МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕ**РЖДАЮ**И.о. декана ФМАТ ВИ. Ряжских
/////
«28» августа 2017 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

«Программное обеспечение проектирования кузнечно-прессового оборудования»

Направление подготовки 15.03.05 — Конструкторско-технологическое обеспечение машиностроительных производств
Профиль Конструкторско-технологическое обеспечение кузнечно-штамповочного производства
Квалификация выпускника Бакалавр
Нормативный период обучения 4 года / Форма обучения Очная / Год начала подготовки 2017 г.

Автор программы / Попова М.И. / Заведующий кафедрой автоматизированного оборудования машиностроительного производства / Сафонов С.В. / Руководитель ОПОП / Сафонов С. В. /

Воронеж 2017

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Цель изучения дисциплины - получение знаний по основным методам проектирования и программирования кузнечно-прессового оборудования с применением САПР и оформлению чертежно-графических работ в соответствии с ЕСКД.

1.2. Задачи освоения дисциплины

- усвоение принципов автоматизации проектирования кузнечнопрессового оборудования, принципов формирования объектов в двухмерном и трехмерном пространстве в среде КОМПАС, основ твердотельного моделирования в среде SOLID WORKS;
- работы с программным обеспечением КОМПАС-ГРАФИК, КОМПАС-ШТАМП, Qform, Dform при выполнении конструкторской и нормативнотехнической документации.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Программное обеспечение проектирования кузнечнопрессового оборудования» относится к дисциплинам по выбору вариативной части (Б1.В.ДВ) блока Б1 учебного плана.

З ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИС-ЦИПЛИНЕ

Процесс изучения дисциплины «Программное обеспечение проектирования кузнечно-прессового оборудования» направлен на формирование следующей компетенции:

ПК-11 — способностью выполнять работы по моделированию продукции и объектов машиностроительных производств с использованием стандартных пакетов и средств автоматизированного проектирования, применять алгоритмическое и программное обеспечение средств и систем машиностроительных производств.

Компетенция	Результаты обучения, характеризующие		
	сформированность компетенции		
ПК-11	Знать принципы автоматизированного выполнения и ре-		
	дактирования моделей деталей кузнечно-прессового обору-		
	дования в трехмерном пространстве в САD-системах; ком-		
	пьютерные технологии геометрического моделирования,		
	формирование трехмерных объектов на основе многовари-		
	антного параметрического конструирования.		

Знать функциональные возможности и принципы работ в среде КОМПАС; принципы подготовки конструкторской и нормативно-технической документации на стадиях разработки проекта, принятия решений; виды и способы проектирования, приемы создания моделей сборки, автоматизации процессов конструирования и моделирования деталей кузнечно-прессового оборудования.

Уметь выполнять эскизы, чертежи, модели деталей кузнечно-прессового оборудования на основе автоматизированного моделирования, чертежи кузнечно-прессового оборудования на основе твердотельных моделей в автоматизированных системах проектирования; проводить экспертизу технической документации на изготовление кузнечно-прессового оборудования.

Владеть навыками использования базовых графических систем КОМПАС-ГРАФИК, КОМПАС-ШТАМП, Qform, Dform при автоматизированном проектировании кузнечнопрессового оборудования; навыками проектирования кузнечно-прессового оборудования в системах КОМПАС-ГРАФИК, КОМПАС-ШТАМП, Qform, Dform.

4 ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Программное обеспечение проектирования кузнечно-прессового оборудования» составляет 3 зачетные единицы.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

	<u> </u>				
Вид учебной работы	Всего	Семестры			
	часов	8			
Аудиторные занятия (всего)	48	48			
В том числе:					
Лекции	12	12			
Практические занятия (ПЗ)	-	-			
Лабораторные работы (ЛР)	36	36			
Самостоятельная работа	60	60			
Курсовой проект	-	-			
Контрольная работа	-	-			
Вид промежуточной аттестации - зачет	Зачет	Зачет			
Общая трудоемкость, часов	108	108			
Зачетных единиц	3	3			

5 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

Очная форма обучения

		Очная форма обучения		1			
$N_{\underline{0}}$	Наименование	Содержание раздела	Лек	Пра	Лаб	CP	Bce
Π/	темы		ции	КТ		C	го,
П				зан.	зан.		час
1	Нормативный	Стадии проектирования.					
	алгоритм про- ектирования КПМ	Нормативный алгоритм проектирования. Техническое задание и техническое предложение. Паспорт пресса.	2	-	6	10	18
2	Проектирование исполнительных механизмов кривошипных прессов	Алгоритм проектирования. Особенности расчета и условия прочности главных валов. Анализ нагрузок, испытываемых валом. Расчет допустимых усилий на ползуне пресса. Менеджер прикладных библиотек. Подготовка конструкторской документации. Методика оценки стойкости штамповой оснастки	2	-	6	10	18
3	Технологический процесс штамповки	Формы и виды конечных элементов. Сведения о системе Deform, интеграция систем Компас3D и Deform. Импортирование твердотельной модели в препроцессор APM Studio и Deform, задание действующих нагрузок и закрепление модели, генерация КЭ сетки, анализ напряжений в заготовке.	2	-	6	10	18
4	Исследование энергетики кривошипных прессов	Энергетический баланс и КПД пресса. Цикловая и тепловая устойчивость главного электродвигателя. Расчет мощности электродвигателя и момента инерции маховика пресса на этапе нулевого приближения. Понятие топологической схемы пресса.	2	-	6	10	18

		Исследование энергетическо-					
		го баланса и КПД кривошипного пресса.					
5	Проектирование деталей основных устройств прессов	Критерии расчета деталей основных устройств криво- шипных прессов. Прочностной расчет шатунов и приводных валов. Задание совпадающих поверхностей, понятие о контактности задачи, виды контактов. Требования, предъявляемые к компьютерной системе при расчете сборок.	2	-	6	10	18
6	Оптимизация технологиче- ских процес- сов в совре- менных САПР	Понятие оптимизации технологического процесса, методика анализа технологического процесса, оптимизация загрузки оборудования, экспертиза технической документации. Использование базовых графических систем КОМПАС-ГРАФИК, КОМПАС-ШТАМП, Qform, Deform.	2	-	6	10	18
		Итого	12	-	36	60	108

Заочная форма обучения

По данному профилю заочная форма обучения не предусмотрена.

5.2 Перечень лабораторных работ

- 1. Состав программной системы Deform-3D. Алгоритм работы программы.
- 2. Пути совершенствования кузнечно-прессового оборудования. Возможные варианты конструкции машин.
- 3. Импорт инструментов. 3D библиотека деталей штампов.
- 4. Типы главных валов. Особенности расчета и условия прочности главных валов.
- 5. Установление функциональной зависимости от угла поворота главного вала.
- 6. Проверка правильности подготовки исходных данных для моделирования. Штамповка рулевой тяги.
- 7. Расчет главных валов кривошипных прессов. Анализ нагрузок, испытываемых валом.
- 8. Анализ напряженного состояния твердотельных моделей деталей.

- 9. Анализ напряженного состояния твердотельных моделей сборок.
- 10. Составление и оформление конструкторско-технологической документации.

5.3 Перечень практических работ

Выполнение практических работ учебным планом не предусмотрено.

6 ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

6.1 Курсовое проектирование

Выполнение курсовой работы (проекта) учебным планом не предусмотрено.

6.2 Контрольные работы для обучающихся заочной формы обучения Заочная форма обучения не предусмотрена.

7 ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетен-	Результаты обучения, ха-	Критерии	Аттестован	Не аттестован
ция	рактеризующие сформи-	оценивания		
	рованность компетенции			
ПК-11	Знать принципы автомати-	Выполнение	Выполнение	Невыполнение
	зированного выполнения и	лаборатор-	работ в	работ в срок,
	редактирования моделей	ных работ,	срок, преду-	предусмот-
	деталей кузнечно-	отвечает на	смотренный	ренный в ра-
	прессового оборудования в	вопросы по	в рабочих	бочих про-
	трехмерном пространстве в	темам лабо-	программах	граммах
	CAD-системах; компьютер-	раторных		
	ные технологии геометри-	работ		
	ческого моделирования,			
	формирование трехмерных			
	объектов на основе много-			
	вариантного параметриче-			
	ского конструирования.			

Знать функциональные возможности и принципы работ в среде КОМПАС; принципы подготовки конструкторской и нормативно-технической документации на стадиях разработки проекта, принятия решений; виды и способы проектирования, приемы создания моделей сборки, автоматизации процессов конструирования и моделирования деталей кузнечно-прессового оборудования.	лаборатор- ных работ, отвечает на вопросы по темам лабо- раторных работ	работ в срок, предусмотренный в рабочих программах	работ в срок, предусмот- ренный в ра- бочих про- граммах
Уметь выполнять эскизы, чертежи, модели деталей кузнечно-прессового оборудования на основе автоматизированного моделирования, чертежи кузнечно-прессового оборудования на основе твердотельных моделей в автоматизированных системах проектирования; проводить экспертизу технической документации на изготовление кузнечно-прессового оборудования.	Решение стандарт- ных задач, выполнение лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
Владеть навыками использования базовых графических систем КОМПАС-ГРАФИК, КОМПАС-ШТАМП, Qform, Deform при автоматизированном проектировании кузнечнопрессового оборудования кузнечно-прессового оборудования в системах КОМПАС-ПІТАМП, Qform, Deform.	Решение приклад- ных задач в данной предмет- ной обла- сти, защита лаборатор- ных работ.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний для очной формы обучения оцениваются в 8 семестре по следующей системе:

«зачтено»;

«не зачтено».

Ком-	Результаты обучения, характе-	Крите-	Зачтено	Не зачтено
петен-	ризующие сформированность	рии		
ция	компетенции	оцени-		
		вания		
ПК-11	Знать принципы автоматизиро-	Задание	Выпол-	В задании
	ванного выполнения и редактиро-		нение за-	менее 60 %
	вания моделей деталей кузнечно-		дания бо-	правильных
	прессового оборудования в трех-		лее	ответов
	мерном пространстве в CAD-		60 %	
	системах; компьютерные техноло-			
	гии геометрического моделирова-			
	ния, формирование трехмерных			
	объектов на основе многовари-			
	антного параметрического кон-			
	струирования.			
	Знать функциональные возможно-	Задание	Выпол-	В задании
	сти и принципы работ в среде		нение за-	менее 60 %
	КОМПАС; принципы подготовки		дания бо-	правильных
	конструкторской и нормативно-		лее	ответов
	технической документации на		60 %	
	стадиях разработки проекта, при-			
	нятия решений; виды и способы			
	проектирования, приемы создания			
	моделей сборки, автоматизации			
	процессов конструирования и мо-			
	делирования деталей кузнечно-			
	прессового оборудования.		-	
	Уметь выполнять эскизы, чертежи,	Задание	Выполне-	В задании
	модели деталей кузнечно-		ние зада-	менее 60 %
	прессового оборудования на основе		ния более	правильных
	автоматизированного моделирова-		60 %	ответов
	ния, чертежи кузнечно-прессового			
	оборудования на основе твердо-			
	тельных моделей в автоматизиро-			
	ванных системах проектирования;			
	проводить экспертизу технической			
	документации на изготовление			
	кузнечно-прессового оборудова-			
	ния.	<u> </u>	D	D
	Владеть навыками использования	Задание	Выпол-	В задании

базовых графических систем	нение за-	менее 60 %
КОМПАС-ГРАФИК, КОМПАС-	дания бо-	правильных
ШТАМП, Qform, Deform при ав-	лее	ответов
томатизированном проектирова-	60 %	
нии кузнечно-прессового обору-		
дования; навыками проектирова-		
ния кузнечно-прессового обору-		
дования в системах КОМПАС-		
ГРАФИК, КОМПАС-ШТАМП,		
Qform, Deform.		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию Тестирование по дисциплине не предусмотрено.

7.2.2 Примерный перечень заданий для решения стандартных задач

- **1.** Для заданной детали в Deform-3D выполнить:
- установку параметров;
- загрузку данных объектов;
- позиционирование инструментов;
- импорт инструментов;
- установку перемещений инструментов;
- установку температуры;
- установку свойств инструментов;
- позиционирование объектов.
- **2.** Провести анализ технологического процесса для заданной детали в Deform-3D:
 - выполнить запуск расчета модели;
 - провести обработку результатов;
 - выполнить анализ результатов по сечениям.
 - **3.** Выполнить для заданной детали штамповку в Deform-3D:
 - -создание задачи;
 - загрузка геометрии объектов;
 - определение сетки заготовки;
 - назначение температуры объектам;
 - назначение перемещений;
 - критерии останова;
 - граничные условия взаимодействия объектов;
 - запись базы данных;

- запуск расчета.

Пример детали для выполнения задания

	Простые	Средние	Сложные
Плоские	25 S=2.0 Планка	1111айба	Прокладка
С криволинейной осью	скоба	3аслонка	Хомут
Изготовленные вытяж-	$D_{\phi} = 53$ мм $d = 32$ мм $d_{\tau} = 28$ мм $d_{cp} = 30$ Колпачок	88,4 98,4 93 Втулка	<i>R1</i>

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Провести анализ напряженного состояния инструмента для заданной детали в Deform-3D:
 - установка параметров расчета;
 - удаление заготовки;
 - определение отношений между объектами;
 - анализ результатов в постпроцессоре.
- 2. Выполнить анализ напряженного состояния твердотельной модели заданной детали в Deform-3D:
 - импортирование твердотельной модели;

- подготовка модели к расчету (задание закреплений, усилий, температуры и т.д.);
 - запуск расчета, анализ результатов расчета.
- 3. Провести оформление конструкторско-технологической документации для заданной детали:
 - создание рабочих чертежей в соответствии с ЕСКД;
 - создание сборочных чертежей, спецификаций.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Разработка и оптимизация технологических процессов на основе компьютерного моделирования. Классификация штампов.
 - 2. Основные типы штампов.
 - 3. Штампы для разделительных операций
 - 4. Штампы для гибки
 - 5. Штампы для вытяжки
 - 6. Штампы для формовки
 - 7. Штампы для выдавливания
 - 8. Универсальные штампы
 - 9. Комбинированные штампы
 - 10. Кривошипно-ползунный механизм.
 - 11. Основные элементы штампа.
 - 12. Методы математического моделирования кривошипных прессов.
 - 13. Основные конструктивные требования к штампам
 - 14. Типовые конструкции штампов
 - 15. Технологические требования к плоским штампуемым деталям.
 - 16. Раскрой материала, схемы раскроя.
 - 17. Расчет усилия вырубки
- 18. Математическое моделирование кинетостатики кривошипно-ползунного механизма.
 - 19. Особенности расчета и условия прочности главных валов.
 - 20. Статика кривошипно-ползунного механизма.
 - 21. Анализ нагрузок, испытываемых валом.
 - 22. Расчет главных валов кривошипных прессов.
 - 23. Критерии расчета деталей основных устройств кривошипных прессов.
 - 24. Основные типовые конструкции штампов.
- 25. Принцип определения зазоров между матрицей и пуансоном в вырубных и пробивных штампах.
 - 26. Конструктивные требования к гибочным штампам.
 - 27. Углы пружинения при гибке.
 - 28. Конструктивные элементы рабочих деталей гибочных штампов
 - 29. Опасные сечения. Прочностные свойства валов.
- 30. Принцип назначения исполнительных размеров матриц и пуансонов гибочных штампов.

- 31. Технологические требования к деталям, получаемым вытяжкой.
- 32. Определение размеров заготовок для вытяжки полых тел вращения.
- 33. Штампы совмещенного действия для вытяжки и обрезки деталей по высоте на закруглении матрицы
 - 34. Последовательная вытяжка в ленте.
 - 35. Зазоры между матрицей и пуансоном при вытяжке.
- 36. Расчет исполнительных размеров пуансонов и матриц вытяжных штампов.
- 37. Основные конструктивные элементы рабочих деталей вытяжных штампов.
 - 38. Конструктивные элементы рабочих деталей вытяжных штампов
 - 39. Энергетический баланс и КПД пресса.
 - 40. Цикловая и тепловая устойчивость главного электродвигателя.
- 41. Основные принципы автоматизации проектирования деталей штамповой оснастки
- 42. Программа расчета кинетостатических параметров кривошипных прессов.
- 43. Основные принципы проектирования оснастки холодной штамповки в программном продукте Deform-3D.
- 44. Статический расчет: понятие коэффициента запаса, его типовые значения для различных деталей КПМ.
- 45. Особенности и методика автоматизированного проектирования штамповой оснастки в сквозных САПР.
- 46. Принципы построения баз данных деталей при проектировании штампов в CAD/CAM-системах.
- 47. Основные задачи автоматизированного проектирования штампов в системе Deform-3D.
- 48. Основные этапы автоматизированного проектирования штампов в системе Deform-3D.
- 49. Назначение систем автоматизированной поддержки инженерных решений при проектировании штампов.
 - 50. Особенности решения задач САПР штампов.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Экзамен по данной дисциплине учебным планом не предусмотрен.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится в соответствии с календарным графиком в конце 8 семестра. При промежуточной аттестации по дисциплине учебным планом предусмотрена следующая форма контроля — зачет.

К промежуточной аттестации допускаются обучающиеся, получившие оценку «зачтено» по каждой выполненной лабораторной работе и текущей аттестации.

Фонд оценочных средств промежуточной аттестации разработан в форме заданий, каждое из которых состоит из теоретического вопроса, стандартной и прикладной задачи. Каждый правильный ответ на вопрос задания оценивается 10 баллами, каждая правильно решенная задача оценивается по 10 баллов. Наибольшее количество набранных баллов - 30.

По результатам зачета выставляются оценки:

- 1. «Зачтено» ставится, если задание выполнено от 16 до 30 баллов.
- 2. «Не зачтено» ставится, если задание выполнено, менее чем на 16 баллов.

7.2.7 Паспорт оценочных материалов

	/.2./ паспорт оценочны	іх материалов	
$N_{\underline{0}}N_{\underline{0}}$	Контролируемые раз-	Код контролиру-	Наименование оценочного
Π/Π	делы (темы) дисци-	емой компетен-	средства
	плины	ции (ее части)	
1	Нормативный алго-	ПК-11	Лабораторные работы, уст-
	ритм проектирования		ный опрос, отчет; выполне-
	КПМ.		ние задания, устный опрос,
			зачет
2	Проектирование ис-	ПК-11	Лабораторные работы, уст-
	полнительных меха-		ный опрос, отчет; выполне-
	низмов кривошипных		ние задания, устный опрос,
	прессов.		зачет
3	Технологический про-	ПК-11	Лабораторные работы, уст-
	цесс штамповки.		ный опрос, отчет; выполне-
			ние задания, устный опрос,
			зачет
4	Исследование энерге-	ПК-11	Лабораторные работы, уст-
	тики кривошипных		ный опрос, отчет; выполне-
	прессов.		ние задания, устный опрос,
			зачет
5	Проектирование дета-	ПК-11	Лабораторные работы, уст-
	лей основных		ный опрос, отчет; выполне-
	устройств прессов.		ние задания, устный опрос,
			зачет
6	Оптимизация техноло-	ПК-11	Лабораторные работы, уст-
	гических процессов в		ный опрос, отчет; выполне-
	современных САПР.		ние задания, устный опрос,
			зачет

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Проверка знаний на лабораторных занятиях, которая проводится в форме фронтального устного опроса, фиксируется преподавателем и доводится до сведения каждого обучающегося. Проверка правильности выполнения лабора-

торной работы, итогом которой является оценка «зачтено» или «не зачтено», характеризует практическую освоенность материала по теме лабораторной работы.

На подготовку ответа на вопрос задания, который готовится на компьютере и на бумажном носителе, отводится 30 минут. Затем экзаменатором осуществляется проверка ответа, опрос, и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

На решение стандартной задачи, которая выполняется на компьютере и на бумажном носителе, выделяется 30 минут, затем экзаменатором осуществляется проверка ее решения, опрос, и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

На решение прикладной задачи, которая выполняется на компьютере и на бумажном носителе, выделяется 30 минут, затем экзаменатором осуществляется проверка ее решения, опрос, и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Для успешной сдачи зачета необходимо выполнить следующие рекомендации:

- готовиться следует систематически, в течение всего периода освоения данной дисциплины;
- пользоваться не только рекомендованными источниками по теоретическому материалу, но и сведениями из дополнительной и методической литературы, знаниями, полученными по ранее освоенным дисциплинам.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

8.1.1 Основная литература

- 1. Демидов, А.В. Программное обеспечение проектирования кузнечно-прессового оборудования для спец. 150201 «Машины и технология обработки металлов давлением»: курс лекций: учеб. пособие [Электронный ресурс] / ГОУВПО «Воронеж. Гос. техн. ун-т»; А.В. Демидов. Электрон. Текстовые, граф. дан. Воронеж: ГОУВПОВГТУ, 2011. 1 диск. Режим доступа: http://bibl.cchgeu.ru/MarcWeb2/Found.asp
- 2. Берлинер, Э.М. САПР в машиностроении [Текст]: учебник / Э.М. Берлинер. М.: Форум, 2014. 448 с. (Допущено МОН РФ)
- 3. Схиртладзе, А.Г. и др. Автоматизированное проектирование штампов [Текст]: учеб. пособие / А.Г. Схиртладзе, В.В. Морозов, А.В. Жданов, А.И. Залеснов. 2-е изд., стер. Санкт-Петербург: Лань, 2014. с. ISBN 978-5-8114-1633-2. URL: https://e.lanbook.com/book/45925

8.1.2 Дополнительная литература

4. Нилов, В.А. [и др.]. Детали машин и основы конструирования: учеб. пособие [Текст] / В.А. Нилов, Р.А.Жилин, О.К. Битюцких, А.В. Демидов. — Воронеж: ВГТУ, 2014. — 129 с.

- 5. Новокщенов, С.Л. [и др.]. Основы разработки конструкторскотехнологической документации на кузнечно-штамповочное оборудование с применением AutoCAD [Электронный ресурс]: учеб. пособие / С.Л.Новокщенов, А.Ю. Бойко, А.М.Гольцев, С.И.Антонов; ГОУВПО «Воронежский государственный технический университет». Электрон. текстовые, граф. дан. Воронеж: ВГТУ, 2007. 1 диск. Режим доступа: http://bibl.cchgeu.ru/MarcWeb2/Found.asp
- 6. Демидов, А.В. Основы конструирования деталей машин [Электронный ресурс]: учеб. пособие / А.В. Демидов. Воронеж: ГОУВПО «ВГТУ», 2008. 183 с. 1 диск. Режим доступа: http://bibl.cchgeu.ru/MarcWeb2/Found.asp
- 7. Новокщенов, С.Л. [и др.]. Основы разработки конструкторскотехнологической документации на кузнечно-штамповочное оборудование с применением SolidWORKS [Электронный ресурс]: учеб. пособие / С.Л.Новокщенов, А.Ю. Бойко, А.М.Гольцев, С.И.Антонов; ГОУВПО «Воронежский государственный технический университет». Электрон. текстовые, граф. дан. Воронеж: ВГТУ, 2007. 1 диск. Режим доступа: http://bibl.cchgeu.ru/MarcWeb2/Found.asp

8.1.3 Методические указания

- 8. МУ к выполнению лабораторных работ по дисциплинам ОАП, ТОМД, САПРТПОМД с применением системы анализа и проектирования процессов пластической деформации Qform для студентов спец. 150201 МиТОМД очной формы обучения [Электронный ресурс] / сост.: С..В. Сафонов, А.М. Гольцев, С.Л. Новокщенов; ГОУВПО «Воронеж. Гос. техн. ун-т». Электрон. Текстовые, граф. дан. Воронеж: ВГТУ, 2008. Регистр. № 393-2008. 1 диск. Режим доступа: http://bibl.cchgeu.ru/MarcWeb2/Found.asp
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Лицензионное программное обеспечение

Adobe Acrobat Reader

Google Chrome

LibreOffice

WinDjView

Notepad++

Visual Studio Community

Программное средство Система CAD «T- FLEX CAD 3D»

Ресурсы информационно-телекоммуникационной сети «Интернет»

http://www.edu.ru/

Образовательный портал ВГТУ

Информационные справочные системы

http://window.edu.ru https://wiki.cchgeu.ru/

Современные профессиональные базы данных

Ресурс машиностроения

Адрес pecypca: http://www.i-mash.ru/

Машиностроение: сетевой электронный журнал

Адрес pecypca: http://indust-engineering.ru/archives-rus.html

Библиотека Машиностроителя Адрес ресурса: https://lib-bkm.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Лекционные занятия и лабораторные работы проводятся в компьютерном классе корпуса № 1 кафедры AOMП 01.6/1, в котором находятся:

- компьютеры с программным оснащением для выполнения конструкторско-технологической документации по КШО;
- интерактивная доска 78" ActivBoard 178, ПО ActivInspire; проектор; мультимедиа-проектор Sony VPL-SX125, ноутбук: фильмы, видеофильмы, видеофрагменты (графические файлы по всем лекционным темам для демонстрации слайдов непосредственно в лекционной аудитории);
 - слайды, видеоматериалы по КШО.

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Программное обеспечение проектирования кузнечнопрессового оборудования» читаются лекции, проводятся лабораторные занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные занятия направлены на приобретение практических навыков проектирования штамповой оснастки с использованием стандартных пакетов и САПР. Занятия проводятся путем выполнения конкретных задач в компьютерном классе.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины производится проверкой лабораторных работ и их защитой.

Освоение дисциплины оценивается на зачете.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций:

- кратко, схематично, последовательно фиксировать
основные положения, формулировки, обобщения, графики и
схемы, выводы;

- выделять важные мысли, ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на лабораторной работе.

Лабораторные работы

Перед каждой лабораторной работой студент должен ознакомиться с методическими указаниями, изучить теоретический материал и рекомендованную литературу к данной лабораторной работе, ознакомиться с ее организацией; уяснить цели задания, подготовиться и познакомиться с нормативной, справочной и учебной литературой и обратить внимание на рекомендации преподавателя: какие основные информационные данные извлечь из этих источников.

Подготовка к текущей и промежуточной аттестации по дисциплине

При подготовке к текущей и промежуточной аттестации по дисциплине необходимо ориентироваться на конспекты лекций, основную и рекомендуемую литературу, выполненные практические, лабораторные работы.

Работа студента при подготовке к текущей и промежуточной аттестации должна включать: изучение учебных вопросов; распределение времени на подготовку; консультирование у преподавателя по трудно усвояемым материалам; поиск и рассмотрение наиболее сложных из них в дополнительной литературе, или других информационных источниках, предложенных преподавателем.