МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
И.о. декана факультета машиностроения
и аэрокосмической техники
/В.И. Ряжских/
30 августа 2017 г.

РАБОЧАЯ ПРОГРАММА дисциплины (модуля)

«Обеспечение качества типовых деталей»

Направление подготовки <u>15.03.05</u> Конструкторско-технологическое <u>обеспечение машиностроительных производств</u>

Профиль Технология машиностроения

Квалификация выпускника Бакалавр

Нормативный период обучения 4 года / 5 лет

Форма обучения Очная / Заочная

Год начала подготовки 2017 г.

Авторы программы: профессор

А.И. Болдырев

доцент

А.А. Болдырев

Заведующий кафедрой

технологии машиностроения

наименование кафедры, реализующей дисциплину

И.Т. Коптев

Руководитель ОПОП

Е.В. Смоленцев

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1 Цель дисциплины

- ознакомление будущих бакалавров с методикой обеспечения качества обрабатываемых типовых деталей в производственных условиях, подготовка к разработке технологических процессов согласно требованиям конструкторских разработок.

1.2 Задачи освоения дисциплины

- ознакомление студентов с особенностями решений технологических задач при разработке технологических процессов в условиях производства;
- ознакомление студентов с возможностями технологических приемов, используемых при разработке технологических процессов в условиях производства.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Обеспечение качества типовых деталей» относится к дисциплинам по выбору блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Обеспечение качества типовых деталей» направлен на формирование следующей компетенции:

ПК-4 – способность участвовать в разработке проектов изделий машиностроения, средств технологического оснащения, автоматизации и диагностики машиностроительных производств, технологических процессов их изготовления модернизации учетом технологических, эстетических, экономических, эксплуатационных, управленческих параметров и использованием современных информационных технологий и вычислительной техники, а также выбирать эти средства и проводить диагностику объектов машиностроительных производств с применением необходимых методов и средств анализа

Компетенция	Результаты обучения, характеризующие				
	сформированность компетенции				
ПК-4	Знать				
	методы и возможности обеспечения качества при				
	обработке типовых деталей в производственных				
	условиях				
	Уметь				
	- формулировать исходные данные при разработке				
	технологических процессов с обеспечением требуемого				
	качества для типовых деталей действующего				
	производства;				

- правиль	но по	льзоваться	исходными	данными	на всех	
этапах разработки технологических процессов типовых						
деталей	c	учетом	обеспечен	ия тре	буемых	
технологических и эксплуатационных параметров						
D						

Владеть

- навыками проектирования технологических процессов с заранее заданными исходными данными для обеспечения качества обрабатываемых типовых деталей

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Обеспечение качества типовых деталей» составляет <u>5</u> зачетных единиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего	Ce	местры		
		часов		7	8
Аудиторные занятия (всего)		72		36	36
В том числе:					
Лекции		30		18	12
Практические занятия (ПЗ)		42		18	24
Лабораторные работы (ЛР)					
Самостоятельная работа		81		36	45
Курсовой проект					
Контрольная работа					
Вид промежуточной аттестации		27		зачет	27 экз
Общая трудоемкость	час	180		72	108
38	ач. ед.	5		2	3

Заочная форма обучения

Вид учебной работы		Всего		Семес	тры	
		часов	5			
Аудиторные занятия (всего)		24	24			
В том числе:						
Лекции		8	8			
Практические занятия (ПЗ)		16	16			
Лабораторные работы (ЛР)						
Самостоятельная работа		147	147			
Курсовая работа						
Контрольная работа		+	+			
Вил проможутонной оттостонии		9	9			
Вид промежуточной аттестации		9	ЭКЗ			
Общая трудоемкость	час	180	180			
	зач. ед.	5	5			

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Bce
11/11				зан.	зан.		го, час
1	Система обеспечения и управления качеством	Введение. Система качества как совокупность задач, решаемых на разных этапах производства и методы их реализации. Возможности управления качеством	2	2		6	10
2	Типы поверхностей деталей машин и требования, предъявляемые к ним	Классификация типовых поверхностей у деталей машин. Инструменты и кинематика рабочих движений в станках для обработки типовых поверхностей. Требования к типовым поверхностям при выборе метода обработки элементарных поверхностей.	2	2		6	10
3.	Способы и методы достижения показателей качества	Способы и методы достижения показателей качества при обработке наружных цилиндрических поверхностей лезвийными инструментами.	2	4		7	13
		Способы и методы достижения показателей качества при обработке наружных цилиндрических поверхностей абразивными инструментами.	2	4		7	13
		Способы и методы достижения показателей качества для деталей на станках с вращательным движением подачи лезвийным и абразивным инструментами.	1	4		7	12
		Способы и методы достижения показателей качества для деталей на станках с возвратно-	1	4		7	12

Итого	30	42	81	1 153
методами				
обработке электрическими и нетрадиционными				
Способы достижения показателей качества при		4	8	18
поверхностей				
зацепления у зубчатых колес и шлицевых				
качества при обработке поверхностей				
Способы и методы достижения показателей	3	3	6	12
деформированием				
инструментами, пластическим				
резьбы лезвийными и абразивными				
качества при обработке наружной и внутренней	_	5		12
Способы и методы достижения показателей	3	3	6	12
деформированием поверхности				
качества при отделке поверхностей абразивными инструментами и пластическим				
Способы и методы достижения показателей		4	7	15
инструментами				
цилиндрических поверхностей абразивными				
качества при обработке внутренних				
Способы и методы достижения показателей	2	4	7	13
инструментами				
цилиндрических поверхностей лезвийными				
качества при обработке внутренних	_	•		10
Способы и методы достижения показателей	2	4	7	13
и абразивным инструментами.				
поступательным движением подачи лезвийным				

заочная форма обучения

No	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Bce
п/п	тинменовиние темы	Содержиние раздела	локц	зан.	зан.	CI C	го,
							час
1	Система обеспечения	Введение.		1		12	13
	и управления	Система качества как совокупность задач,					
	качеством	решаемых на разных этапах производства и					
		методы их реализации.					
		Возможности управления качеством					
2	Типы поверхностей	Классификация типовых поверхностей у		1		12	13
	деталей машин и	деталей машин. Инструменты и кинематика					
	требования,	рабочих движений в станках для обработки					
	предъявляемые к ним	типовых поверхностей. Требования к типовым					
		поверхностям при выборе метода обработки					
		элементарных поверхностей.	-				
3.	Способы и методы	Способы и методы достижения показателей	1	2		13	16
	достижения	качества при обработке наружных					
	показателей качества	цилиндрических поверхностей лезвийными					
		инструментами.	1	1		12	14
		Способы и методы достижения показателей качества при обработке наружных	1	1		12	14
		качества при обработке наружных цилиндрических поверхностей абразивными					
		инструментами.					
		Способы и методы достижения показателей	1	2.		12	15
		качества для деталей на станках с вращательным	1			12	13
		движением подачи лезвийным и абразивным					
		инструментами.					
		Способы и методы достижения показателей	1	1		12	14
		качества для деталей на станках с возвратно-					
		поступательным движением подачи лезвийным					
		и абразивным инструментами.					
		Способы и методы достижения показателей	1	2		12	15
		качества при обработке внутренних					
		цилиндрических поверхностей лезвийными					
		инструментами					
		Способы и методы достижения показателей	1	1		12	14
		качества при обработке внутренних					

цилиндрических поверхностей абразивными инструментами				
Способы и методы достижения показателей качества при отделке поверхностей абразивными инструментами и пластическим деформированием поверхности	0,5	1	13	14,5
Способы и методы достижения показателей качества при обработке наружной и внутренней резьбы лезвийными и абразивными инструментами, пластическим деформированием	0,5	1	12	13,5
Способы и методы достижения показателей качества при обработке поверхностей зацепления у зубчатых колес и шлицевых поверхностей	0,5	2	12	14,5
Способы достижения показателей качества при обработке электрическими и нетрадиционными методами	0,5	1	13	14,5
Итого	8	16	147	171

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Курсовые проекты (работы) не предусмотрены учебным планом

Примерная тематика контрольных работ для студентов заочной формы обучения

- 1. Система качества как совокупность задач, решаемых на разных этапах производства и методы их реализации
- 2. Возможность управления качеством и перспективы развития статистических методов управления согласно стандарту ГОСТ Р ИСО 9001-2001
- 3. Инструменты и кинематика рабочих движений в станках для обработки типовых поверхностей
- 4. Требования к типовым поверхностям при выборе метода обработки элементарных поверхностей
- 5. Обеспечение качества при обработке наружных цилиндрических поверхностей лезвийными инструментами
- 6. Обеспечение качества при обработке наружных цилиндрических поверхностей абразивными инструментами.
- 7. Обеспечение эксплуатационных свойств деталей машин физико-химическими методами обработки
- 8. Обеспечение эксплуатационных свойств деталей машин электроэрозионной обработкой
- 9. Обеспечение эксплуатационных свойств деталей машин электрохимической обработкой

- 10. Обеспечение эксплуатационных свойств деталей машин ультразвуковой обработкой
- 11. Обеспечение эксплуатационных свойств деталей машин комбинированной обработкой

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-4	компетенции Знать методы и возможности обеспечения качества при обработке типовых деталей в производственных условиях Уметь - формулировать исходные данные при разработке технологических процессов с обеспечением требуемого качества для типовых деталей действующего	Активная работа на практических занятиях Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах Выполнение работ в срок, предусмотренны й в рабочих программах	Невыполнение работ в срок, предусмотренны й в рабочих программах Невыполнени е работ в срок, предусмотренный в рабочих программах
	производства; - правильно пользоваться исходными данными на всех этапах разработки технологических процессов типовых деталей с учетом обеспечения требуемых технологических и эксплуатационных параметров Владеть - навыками	Решение прикладных задач в конкретной	Выполнение работ в срок,	Невыполнени е работ в срок,
	- навыками проектирования	предметной области	предусмотренны	предусмотренн

технологических	й в рабочих	ый в рабочих
процессов с заранее	программах	программах
заданными исходными		
данными для		
обеспечения качества		
обрабатываемых		
типовых деталей		

7.1.2 Этап промежуточного контроля знаний

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля освоения дисциплины и оценивание осуществляются до сессии 7 семестра и во время сессии 8 семестра для студентов очной формы обучения, в 5 семестре — для студентов заочной формы обучения.

Формой контроля промежуточной аттестации 7 семестра для очной формы обучения является зачет, по результатам которого выставляются оценки:

«зачтено» «не зачтено».

Компетен- ция	сформированность компетенции	Крите- рии оценив	Зачтено	Не зачтено
		ания	50	D
ПК-4	Знать	Тест	Выполнение теста на 60-	В тесте менее 60%
	методы и возможности обеспечения		100%	правильных ответов
	качества при обработке типовых деталей в			
	производственных условиях			
	Уметь	Тест	Выполнение теста на	В тесте менее 60%
	- формулировать исходные данные при		60-100%	правильных ответов
	разработке технологических процессов с			
	обеспечением требуемого качества для			
	типовых деталей действующего			
	производства;			
	- правильно пользоваться исходными			
	данными на всех этапах разработки			
	технологических процессов типовых			
	деталей с учетом обеспечения требуемых			
	технологических и эксплуатационных			
	параметров			
	Владеть	Тест	Выполнение теста на	В тесте менее 60%
	- навыками проектирования		60-100%	правильных ответов
	технологических процессов с заранее			
	заданными исходными данными для			
	обеспечения качества обрабатываемых			
	типовых деталей			

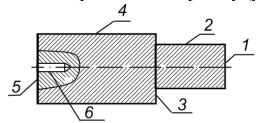
7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Как называется изделие, выполненное из однородного материала без применения сборочных операций?
 - сборочная единица;
 - деталь;
 - комплекс;
 - комплект.
- 2. Какой показатель качества машины характеризует степень удобства, комфортности при работе человека с машиной?
 - эргономический показатель;
 - показатель надежности;
 - в) показатель безопасности;
 - г) комфортность.
- 3. Укажите наиболее перспективное направление совершенствования металлорежущего оборудования:
 - повышение точности оборудования;
 - повышение уровня автоматизации;
 - повышение производительности;
 - повышение качества обработки.
 - 4. Система менеджмента качества создается для (укажите верное):
 - реализации политики предприятия в области качества;
- объединения целей в области качества структурных одразделений организации;
- реализации целей организации, обеспечивающих решение его стратегических задач в области качества.
 - 5. Обеспечивающие процессы производства это (укажите верное):
- процессы, обеспечивающие повышение качества производимой продукции;
 - информационное обеспечение;
- управление системой взаимосвязанных процессов, способствующих повышению эффективности предприятия.
- 6. Механическая обработка металла резанием является __??__ методом изготовления деталей наивысшей точности и самой низкой шероховатости (укажите верное).
 - основным и единственным;
 - не самым лучшим;
 - худшим;
 - нет правильного ответа.
- 7. Отодвинули ли новые электрофизические способы обработки (лазерные и др.) механическую обработку на второй план?
 - да;
 - нет;
 - не все способы;
 - нет правильного ответа.
 - 8. Из следующих утверждений выберите неверное:
 - шлифование является трудоемким процессом;

- шлифование чистовой, отделочный метод обработки заготовок;
- шлифование единственный метод обработки закаленных деталей;
- шлифованием нельзя достичь среднего уровня точности.
- 9. Из следующих утверждений выберите неверное:
- шлифовальные станки обеспечивают наивысшую точность обработки;
- шлифовальные станки более дорогие, чем другие;
- шлифовальные станки самые высокопроизводительные;
- на шлифовальных станках можно обрабатывать закалённые детали.
- 10. Какой из методов поверхностного пластического деформирования относится к способам выглаживания?
 - дорнование;
 - обкатывание;
 - раскатывание;
 - полирование.

7.2.2 Примерный перечень заданий для решения стандартных задач


- 1. Стандарт ИСО 9004-2000 предназначен для (укажите верное):
- улучшения качества;
- управления качеством;
- контроля качества.
- 2. При обеспечении качества технические поверхности должны (укажите верное):
 - надежно передавать нагрузки;
 - обеспечивать герметичность соединений;
- обладать устойчивостью к воздействию внешней среды (коррозия, адгезия);
 - иметь привлекательный внешний вид.
- 3. Точность деталей по геометрическим параметрам это совокупное понятие, подразделяющееся по следующим признакам (укажите верное):
 - точность размеров элементов;
- точность формы поверхностей элементов (макрогеометрии поверхностей);
- точность по шероховатости поверхности (микрогеометрии);-точность взаимного расположения элементов;
 - экономическая точность.
- 4. Как называется совокупность микронеровностей с относительно малыми шагами, образующих микроскопический рельеф поверхности детали?
 - неровность;
 - шероховатость;
 - чистота поверхности;
 - волнистостость.
 - 5. Шероховатость это (укажите верное):

- отношение радиальной составляющей силы резания к смещению лезвия инструмента;
 - совокупность неровностей, образующих микрорельеф поверхностей;
- величина, обратная отношению радиальной составляющей силы резания к смещению лезвия инструмента;
- периодически повторяющиеся возвышения с шагом, превышающим длину участка измерения;
- совокупность допусков, соответствующих одинаковой степени точности для всех номинальных размеров.
- 6. Во всех развитых странах разрабатываются методы отделочной обработки поверхностей. Основные усилия разработчиков отделочных технологий сводятся (укажите верное):
 - к автоматизации и повышению производительности процесса;
- к уменьшению шероховатости поверхности до величины микронеровностей в десятые и сотые доли микрона;
 - к повышению точности обработки.
- 7. Какими инструментами выполняется контроль биения поверхности валов относительно оси:
 - предельными скобами, микрометрами, штангенциркулями;
 - предельными шаблонами, линейными скобами;
 - приборами индикаторного типа;
 - проходными комплексными шлицевыми кольцами;
 - предельными проходными и непроходными резьбовыми кольцами.
 - 8. Что лежит в основе электроэрозионной обработки (укажите верное)?
 - дуговой разряд;
 - искровой разряд;
 - химическое травление;
 - механическое разрушение.
 - 9. Что лежит в основе электрохимической обработки (укажите верное)?
 - химическое травление;
 - искровой разряд;
 - анодное растворение;
 - электродный потенциал
- 10. Что является недостатком способа электрохимической обработки (укажите верное)?
 - низкая шероховатость обработанной поверхности;
 - высокая энергоёмкость процесса;
 - отсутствие механического воздействия на поверхность;
 - низкая размерная точность обработки.

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Совокупность свойств, удовлетворяющих пригодность изделий в соответствии с назначением, — это (укажите верное):

- качество;
- надежность;
- точность;
- сборочная единица.
- 2. При уменьшении подачи в процессе обтачивания данной поверхности параметр шероховатости R_a (укажите верное):
 - увеличится;
 - останется без изменения;
 - уменьшится;
 - будет минимальной.
- 3. Из какого числа операций, установов и переходов состоит обработка детали, если известно, что при первом закреплении обрабатываются поверхности 1; 2; 3 на токарном станке, затем заготовку переворачивают, обтачивают 4; 5, сверлят отв. 6 и нарезают в нем резьбу (укажите верное)?

из одной операции, 2-х установов и 7 переходов

- из 2-х операций, 1 установа, 7 переходов
- из 2-х операций, 2-х установов, 6 переходов
- из 2-х операций, 2-х установов, 7 переходов
- 4. Указать правильное обозначение шероховатости поверхностей, полученных методом полирования и произвольной схемой направления неровностей на базовой длине 0,08 (чертеж выдает преподаватель)
 - 5. Шероховатость поверхности это (укажите верное):
- совокупность неровностей поверхности с относительно малыми шагами;
 - совокупность периодически чередующихся возвышений и впадин;
 - отклонения, характеризующие овальность и конусность;
 - совокупность отклонений формы и размеров поверхностей.
- 6. Параметры, наиболее точно определяющие шероховатость поверхностей это (укажите верное):
 - R_z , R_{max} ;
 - R_a ;
 - R_a , R_{max} , S_{m} .
- 7. Что определяет требования к шероховатости поверхности (укажите верное)?
 - функциональное назначение, условия работы;
 - прочность соединений;
 - механические свойства;
 - технологические свойства.

- 8. При обработке отверстий заготовок одной и той же разверткой в номинально одинаковых условиях, размеры отверстий будут неодинаковы в результате действия ряда факторов (различия в твердости и т.п.). Какие погрешности в результате возникают?
 - систематические;
 - случайные;
 - переменные систематические;
 - постоянные систематические.
- 9. Физико-механические свойства поверхностного слоя характеризуются (укажите верное):
 - -точностью;
 - твердостью;
 - прочностью;
 - структурой;
- величиной, знаком и глубиной распространения остаточных напряжений;
 - глубиной деформации слоя;
 - наличием или отсутствием внешних дефектов.
- 10. Какие из параметров режимов резания оказывают наиболее существенное влияние на величину шероховатости (укажите верное)?
 - глубина резания;
 - подача;
 - скорость резания.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Задачи, решаемые при создании системы качества на предприятиях.
- 2. Возможности управления качеством продукции.
- 3. Перспективы развития статистических методов управления согласно стандартам ИСО.
 - 4. Классификация типовых поверхностей деталей машин.
- 5. Требования к типовым поверхностям при выборе метода обработки элементарных поверхностей.
- 6. Достижение показателей качества при обработке наружных цилиндрических поверхностей лезвийными инструментами.
- 7. Достижение показателей качества при обработке наружных цилиндрических поверхностей абразивными инструментами.
- 8. Достижение показателей качества при обработке на станках с вращательным движением подачи лезвийными инструментами.
- 9. Достижение показателей качества при обработке на станках с вращательным движением подачи абразивными инструментами.
- 10. Достижение показателей качества при обработке на станках с возвратно-поступательным движением подачи абразивными инструментами.
- 11. Достижение показателей качества при обработке на станках с возвратно-поступательным движением подачи лезвийными инструментами.

- 12. Достижение показателей качества при обработке внутренних цилиндрических поверхностей лезвийными инструментами.
- 13. Достижение показателей качества при обработке внутренних цилиндрических поверхностей абразивными инструментами.
- 14. Достижение показателей качества при отделке поверхностей абразивными инструментами.
- 15. Достижение показателей качества при отделке поверхностей пластическим деформированием.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Достижение показателей качества при обработке наружной и внутренней резьбы лезвийными инструментами.
- 2. Достижение показателей качества при обработке наружной и внутренней резьбы абразивными инструментами
- 3. Достижение показателей качества при обработке наружной и внутренней резьбы пластическим деформированием
- 4. Достижение показателей качества при обработке поверхностей наружного зацепления у зубчатых колес.
- 5. Достижение показателей качества при обработке поверхностей внутреннего зацепления у зубчатых колес и шлицевых поверхностей.
- 6. Достижение показателей качества при обработке наружных шлицевых поверхностей.
- 7. Достижение показателей качества при обработке внутренних шлицевых поверхностей.
- 8. Достижение показателей качества при обработке поверхностей электроискровым методом.
- 9. Достижение показателей качества при обработке поверхностей электроимпульсным методом.
- 10. Достижение показателей качества при обработке поверхностей электрохимическим методом.
- 11. Достижение показателей качества при обработке поверхностей ультразвуковым методом.
- 12. Достижение показателей качества при обработке поверхностей электроннолучевым методом.
- 13. Достижение показателей качества при обработке поверхностей ионным лучом.
- 14. Достижение показателей качества при обработке поверхностей светолучевым методом.
- 15. Достижение показателей качества при обработке поверхностей магнито-импульсным методом.
- 16. Достижение показателей качества при обработке поверхностей эрозионнохимическим методом.
- 17. Достижение показателей качества при обработке поверхностей электроабразивным методом.

- 18. Достижение показателей качества при обработке поверхностей электрохимикомеханическим методом.
- 19. Достижение показателей качества при обработке поверхностей контактномеханическим методом.
- 20. Достижение показателей качества при упрочняющей обработке поверхностей вибрационными методами.
- 21. Достижение показателей качества при обработке поверхностей нетрадиционными методами без наложения электрического тока.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится в соответствии с календарным графиком; учебным планом при промежуточной аттестации предусмотрена форма контроля – зачет.

К промежуточной аттестации в виде зачета допускаются обучающиеся, получившие оценку по текущей аттестации.

Зачет проводится путем организации тестирования в письменной форме, на ПК или через ЭИОС. В каждом варианте представляется 10 вопросов из фонда оценочных материалов. На решение теста выделяется от 7 до 10 минут (в зависимости от формата проведения). По результатам выставляются оценки:

«Зачтено», если получены правильные ответы на 6 и более баллов;

«Не зачтено», если получены неправильные ответы или правильные ответы менее чем на 6 баллов.

К промежуточной аттестации в виде экзамена допускаются обучающиеся, получившие положительную оценку по текущей аттестации.

Экзамен проводится путем организации тестирования в письменной форме, на ПК или через ЭИОС. В каждом варианте представляется 20 вопросов из фонда оценочных материалов. На решение теста выделяется от 15 до 20 минут (в зависимости от формата проведения). По результатам выставляются оценки:

«Отлично», если получены правильные ответы на 9,5 и более баллов;

«Хорошо», если получены правильные ответы на 8 и более баллов;

«Удовлетворительно», если получены правильные ответы на 6 и более баллов;

«Неудовлетворительно», если получены неправильные ответы или правильные ответы менее чем на 6 баллов.

7.2.7 Паспорт оценочных материалов

No	Контролируемые	Код контролируемой	Наименование	
π/π	разделы (темы)	компетенции (или ее	оценочного	
11/11	дисциплины	части)	средства	
1	Система обеспечения и	ПК-4	Тест, устный опрос,	
1	управления качеством	1117-4	зачет	
	Типы поверхностей деталей		Тест, устный опрос,	
2	машин и требования,	ПК-4		
	предъявляемые к ним		зачет	
	Способы и методы		Таат матум й онго	
3	достижения показателей	ПК-4	Тест, устный опрос,	
	качества		зачет, экзамен	

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Проверка знаний на практических занятиях, которая проводится в форме фронтального устного опроса, фиксируется преподавателем и доводится до сведения каждого обучающегося.

Тестирование осуществляется на бумажном носителе, на ПК или в ЭИОС с использованием тестовых заданий. Время тестирования от 45 до 60 секунд на вопрос (в зависимости от формата проведения). Оценка выставляется автоматически по методическим материалам выставления

Экзамен проводится путем организации устного и письменного опроса обучающегося. В экзаменационное задание включен вопрос и тестовое задание. Время подготовки к сдаче экзамена длится 60 минут. Экзаменатором осуществляется проверка подготовленных ответов выполнение И поставленных заданием задач, затем выставляется оценка согласно методическим материалам, определяющим процедуру оценивания освоения дисциплины при проведении промежуточной аттестации в форме экзамена.

8. УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 2. Средства технологического оснащения и оборудование для электрических методов обработки: учеб.: пособие. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2017. 215 с.
- 3. Григорьев С.И. Технология обработки концентрированными потоками энергии. Старый Оскол: ТНТ, 2015. 218 с.

- 4. Справочник технолога /под общ. ред. А.Г. Суслова. М.: Инновационное машиностроение, 2019. 799 с.
- 5. Справочник технолога-машиностроителя: в 2-х томах. Т. 1 / под ред. А.С. Васильева, А.А. Кутина. М.: Инновационное машиностроение, 2018. 755 с.
- 6. Справочник технолога-машиностроителя: в 2-х томах. Т. 2 / под ред. А.С. Васильева, А.А. Кутина. М.: Инновационное машиностроение, 2018.-817 с.
- 7. Технология машиностроения: обзорно-аналит., научно-технич. журн. / Изд. Центр «Технология машиностроения». М.: Изд. Центр «Технология машиностроения». 2007 . Двухмес.
- 8. Резание материалов. Станки и инструменты: рефератив. журн. / ВИНИТИ. М.: ВИНИТИ. 1991 . Ежемес.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем
 - 1. Текстовый редактор Microsoft Word или аналог.
 - 2. Табличный редактор Microsoft Excel или аналог.
 - 3. Редактор презентаций Microsoft Power Point или аналог.
 - 4. Графический редактор.
 - 5. https://education.cchgeu.ru

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная проекционной аппаратурой и оборудованием для лекционных демонстраций. Кабинеты, оборудованные проекторами и/или интерактивными досками, компьютерной техникой и оснащенные справочными и демонстрационными материалами (плакатами, контрольными инструментами, натурными типовыми деталями машин).

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Обеспечение качества типовых деталей» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков выбора финишных операций технологических процессов по

обеспечению высоких эксплуатационных показателей изделий, определения требуемых режимных параметров технологических операций лезвийной и абразивной обработки и пластического деформирования; применения упрочняющих технологий при производстве изделий с высокими эксплуатационными показателями и др. Занятия проводятся путем решения конкретных задач в аудитории.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Информацию о планируемой самостоятельной работе над тем или иным материалом студенты получают на занятиях.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: - кратко, схематично, последовательно фиксировать основные положения, формулировки, обобщения, графики и схемы, выводы; - выделять важные мысли, ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на лабораторной работе
Практические занятия	Перед каждой работой студент должен ознакомиться с методическими указаниями, уяснить цели задания, подготовиться и познакомиться с нормативной, справочной и учебной литературой и обратить внимание на рекомендации преподавателя: какие основные информационные данные извлечь из этих источников. До начала практических занятий студенты должны: изучить теоретический материал и рекомендованную литературу к данному занятию; изучить основные формулы и методики и уметь их применить при решении конкретных задач. Для этого целесообразно познакомится с объяснениями, данными преподавателем к основным типовым и нестандартным задачам, обратить внимание на наиболее частые заблуждения, ответить на проблемные вопросы, на которые студент должен самостоятельно найти ответы
Подготовка к текущей и промежуточной аттестации по дисциплине	При подготовке к текущей и промежуточной аттестации по дисциплине необходимо ориентироваться на конспекты лекций, основную и рекомендуемую литературу. Работа студента при подготовке к текущей и промежуточной аттестации должна включать: изучение учебных вопросов; распределение времени на подготовку; консультирование у преподавателя по трудно усвояемым вопросам; рассмотрение наиболее сложных из них в дополнительной литературе, или других информационных источниках, предложенных преподавателем