.
- 84. Влияние качества поверхности изделия на предел выносливости тем сильнее, чем

- А. Выше предел прочности стали.
- Б. Ниже предел прочности стали
- В. Предел прочности стали, не оказывает значимого влияния на предел выносливости.
- 85. Более высокой чувствительностью к поверхностным дефектам отличаются детали работающие на
 - А. Растяжение сжатие.
 - Б. Изгиб, кручение.
 - В.Оба ответа верны.
 - 86. Увеличить предел выносливости детали можно
 - А. Повышением класса чистоты поверхности.
 - Б. Некоторым увеличением толщины и степени наклепа поверхностного слоя.
 - В. Оба ответа верны.
- 87. Эффективный коэффициент концентрации напряжений используют для
- А. Оценки степени снижения предела выносливости при наличии концентраторов напряжений.
- Б. Оценки степени снижения предела прочности при наличии концентраторов напряжений.
- В. Оценки степени снижения предела текучести при наличии концентраторов напряжений.
- 88. Зависит ли эффективный коэффициент концентрации напряжений от пластичности материала.
 - А. Да.
 - Б. Нет.
- 89. Тенденция к росту предела выносливости с увеличением частоты нагружения связана с
 - А. Увеличением пластичности материала.
 - Б. Поверхностным упрочнением материала.
 - В.Оба ответа верны.
- 90. С ростом содержания углерода в низко- и среднеуглеродистых сталях предел выносливости
 - А. Увеличивается.
 - Б. Уменьшается.
 - В. Неизменен.
- 91. Для большинства металлов измельчением структуры предел выносливости можно
 - А. Увеличить.
 - Б. Уменьшить.
- 92. С увеличением абсолютных размеров испытываемых образцов предел выносливости
 - А. Увеличивается.
 - Б. Уменьшается.
 - В. Неизменен.
- 93. Можно ли утверждать, что соответствующей термообработкой можно всегда повысить предел выносливости материала детали.
 - А. Да.
 - Б. Нет.
 - 94. Созданием остаточных сжимающих напряжений предел выносли-

вости можно

- А. Увеличить.
- Б. Уменьшить.
- 95. Предел выносливости выше у угловых швов
- А. Обработанных, в форме неравнобедренного треугольника.
- Б. Обработанных, в форме равнобедренного треугольника.
- В. Обработанных, вогнутых, в форме неравнобедренного треугольника.
- 96. Под концентрацией напряжений подразумевают.
- А. Повышенный уровень напряжений, вызванных рабочими нагрузками, по сравнению с их средним уровнем в местах геометрических неоднородностей.
 - Б. Повышенный уровень остаточных напряжений в сварных соединениях.
- В. Повышенный уровень напряжений в местах геометрических неоднородностей при механических испытаниях образцов.
- 97. Теоретическим коэффициентом концентрации напряжений оценивают.
 - А. Эффективность концентратора при динамическом нагружении.
 - Б. Эффективность концентратора при статическом нагружении.
 - В. Оба ответа верны.
- 98. Как меняется концентрация напряжений в районе концентратора.
 - А. Увеличивается по мере удаления от точки концентратора напряжений.
 - Б. Уменьшается по мере удаления от точки концентратора напряжений.
 - В. Остается неизменной по мере удаления от точки концентратора напряжений.
- 99. Какой из перечисленных концентраторов напряжений обладает наибольшей концентрацией.
 - А. Отверстие в виде окружности.
 - Б. Отверстие в виде эллипса.
 - В. Острый надрез.
- 100. В каком случае будет наблюдаться рост концентрации напряжений.
 - А. По мере увеличения глубины и радиуса скругления корня надреза.
 - Б. По мере увеличения глубины и уменьшения радиуса скругления корня надреза.
 - В. По мере уменьшения глубины и увеличения радиуса скругления корня надреза.
- 101. Понятие коэффициента интенсивности напряжений используют для оценки напряженного состояния в районе концентратора в виде
 - А. Отверстия.
 - Б. Надреза.
 - В. Трещины.
 - 102. Найдите справедливое утверждение.
- А. Детали, выполненные из пластичных материалов, лучше воспринимают концентрацию напряжений, нежели детали, выполненные из высокопрочных материалов, так как способны воспринимать пластическую деформацию без разрушения.
- Б. Детали, выполненные из пластичных материалов, лучше воспринимают концентрацию напряжений, нежели детали, выполненные из высокопрочных материалов, так как обладают высокими упругими свойствами.
- В. Детали, выполненные из высокопрочных материалов, лучше воспринимают концентрацию напряжений, нежели детали, выполненные из пластичных материалов, так как способны воспринимать пластическую деформацию без разрушения.
- 103. В каком из перечисленных швов соединений концентрация напряжений может отсутствовать.

- А. Обработанный шов стыкового соединения.
- Б. Угловой шов таврового (нахлесточного) соединения с плавными переходами к основному металлу.
 - В. Шов соединения, выполненного контактной точечной (роликовой) сваркой.
- 104. В каком из перечисленных мест сечения стыкового шва соединения наблюдается наибольшая концентрация напряжений.
 - А. Усиление шва.
 - Б. Корень шва.
 - В. Места перехода от металла шва к основному металлу.
- 105. В каком из перечисленных мест сечения углового шва таврового соединения наблюдается наибольшая концентрация напряжений.
 - А. Усиление шва.
 - Б. Корень шва.
 - В. Места перехода от металла шва к основному металлу.
- 106. В сечении углового шва угол наклона плоскости наибольшей концентрации напряжений по отношению к направлению приложенного усилия составляет примерно
 - $A. 30^{0}$.
 - Б. 45⁰.
 - B. 60° .
 - 107. Фланговым швом называется шов расположенный
 - А. Перпендикулярно приложенному усилию.
 - Б. Под углом к направлению приложения усилия.
 - В. Параллельно приложенному усилию.
 - 108. Во фланговом шве
 - А. Наибольший уровень напряжений наблюдается посередине шва.
 - Б. Наибольший уровень напряжений наблюдается в краевых точках шва.
 - В. Распределение напряжений по длине равномерно.
- 109. Если в соединении, имеющем фланговые швы добавить лобовой сварной шов, то концентрация напряжений в сечениях соединения
 - А. Уменьшится.
 - Б. Увеличится.
 - В. Останется неизменной.
- 110. Как распределено усилие между точками соединения выполненного точечной контактной сваркой.
 - А. Наиболее нагружены центральные точки ряда.
 - Б. Наиболее нагружены крайние точки ряда.
 - В. Распределение усилий по точкам ряда равномерно.
 - 111. Предельным состоянием называют
- А. Состояние детали или конструкции, при котором она перестает удовлетворять заданным эксплуатационным требованиям.
 - Б. Состояние детали или конструкции, при котором она разрушается.
- В. Состояние детали или конструкции, при котором она недопустимо деформируется, теряет устойчивость.
- 112. Расчет на прочность машиностроительных конструкций выполняют по
 - А. Нормативным сопротивлениям.
 - Б. Допускаемым сопротивлениям.
 - В. Допускаемым напряжениям.
 - 113. Чем в первую очередь определяются допускаемые напряжения

- А. Физико-механическими характеристиками материала детали или конструкции.
- Б. Степенью точности инженерных расчетов.
- В. Условиями эксплуатации детали или конструкции.
- 114. Под основными допускаемыми напряжениями обычно понимают напряжения, полученные при испытаниях на
 - А. Растяжение.
 - Б. Сжатие.
 - В. Изгиб.
 - Г. Кручение.
 - 115. От чего зависит коэффициент продольного изгиба.
 - А. Характера нагружения конструкции.
 - Б. Гибкости конструкции.
 - В. Условий эксплуатации конструкции.
- 116. В каких пределах лежит коэффициент запаса прочности материала к1
 - A. 0,9-1,1.
 - Б. 1,1-1,3.
 - B. 1,3-1,5.
- 117. Какую долю составляют допускаемые напряжения, полученные при работе на срез от основных допускаемых напряжений.
 - A. 40-50 %.
 - Б. 50-60 %.
 - B. 60-70%.
- 118. При работе деталей или конструкций под переменными нагрузками допускаемые напряжения следует
 - А. Уменьшать.
 - Б. Увеличивать.
 - В. Оставлять неизменными.
- 119. При работе на срез соединения, выполненного контактной точечной сваркой допускаемые напряжения принимают в зависимости от основных равными
 - A. 0,3.
 - Б. 0,5.
 - B. 0,6.
 - 120. Под несущей способность подразумевают
- А. Способность материала или детали сопротивляться пластическому деформированию.
 - Б. Способность материала или детали сопротивляться разрушению.
- В. Способность материала или детали сопротивляться наступлению предельного состояния.
 - 121. Расчетная прочность это
- А. Установленная в результате эксплуатации или испытания при конкретных свойствах материала, значении и характере действия нагрузок, температуре, среде, технологии изготовления, способность конструкции сопротивляться наступлению предельных состояний.
- Б. Установленная в результате расчета с использованием экспериментальных характеристик материала, теоретического аппарата, способность конструкции сопротивляться наступлению предельных состояний.
- В. Способность материала или детали сопротивляться наступлению предельного состояния.

- 122. У большинства металлов и сплавов с понижением температуры происходит
 - А. Снижение предела прочности и предела текучести.
 - Б. Снижение предела текучести и увеличение предела прочности.
 - В. Увеличение предела прочности и предела текучести.
- 123. Хладостойкими называются металлы и сплавы, у которых с понижением температуры
- А. Предел текучести по сравнению с пределом прочности повышается незначительно.
- Б. Предел текучести по сравнению с пределом прочности значительно повышается.
 - В. Предел текучести и предел прочности остаются неизменными.
- 124. У большинства металлов и сплавов с увеличением температуры происходит
 - А. Снижение предела прочности и предела текучести.
 - Б. Снижение предела текучести и увеличение предела прочности.
 - В. Увеличение предела прочности и предела текучести.
- 125. У большинства металлов и сплавов с увеличением температуры может наблюдаться явление
 - А. Релаксации напряжений.
 - Б. Ползучести.
 - В. Оба ответа верны.
- 126. Сварные швы, через которые передается вся полнота нагрузки, называются
 - А. Вспомогательными.
 - Б. Связующими.
 - В. Рабочими.
 - 127. Расчет швов стыковых соединений выполняют по допускаемым
 - А. Нормальным напряжениям.
 - Б. Касательным напряжениям.
- 128. При расчете угловых швов соединений используют характеристику
 - А. Катета шва.
 - Б. Толщины металла.
 - В. Расчетной высоты шва.
 - 129. Минимальную длину углового шва необходимо принимать равной
 - А. 30 мм.
 - Б. 40 мм.
 - В. 50 мм.
 - 130. Расчет прочности лобовых швов выполняют по допускаемым
 - А. Нормальным напряжениям.
 - Б. Касательным напряжениям.
- 131. Опасной плоскостью сечения углового шва имеющего треугольное очертание является
 - А. Катет шва.
 - Б. Основание шва.
 - В. Высота, опущенная на основание шва.
- 132. Минимальную величину нахлеста при проектировании нахлесточного соединения следует принимать равной

- А. Четырем толщинам свариваемых элементов.
- Б. Шести толщинам свариваемых элементов.
- В. Восьми толщинам свариваемых элементов.
- 133. Расчет прочности угловых швов тавровых соединений, выполненных с полным проплавлением основного металла осуществляют по допускаемым
 - А. Нормальным напряжениям.
 - Б. Касательным напряжениям.
- 134. Сварное соединение, выполненное точечной контактной сваркой рекомендуют располагать по отношению к направлению приложения нагрузки таким образом, чтобы оно работало на
 - А. Отрыв.
 - Б. Срез.
 - В. Изгиб.
 - Г. Кручение.
- 135. Каким образом следует учитывать неравномерность распределения усилия по точкам соединения, выполненного контактной точечной сваркой.
 - А. Занижать допускаемые напряжения.
 - Б. Увеличивать диаметр сварной точки.
 - В. Увеличивать число точек в ряду.
 - 136. Под хрупкостью подразумевают.
 - А. Свойство материала разрушаться без заметной пластической деформации.
 - Б. Способность материала разрушаться без заметной пластической деформации.
 - В. Свойство материла пластически деформироваться без разрушения.
- 137. Для большинства конструкционных материалов склонность к хрупкому разрушении возрастает по мере
 - А. Увеличения скорости нагружения.
 - Б. Снижения температуры испытаний.
 - В. Перехода к объемному напряженному состоянию растяжения.
 - Г. Все ответы верны.
 - 138. Особенностями хрупкого разрушения являются
- А. Незначительные затраты энергии на продвижение трещины и высокие скорости ее распространения.
- Б. Значительные затраты энергии на продвижение трещины и высокие скорости ее распространения.
- В. Значительные затраты энергии на продвижение трещины и низкие скорости ее распространения.
- 139. Большинство методов оценки сопротивляемости металлов хрупким разрушениям основано на применении
 - А. Статических нагрузок.
 - Б. Динамических нагрузок.
 - В. Ударных нагрузок.
 - 140. Под ударной вязкостью подразумевают
 - А. Полную работу, направленную на разрушение образца.
- Б. Кинетическую энергию, направленную на разрушение образца по ослабленному сечению.
- В. Удельную полную работу, направленную на разрушение образца по ослабленному сечению.
 - 141. Под порогом хладноломкости подразумевают

- А. Температуру при которой ударная вязкость составляет $0.25 0.3 \text{ MДж/м}^2$.
- Б. Ударную вязкость металла при температуре минус 40° С.
- В. Ударную вязкость металла при температуре минус 60^{0} С.
- 142.Какой вид термообработки низкоуглеродистых конструкционных сталей способен максимально повысить ударную вязкость.
 - А. Нормализация.
 - Б. Закалка и последующий высокий отпуск.
 - В. Термообработкой нельзя повысить ударную вязкость.
- 143. Напряжения какого знака рационально создавать в металле соединения из низкоуглеродистой конструкционной стали, с целью снижения общего напряженного состояния
 - А. Сжатия.
 - Б. Растяжения.
 - 144. Под чувствительностью металла к дефекту подразумевают
- А. Степень снижения физических характеристик металла в месте дефекта к бездефектному участку металла.
- Б. Степень снижения механических характеристик металла в месте дефекта к бездефектному участку металла.
- В. Степень изменения структуры металла в месте дефекта к бездефектному участку металла.
- 145. Для оценки чувствительности металла к дефектам при статических нагрузках используют
 - А. Предел текучести.
 - Б. Предел прочности.
 - В. Предел выносливости.
- 146. Можно говорить, что металл чувствителен к дефекту при испытании, если его прочность в месте дефекта по отношению к бездефектному участку
 - А. Не снижается.
 - Б. Снижается линейно.
 - В. Снижается нелинейно.
- 147. Укажите наиболее опасный дефект сварного соединения с точки зрения его прочности.
 - А. Неполное проплавление.
 - Б. Пористость.
 - В. Смещение кромок.
 - Г. Включения.
- 148. Можно ли в сварных соединениях, не чувствительных к дефектам при динамическом нагружении скомпенсировать неполное проплавление усилением шва
 - А. Да.
 - Б. Нет.
- 149. Какого значения может достигать эффективный коэффициент концентрации напряжений при наличии такого дефекта, как цепочка пор неправильной геометрической формы
 - A. 3.
 - Б. 5.
 - B. 6.
 - 150. Является ли опасным такой дефект соединения, как смещение

кромок стыкуемых элементов до 15 % от их толщины, при его работе в условиях статического нагружения

А. Да.

Б. Нет.

7.2.2 Примерный перечень заданий для решения стандартных/нестандартных задач

- 1. Рассчитать стыковое сварное соединение на прочность при действии статической нагрузки.
- 2. Рассчитать нахлесточное сварное соединение на прочность при действии статической нагрузки.
- 3. Рассчитать тавровое сварное соединение на прочность при действии статической нагрузки.
- 4. Рассчитать соединение, выполненное контактной сваркой на прочность при действии статической нагрузки.
- 5. Рассчитать стыковое сварное соединение на прочность при действии динамической нагрузки.
- 6. Рассчитать нахлесточное сварное соединение на прочность при действии динамической нагрузки.
- 7. Рассчитать тавровое сварное соединение на прочность при действии динамической нагрузки.
- 8. Рассчитать соединение, выполненное контактной сваркой на прочность при действии динамической нагрузки.
 - 9. Рассчитать на прочность соединение, работающее на изгиб.
- 10. Рассчитать на прочность соединение, работающее на сложное сопротивление.

7.2.3 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом.

7.2.4 Примерный перечень вопросов для подготовки к экзамену 5-й семестр

- 1. Понятия напряжения, деформации, перемещения. Виды напряжений. Тензор напряжений.
- 2. Деформированное состояние. Механизм образования деформаций.
- 3. Одноосное растяжение. Закон Гука. Коэффициент Пуассона.
- 4. Диаграммы растяжения.
- 5. Истинная и условная диаграммы.
- 6. Основные механические характеристики металлов.
- 7. Понятие жесткости. Конструктивная жесткость. Явление потери устойчивости конструкции.
- 8. Температурные напряжения.
- 9. Основные параметры, определяющие состояние металла.
- 10.Ползучесть металлов. Кривая ползучести.
- 11. Влияние температуры и напряжений на ползучесть металлов.
- 12. Релаксация напряжений.
- 13. Влияние высоких температур на свойства металлов.
- 14. Собственные напряжения при сварке. Основные понятия.

- 15. Деформации и напряжения в стержне с односторонним жестким закреплением при нагреве и охлаждении.
- 16. Деформации и напряжения в стержне с двусторонним жестким закреплением при нагреве и охлаждении.
- 17. Деформации и напряжения в стержне с жестким закреплением с одной стороны и пружиной с другой стороны при нагреве и охлаждении.
- 18. Образование деформаций и напряжений в сварном соединении на стадии нагрева.
- 19. Образование деформаций и напряжений в сварном соединении на стадии охлаждения.
- 20. Распределение напряжений в листовых конструкциях малых и средних толщин.
- 21. Распределение напряжений при многослойной сварке.
- 22. Распределение напряжений при электрошлаковой сварке.
- 23. Распределение напряжений в соединениях с круговыми швами.
- 24. Распределение напряжений в соединениях с кольцевыми швами.
- 25.Основные конструктивные и технологические факторы, влияющие на распределение остаточных напряжений.
- 26. Методы определения остаточных напряжений. Механические методы.
- 27. Методы определения остаточных напряжений. Физические методы.
- 28. Сварочные деформации и перемещения продольного укорочения.
- 29. Сварочные деформации и перемещения поперечного укорочения.
- 30. Угловые деформации при сварке.
- 31. Потеря устойчивости тонколистовых элементов сварной конструкции.
- 32.Перемещения в направлении перпендикулярном поверхности свариваемых листов.
- 33. Продольные перемещения и деформации скручивания.
- 34. Деформации балочных конструкций от продольных швов.
- 35. Деформации балочных конструкций от поперечных швов.
- 36. Деформации и перемещения в оболочках (тонкостенные оболочки, продольные швы).
- 37. Деформации и перемещения в оболочках (тонкостенные оболочки, круговые и кольцевые швы).
- 38. Деформации и перемещения в толстостенных оболочках.
- 39. Изменение размеров сварной конструкции в процессе вылеживания, механической обработки и эксплуатации.
- 40. Методы снижения остаточных деформаций на стадии разработки технологии сварки и при сварке.
- 41. Методы снижения остаточных деформаций после сварки.
- 42. Методы снижения (устранения) остаточных напряжений.
- 43. Механическая неоднородность сварных соединений. Мягкая и твердая прослойки.
- 44. Работа сварного соединения при продольном растяжении.
- 45. Работа сварного соединения при поперечном растяжении.
- 46. Явление контактного упрочнения. Коэффициент контактного упрочне-

ния.

- 47. Природа усталости металлов.
- 48. Стадии усталостного разрушения.
- 49. Усталостная прочность. Основные понятия и определения.
- 50.Влияние качества и состояния поверхности на усталостную прочность.
- 51. Влияние концентрации напряжений на усталостную прочность.
- 52.Влияние частоты нагружения на усталостную прочность.
- 53. Влияние состава и структуры металла на усталостную прочность.
- 54. Масштабный фактор.
- 55.Влияние термообработки на усталостную прочность.
- 56.Меры, повышающие сопротивляемость сварных соединений усталостным разрушениям.

6-й семестр

- 1. Влияние концентраторов в виде отверстия, эллипса на распределение напряжений.
 - 2. Влияние концентраторов в виде надреза на распределение напряжений.
 - 3. Концентраторы напряжений в пластичных и высокопрочных материалах.
 - 4. Распределение напряжений в стыковых швах и соединениях.
 - 5. Распределение напряжений в лобовых швах тавровых (нахлесточных) соединений.
 - 6. Распределение напряжений во фланговых швах нахлесточных соединений.
 - 7. Распределение напряжений в точечных соединениях (контактная сварка).
 - 8. Принципы расчета сварных соединений. Предельные состояния.
 - 9. Расчет соединений по нормативным сопротивлениям.
 - 10. Расчет соединений по допускаемым напряжениям.
 - 11. Понятия расчетной и конструктивной прочности.
 - 12. Причины несовпадения расчетной и конструктивной прочности.
 - 13.Влияние низких температур на свойства сварных соединений.
 - 14. Прочность сварных соединений при высоких температурах.
 - 15. Расчет прочности стыковых соединений при статических нагрузках.
 - 16. Расчет прочности нахлесточных соединений при статических нагрузках.
 - 17. Расчет прочности тавровых соединений при статических нагрузках.
 - 18. Расчет прочности точечных соединений (контактная сварка) при статических нагрузках.
 - 19. Расчет прочности соединений работающих на изгиб и сложное сопротивление.
 - 20. Расчет прочности по способу расчленения соединения на составляющие.
 - 21. Расчет прочности соединений по способу полярного момента инерции.
 - 22. Расчет прочности соединений по способу осевого момента инерции.
 - 23. Хрупкость. Причины хрупкости металлов.

- 24. Причины нежелательности хрупких разрушений.
- 25. Методы оценки сопротивляемости хрупким разрушениям.
- 26. Причины хрупких разрушений сварных конструкций.
- 27. Пути повышения сопротивляемости хрупким разрушениям
- 28. Дефекты при сварке. Оценка дефектов.
- 29. Влияние непровара на прочность сварных соединений.
- 30.Влияние пористости на прочность сварных соединений.
- 31. Влияние смещения кромок на прочность сварных соединений.
- 32.Влияние включений на прочность сварных соединений.
- 33. Тонкостенные сосуды, работающие под внутренним давлением. Назначение и условия работы.
- 34. Тонкостенные сосуды, работающие под внутренним давлением. Выбор материала.
- 35. Тонкостенные сосуды, работающие под внутренним давлением. Конструктивное оформление и схема расчета.
- 36.Тонкостенные сосуды, работающие под внутренним давлением. Конструктивное оформление и технологичность.
- 37. Принципы расчета и проектирования балок (определение высоты балки).
- 38. Принципы расчета и проектирования балок (подбор поперечного сечения балки и проверка прочности сечения).
- 39. Принципы расчета и проектирования стоек (расчет стоек при центральном сжатии).
- 40. Принципы расчета и проектирования стоек (расчет стоек при эксцентричном сжатии).
- 41. Материалы сварных конструкций. Конструкционные стали.
- 42. Материалы сварных конструкций. Цветные сплавы.
- 43. Изображение и обозначение сварных соединений на чертежах.

7.2.5 Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по билетам, каждый из которых содержит два теоретических вопроса и одну задачу.

- 1. Оценка «Неудовлетворительно» ставится, если студент не дал ответы на теоретические вопросы и не решил задачу.
- 2. Оценка «Удовлетворительно» ставится, если студент дал частичные ответы на теоретические вопросы и не решил задачу в полном объеме, но продемонстрировал верный ход решения.
- 3. Оценка «Хорошо» ставится, если студент дал неполные ответы на теоретические вопросы и решил задачу в полном объеме, получив неверный ответ, но продемонстрировав верный ход решения.
- 4. Оценка «Отлично» ставится, если студент дал полные ответы на теоретические вопросы и решил задачу в полном объеме, получив верный ответ.

7.2.6 Паспорт оценочных материалов

№ п/п Контролируемые разделі	Код	Наименование оценочного
------------------------------	-----	-------------------------

	(темы) дисциплины	контролируемой компетенции	средства
1	Напряжения, деформации, перемещения.	ПК-3, ПК-5	Тест, зачет с оценкой, курсовой проект, экзамен
2	Особенности работы сварных соединений под нагрузкой	ПК-3, ПК-5	Тест, зачет с оценкой, кур- совой проект, экзамен
3	Основные понятия в прочностных расчетах	ПК-3, ПК-5	Тест, зачет с оценкой, кур- совой проект, экзамен
4	Расчет прочности сварных соединений при статических нагрузках	ПК-3, ПК-5	Тест, зачет с оценкой, кур- совой проект, экзамен
5	Хрупкие разрушения сварных конструкций	ПК-3, ПК-5	Тест, зачет с оценкой, курсовой проект, экзамен
6	Принципы расчета балок, стоек, сосудов	ПК-3, ПК-5	Тест, зачет с оценкой, курсовой проект, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование, как этап текущего контроля осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста преподавателем и выставляется оценка «аттестован»/«неаттестован». Успешное выполнение тестовых заданий является основанием допустить студента к промежуточной аттестации, при наличии выполненного курсового проекта.

Выполнение курсового проекта предполагает:

- определение расчетной схемы балки с указанием действующих нагрузок;
- построение эпюр изгибающих моментов M и перерезывающих сил Q в характерных сечениях балки;
- выбор материала балки;
- определение высоты балки h и выбор типа сечения;
- конструирования сечения балки;
- проверка прочности сечения балки;
- проверка общей устойчивости балки;
- проверка местной устойчивости элементов балки;
- конструирование и расчет сварных соединений балки;
- конструирование и расчет опорных плит балки;
- разработка графической части проекта сварной балки;
- определение расчетной схемы колонны с указанием действующих нагрузок;
- выбор материала колонны;
- расчет и конструирование сечения колонны, проверка прочности колонны;
- проверка устойчивости колонны.
- расчет и конструирование соединительных элементов и диафрагм колонны;
- расчет и конструирование оголовка колонны;

- расчет и конструирование базы колонны;
- расчет и конструирование сварных соединений колонны;
- разработку графической части проекта сварной колонны.

Курсовой проект включает в себя графическую часть в виде двух сборочных чертежей разрабатываемых конструкций формата A1 (возможно A3) и расчетно-пояснительную записку объемом 25-40 страниц.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 30 мин.

Экзамен является итоговым этапом промежуточной аттестации. Методика его оценивания изложена в пункте 7.2.5.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Николаев Г.А., Винокуров В.А. Сварные конструкции. Расчет и проектирование. М.: Высшая школа, 1990.
- 2. Корчагин И.Б. Проектирование сварных конструкций: Учеб. пособие. Воронеж: Воронеж. гос. техн. ун-т, 2005.
- 3. Недосека А.Я. Основы расчета сварных конструкций. Киев: Высшая школа, 1988.
- 4. Корчагин И.Б., Булков А.Б. Напряжения и деформации при сварке: Учеб. пособие. Воронеж: Воронеж. гос. техн. ун-т, 2007.
- 5. Башкатов А.В., Петренко В.Р., Булков А.Б. Расчет сварных соединений и конструкций: Учеб. пособие. Воронеж: Воронеж гос. техн. ун-т, 2001.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Учебно-методический материал по дисциплине представлен на сайте: http://eios.vorstu.ru.

В процессе обучения используются:

- компьютерные программы MS Windows, MS Office
- профессиональны базы данных и информационных справочных сис-Профессиональные стандарты, доступ свободный: http://profstandart.rosmintrud.ru: eLIBRARY.RU, доступ свободный www.elibrary.ru; «Техэксперт» - профессиональные справочные системы; http://техэксперт.рус/; Информационная система доступ свободный «ТЕХНОРМАТИВ»; доступ свободный https://www.technormativ.ru/; Электронно-библиотечная система ЛАНЬ, доступ свободный https://e.lanbook.com/.

ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.

Дисплейный класс, оснащенный компьютерными программами для проведения практических занятий.

Лаборатории кафедры, оснащенные сварочным оборудованием, специальной сборочно-сварочной оснасткой и измерительным инструментом.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Расчет и проектирование сварных соединений» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовой проект.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета сварных соединений и конструкций. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсового проекта изложена в учебнометодическом пособии. Выполнять этапы курсового проекта должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсового проекта, защитой курсового проекта.

курсового проскта, защитой курсового проскта.						
Вид учебных занятий	Деятельность студента					
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.					
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.					
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом					

	учебника, проработать дополнительную литературу и источники, ре-				
	шить задачи и выполнить другие письменные задания.				
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения				
работа	чебного материала и развитию навыков самообразования. Самостоя-				
	тельная работа предполагает следующие составляющие:				
	- работа с текстами: учебниками, справочниками, дополнительной ли-				
	тературой, а также проработка конспектов лекций;				
	- выполнение домашних заданий и расчетов;				
	- работа над темами для самостоятельного изучения;				
	- участие в работе студенческих научных конференций, олимпиад;				
	- подготовка к промежуточной аттестации.				
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в те-				
промежуточной	чение всего семестра. Интенсивная подготовка должна начаться не				
•	тестации позднее, чем за месяц-полтора до промежуточной аттестации. Данн				
	перед зачетом с оценкой, экзаменом, экзаменом три дня эффективнее				
	всего использовать для повторения и систематизации материала.				

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведую- щего кафедрой, от- ветственной за реа- лизацию ОПОП