МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета радиотехники

и электроники

/ В.А. Небольсин /

31 августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Квантовая механика и статистическая физика в микроэлектронике»

Направление подготовки 11.03.04 Электроника и наноэлектроника

Профиль Микроэлектроника и твердотельная электроника

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 4 года и 11 мес.

Форма обучения очная / заочная

Год начала подготовки 2021

Автор программы

И.о. заведующего кафедрой полупроводниковой электроники и наноэлектроники

Руководитель ОПОП

Е.Ю. Плотникова

А.В. Строгонов

А.В. Арсентьев

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины: формирование у студентов современного представления о строении материи на микро- и наноуровне, о квантовомеханических законах, лежащих в основе современной физики, о методах описания квантовых систем.

1.2. Задачи освоения дисциплины:

- сформировать теоретическую базу квантовомеханических процессов в физических системах;
- обосновать связанность классического и квантового методов описания физических процессов;
- дать практические навыки анализа квантовых моделей и систем в области микро- и наноэлектронных приборов и структур.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина Б1.В.19 «Квантовая механика и статистическая физика в микроэлектронике» относится к дисциплинам части блока Б1 учебного плана, формируемой участниками образовательных отношений.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Квантовая механика и статистическая физика в микроэлектронике» направлен на формирование следующих компетенций:

ПК-1: способность строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования;

ПК-7: способность идентифицировать новые области исследований, новые проблемы в сфере физики, проектирования, технологии изготовления и применения микроэлектронных приборов и устройств.

Компе-	Результаты обучения, характеризующие					
тенция	сформированность компетенции					
ПК-1	знать основные определения, понятия и законы квантовой механи-					
	ки и статистической физики;					
	уметь интерпретировать наблюдаемые природные явления и тех-					
	нологические процессы согласно актуальным физическим теориям;					
	владеть навыками применения законов квантовой механики.					
ПК-7	знать методы использования физических законов и уравнений					
	квантовой механики для решения практических задач;					
	уметь планировать физический эксперимент, проводить измерения					

физических величин, анализировать экспериментальные данные; владеть методиками обработки экспериментальных данных согласно представлениям классической и квантовой физики.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Квантовая механика и статистическая физика в микроэлектронике» составляет 3 зачетные единицы.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы		Всего	Семестры
		часов	3
Аудиторные занятия (всего)		50	50
В том числе:			
Лекции		34	34
Практические занятия (ПЗ)		16	16
Самостоятельная работа		58	58
Вид промежуточной аттестации - за	чет	+	+
Общая трудоемкость	час	108	108
	зач. ед.	3	3

Заочная форма обучения

Suo mun Gopmu Goy Tenna					
Вид учебной работы		Всего	Семестры		
		часов	3		
Аудиторные занятия (всего)		8	8		
В том числе:					
Лекции		4	4		
Практические занятия (ПЗ)		4	4		
Самостоятельная работа		96	96		
Часы на контроль		4	4		
Вид промежуточной аттестации - за	чет	+	+		
Общая трудоемкость	час	108	108		
	зач. ед.	3	3		

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	o man wopina ooy tenna								
№	Наименование	Содержание раздела		Прак	CPC	Всего,			
Π/Π	темы			зан.		час			
1	История кван-	Понятие постоянной Планка. Квант света. Последовательная теория микро-	2	2	3	7			
	товой механи-	частиц. Принцип и уравнение Паули. Нейтрон. Фундаментальное строение		2	, ,	,			

	ки и статисти- ческой физики	вещества.				
2	Фундаментальное строение вещества	Атомное ядро и элементарные частицы. Фермионы. Бозоны. Кварки. Лептоны. Нейтрино. Понятие электрон-вольт. Иерархическая структура устойчивого вещества. Фундаментальные взаимодействия: гравитационное, электромагнитное, слабое и сильное. Адроны.		-	3	5
3	Классическая и квантовая фи- зика	Корпускулярно-волновой дуализм. Специальная теория относительности.	2	2	3	7
4	Тепловое излучение	Абсолютно черное тело. Тепловое излучение. Равновесное излучение. Характеристики теплового излучения: спектральная испускательная способность, интегральная испускательная способность, спектральная поглощательная способность. Серое тело.	2	ı	3	5
5	Классическая теория тепло- вого излучения	Закон Кирхгофа. Закон Стефана-Больцмана. Эффективная поглощательная способность. Закон смещения Вина. Формула Релея-Джинса. Ультрафиолетовая катастрофа.	2	2	3	7
6	Гипотеза о квантах	Функция Планка. Максимум испускательной способности АЧТ. Тепловое излучение Вселенной.	2	1	3	5
7	Фотоэффект	Внешний и внутренний фотоэффект. Красная граница фотоэффекта. Эффект Комптона. Обратный эффект Комптона. Корпускулярно-волновой дуализм.		2	3	7
8	Волновая функция	Амплитуда вероятности. Волновая функция. Дифракция электронов. Опыты с нейтронами и пучками частиц. Эффект Рамзауэра.		1	3	5
9	Квантовая ме- ханика	Волновые пакеты. Соотношение неопределенностей. Скорость волновых пакетов. Расплывание волнового пакета.	2	2	3	7
10	Уравнение Шредингера	Частица в потенциальной яме. Граничные условия. Потенциальная яма конечной глубины. Потенциальный барьер. Туннельный эффект.	2	1	3	5
11	Гармонический осциллятор		2	2	4	8
12	Оптика и квантовые свойства света	Квантовая электродинамика. Законы геометрической оптики. Закон отражения света. Прямолинейность распространения света. Фокусировка света. Преломление света. Регистрация фотонов. Дифракция света.	2	-	4	6
13	Квантовая фи- зика атома	Приближенная теория атома водорода. Уравнение Шредингера в трех измерениях. Строгая теория атома водорода. Орбитальный момент импульса.	2	2	4	8
14	Испускание фотонов	Спонтанное излучение. Спектр атома водорода. Поглощение. Оптическая накачка. Вынужденной излучение. Лазер.	2	1	4	6
15	Модель атома Бора	Водородоподобный атом. Уравнение движения электрона в центрально-симметричном поле ядра. Стабильность орбит.	2	2	4	8
16	Атомная физи- ка	Принцип запрета Паули. Многоэлектронные атомы. Периодическая система элементов. Рентгеновское излучение.	2	-	4	6
17	Связи в моле- кулах	Ионная связь. Ковалентная связь. Гибридизация. Электронная плотность.	2	-	4	6
	- 1	Итого	34	16	58	108

заочная форма обучения

No	Наименование	Содержание раздела	Лекц	Прак	CPC	Всего,
п/п	темы	• •		зан.		час
1	История кван- товой механи- ки и статисти- ческой физики	Понятие постоянной Планка. Квант света. Последовательная теория микрочастиц. Принцип и уравнение Паули. Нейтрон. Фундаментальное строение вещества.	2	2	5	9
2	Фундамен- тальное строе- ние вещества	Атомное ядро и элементарные частицы. Фермионы. Бозоны. Кварки. Лептоны. Нейтрино. Понятие электрон-вольт. Иерархическая структура устойчивого вещества. Фундаментальные взаимодействия: гравитационное, электромагнитное, слабое и сильное. Адроны.	2	2	5	9
3	Классическая и квантовая фи- зика	Корпускулярно-волновой дуализм. Специальная теория относительности.	ı	ı	5	5
4	Тепловое излучение	Абсолютно черное тело. Тепловое излучение. Равновесное излучение. Характеристики теплового излучения: спектральная испускательная способность, интегральная испускательная способность, спектральная поглощательная способность. Серое тело.	ı	ı	5	5
5	Классическая теория тепло- вого излучения	Закон Кирхгофа. Закон Стефана-Больцмана. Эффективная поглощательная способность. Закон смещения Вина. Формула Релея-Джинса. Ультрафиолетовая катастрофа.	ı	ı	5	5
6	Гипотеза о квантах	Функция Планка. Максимум испускательной способности АЧТ. Тепловое излучение Вселенной.	-	-	5	5
7	Фотоэффект	Внешний и внутренний фотоэффект. Красная граница фотоэффекта. Эффект	-	-	6	6

		Итого				108
		Контроль				4
		Всего	4	4	96	104
17	Связи в моле- кулах	Ионная связь. Ковалентная связь. Гибридизация. Электронная плотность.	ı	_	6	6
17	Срази в може	элементов. Рентгеновское излучение.				,
16	Атомная физи-	Принцип запрета Паули. Многоэлектронные атомы. Периодическая система	_	_	6	6
15	Модель атома Бора	Водородоподобный атом. Уравнение движения электрона в центральносимметричном поле ядра. Стабильность орбит.	-	-	6	6
14	Испускание фотонов	Спонтанное излучение. Спектр атома водорода. Поглощение. Оптическая накачка. Вынужденной излучение. Лазер.	-	-	6	6
13	Квантовая фи- зика атома	Приближенная теория атома водорода. Уравнение Шредингера в трех измерениях. Строгая теория атома водорода. Орбитальный момент импульса.	1	-	6	6
12	Оптика и квантовые свойства света	Квантовая электродинамика. Законы геометрической оптики. Закон отражения света. Прямолинейность распространения света. Фокусировка света. Преломление света. Регистрация фотонов. Дифракция света.	1	-	6	6
11	Гармонический осциллятор	Квантовая задача движущейся частицы. Приближенный расчёт закона сохранения энергии.	ı	-	6	6
10	Уравнение Шредингера	Частица в потенциальной яме. Граничные условия. Потенциальная яма конечной глубины. Потенциальный барьер. Туннельный эффект.	-	-	6	6
9	Квантовая ме- ханика	Волновые пакеты. Соотношение неопределенностей. Скорость волновых пакетов. Расплывание волнового пакета.	-	-	6	6
8	Волновая функция	Амплитуда вероятности. Волновая функция. Дифракция электронов. Опыты с нейтронами и пучками частиц. Эффект Рамзауэра.	ı	-	6	6
		Комптона. Обратный эффект Комптона. Корпускулярно-волновой дуализм.				

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины «Квантовая механика и статистическая физика в микроэлектронике» не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

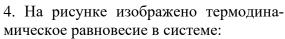
Компе- тенция	, , , , , , , , , , , , , , , , , , , ,	Критерии оценивания	Аттестован	Не аттестован
ПК-1	знать основные определения, понятия и	Знание лекцион-	Выполнение работ	Невыполнение ра-
	законы квантовой механики и статистиче-	ного материала,	в срок, преду-	бот в срок, преду-
	ской физики;	решение задач	смотренный в ра-	смотренный в ра-

		по вариантам	бочих программах	бочих программах
	уметь интерпретировать наблюдаемые	Знание лекцион-	Выполнение работ	Невыполнение ра-
	природные явления и технологические про-	ного материала,	в срок, преду-	бот в срок, преду-
	цессы согласно актуальным физическим	решение задач	смотренный в ра-	смотренный в рабо-
	теориям;	по вариантам	бочих программах	чих программах
	владеть навыками применения законов	Знание лекцион-	Выполнение работ	Невыполнение ра-
	квантовой механики.	ного материала,	в срок, преду-	бот в срок, преду-
		решение задач	смотренный в ра-	смотренный в ра-
		по вариантам	бочих программах	бочих программах
ПК-7	знать методы использования физических	Знание лекцион-	Выполнение работ	Невыполнение ра-
	законов и уравнений квантовой механики	ного материала,	в срок, преду-	бот в срок, преду-
	для решения практических задач;	решение задач	смотренный в ра-	смотренный в ра-
		по вариантам	бочих программах	бочих программах
	уметь планировать физический экспери-	Знание лекцион-	Выполнение работ	Невыполнение ра-
	мент, проводить измерения физических	ного материала,	в срок, преду-	бот в срок, преду-
	величин, анализировать экспериментальные	решение задач	смотренный в ра-	смотренный в ра-
	данные;	по вариантам	бочих программах	бочих программах
	владеть методиками обработки экспери-	Знание лекцион-	Выполнение работ	Невыполнение ра-
	ментальных данных согласно представле-	ного материала,	в срок, преду-	бот в срок, преду-
	ниям классической и квантовой физики.	решение задач	смотренный в ра-	смотренный в ра-
		по вариантам	бочих программах	бочих программах

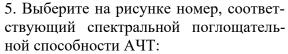
7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения, в 3 семестре для заочной формы обучения по двухбалльной системе:

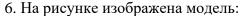
«зачтено» «не зачтено»


Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не за- чтено
ПК-1	знать основные определения, понятия и законы квантовой механики и статистической физики;	Тест	Выполнение теста на 70 – 100 %	Выполнение менее 70 %
	уметь интерпретировать наблюдаемые при- родные явления и технологические процессы согласно актуальным физическим теориям;	-	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	владеть навыками применения законов квантовой механики.	· · ·	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ПК-7	знать методы использования физических законов и уравнений квантовой механики для решения практических задач;	Тест	Выполнение теста на 70 – 100 %	Выполнение менее 70 %
	уметь планировать физический эксперимент, проводить измерения физических величин, анализировать экспериментальные данные;		Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	владеть методиками обработки экспериментальных данных согласно представлениям классической и квантовой физики.	Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

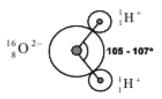

7.2.1 Примерный перечень заданий для подготовки к тестированию

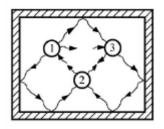
1. «На данной орбитали может находиться не более двух электронов» - это формулировка:

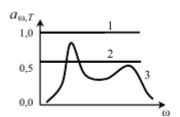

- а) принципа запрета Паули;
- б) закона действующих масс;
- в) специальной теории относительности;
- г) уравнения Максвелла.
- 2. На рисунке изображено:
- а) кварк;
- б) ядро гелия;
- в) нуклон;
- г) гетероструктура.
- 3. На рисунке изображено:
- а) ядро урана;
- б) молекула кварца;
- в) молекула воды;
- г) вектора распределения потенциальной энергии в ядре.

- а) излучающие тела и излучение в плоскости;
- б) атомы в кристалле;
- в) атомы в стекле;
- г) атомы в АЧТ.

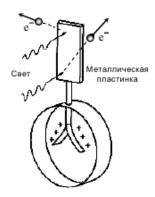
- 1;
- 2;
- 3.

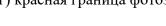


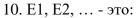

- а) газового конденсатора;
- б) АЧТ;
- в) кольцевого испарителя;
- г) закона Кирхгофа для нетермодинами-ической системы.



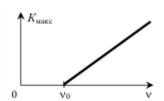
- ... это:
- а) прецизионные весы;
- б) нейтральный электроскоп;
- в) магнитометр;
- г) лампа накаливания.

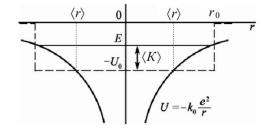


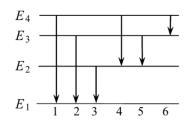




- 8. На графике изображено:
- а) распределение по закону Кирхгофа;
- б) уравнение Шредингера;
- в) распределение Комптоновского излучения;
- г) красная граница фотоэффекта.




9. ... это:


- а) график отображения квантовой границы фотоэффекта;
- б) уравнение Шредингера для двухмерной координатной системы;
- в) потенциальна яма для электрона в атоме водорода;
- г) зонная диаграмма гетероструктуры металл-полупроводник.

- а) обозначения номеров электронов на орбиталях;
- б) переходы фотонов между зонами;
- в) лептоны;
- г) энергетические уровни.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Расчет температуры поверхности излучающего тела
- 2. Расчет полной мощности (энергетической светимости) излучения с поверхности излучающего тела
- 3. Определение максимальной длины волны света, выбивающего из металла электрон с заданной энергией
- 4. Расчет длины волны фотона с заданной энергией
- 5. Разработка *описания* структуры квантового конденсатора, приведенного в коде по варианту.
- 6. Разработка *описания* структуры квантовой точки/шнура/плоскости, приведенных в коде по варианту.
- 7. Разработка *описания* структуры квантового транзистора, приведенного в коде по варианту.
- 8. Разработка описания структуры квантового диода, приведенного в коде по варианту.
- 9. Разработка *описания* структуры двухзатворного транзистора с квантовой областью, приведенного в коде по варианту.
- 10. Разработка *описания* структуры FET с круговым затвором, приведенного в коде по варианту.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Определение минимального радиуса орбиты электрона в атоме водорода
- 2. Оценка скорости расплывания волнового пакета в случае свободной частицы
- 3. Оценка возможных энергий электрона в «ящике» размером с атом (1 A)
- 4. Оценка длины волны фотона

- 5. Определение по коду, какой параметр отвечает за квантовые эффекты при моделировании структуры и его описание.
- 6. Вывод формулы Релея-Джинса
- 7. Вывод формулы Кирхгофа
- 8. Вывод временного уравнения Шредингера
- 9. Вывод уравнения Шредингера для трехмерной системы
- 10. Разработка пошагового построения и моделирования квантового прибора. Настройка отображения структуры в программе.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1 Корпускулярные свойства света и волновые свойства вещества
- 2 Классическая и квантовая физика
- 3 Корпускулярнооволновой дуализм света
- 4 Тепловое излучение
- 5 Классическая теория теплового излучения.
- 6 Ультрафиолетовая катастрофа
- 7 Гипотеза о квантах.
- 8 Формула Планка
- 9 Тепловое излучение Вселенной
- 10 Фотоэффект
- 11 Эффект Комптона
- 12 Корпускулярно-волновой дуализм
- 13 Волновая функция
- 14 Дифракция электронов
- 15 Опыты с нейтронами и пучками частиц
- 16 Квантовая механика
- 17 Волновые пакеты
- 18 Соотношение неопределенностей
- 19 Скорость волновых пакетов
- 20 Расплывание волнового пакета
- 21 Частица в ящике
- 22 Уравнение Шрёдингера
- 23 Граничные условия
- 24 Потенциальная яма конечной глубины
- 25 Потенциальный барьер (туннельный эффект)
- 26 Гармонический осциллятор
- 27 Оптика и квантовые свойства света
- 28 Законы геометрической оптики
- 29 Регистрация фотонов (эффект Ханбэри-Брауна-Твисса)
- 30 Дифракция света
- 31 Квантовая физика атома
- 32 Приближённая теория атома водорода
- 33 Уравнение Шрёдингера в трёх измерениях
- 34 Строгая теория атома водорода
- 35 Орбитальный момент импульса
- 36 Проекция момента количества движения
- 37 Квадрат момента количества движения
- 38 Нормировка волновых функций
- 39 Среднее значение
- 40 Испускание фотонов
- 41 Спонтанное излучение

- 42 Спектр атома водорода
- 43 Поглощение
- 44 Вынужденное излучение
- 45 Лазер
- 46 Модель атома Бора
- 47 Стабильность орбит
- 48 Атомная физика
- 49 Принцип запрета Паули
- 50 Многоэлектронные атомы
- 51 Периодическая система элементов
- 52 Рентгеновское излучение
- 53 Связь в молекулах
- 54 Гибридизация

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Не предусмотрено учебным планом.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по вопросам (5 шт.) или тестовым заданиям. Каждый правильный ответ на вопрос оценивается 1 баллом. Максимальное количество набранных баллов -5.

- 1. Оценка «Не зачтено» ставится в случае, если студент набрал менее 3 баллов.
- 2. Оценка «Зачтено» ставится в случае, если студент набрал 3 балла и выше.

В случае аттестации с использованием тестовых материалов оценка «Зачтено» ставится, если студент по итогам тестирования набрал более 75 % правильных ответов.

При получении оценки «Зачтено» требуемые в рабочей программе знания, умения, владения по соответствующим компетенциям на промежуточном этапе считаются достигнутыми.

7.2.7 Паспорт оценочных материалов

№	Контролируемые разделы	Код контроли-	Наименование
Π/	(темы) дисциплины	руемой компе-	оценочного средства
П		тенции	
1	История квантовой механики и ста- тистической физики	ПК-1, ПК-7	Тест, устный опрос, зачет
2	Фундаментальное строение вещества	ПК-1, ПК-7	Тест, устный опрос, зачет
3	Классическая и квантовая физика	ПК-1, ПК-7	Тест, устный опрос, зачет
4	Тепловое излучение	ПК-1, ПК-7	Тест, устный опрос, зачет
5	Классическая теория теплового излучения	ПК-1, ПК-7	Тест, устный опрос, зачет
6	Гипотеза о квантах	ПК-1, ПК-7	Тест, устный опрос, зачет
7	Фотоэффект	ПК-1, ПК-7	Тест, устный опрос, зачет
8	Волновая функция	ПК-1, ПК-7	Тест, устный опрос, зачет

9	Квантовая механика	ПК-1, ПК-7	Тест, устный опрос, зачет
10	Уравнение Шредингера	ПК-1, ПК-7	Тест, устный опрос, зачет
11	Гармонический осциллятор	ПК-1, ПК-7	Тест, устный опрос, зачет
12	Оптика и квантовые свойства света	ПК-1, ПК-7	Тест, устный опрос, зачет
13	Квантовая физика атома	ПК-1, ПК-7	Тест, устный опрос, зачет
14	Испускание фотонов	ПК-1, ПК-7	Тест, устный опрос, зачет
15	Модель атома Бора	ПК-1, ПК-7	Тест, устный опрос, зачет
16	Атомная физика	ПК-1, ПК-7	Тест, устный опрос, зачет
17	Связи в молекулах	ПК-1, ПК-7	Тест, устный опрос, зачет

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста преподавателем и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач преподавателем и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач преподавателем и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Основная литература

- 1. **Ландау Л.Д.** Теоретическая физика: В 10 т.: учеб. пособие. Т. V; Ч. 1. Статистическая физика / Л.Д. Ландау, Е.М. Лифшиц; под ред. Л.П. Питаевского. 5-е изд., стереотип. М.: Физматлит, 2002. 616 с. ISBN 5-9221-0053-X. ISBN 5-9221-0054-8
- 2. **Ландау Л.Д.** Теоретическая физика: В 10 т.: учеб. пособие. Т. IX. Ч. 2. Статистическая физика. Теория конденсированного состояния / Л.Д. Ландау, Е.М. Лифшиц; под ред. Л.П. Питаевского. 4-е изд., испр. М. : Физматлит, 2002. 496 с. ISBN 5-9221-0053-X. ISBN 5-9221-0296-6
- 3. **Иродов И.Е.** Квантовая физика: Основные законы: учеб. пособие / И.Е. Иродов. М.: Лаборатория Базовых Знаний, 2001. 272 с. ISBN 5-93208-055-8
- 4. **Москаленко А.Г.** Общий курс физики. Квантовая физика. Квантовая механика. Основы квантовой статистики и физики твердого тела: учеб. пособие. 3-е изд., перераб. и доп. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2008. 207 с.

- 5. **Основы квантовой статистики и физики твердого тела** [Электронный ресурс]: учеб. пособие / А.Г. Москаленко, М.Н. Гаршина, Е.П. Татьянина; ФГБОУ ВО «Воронеж. гос. техн. ун-т», каф. физики. Воронеж: Воронежский государственный технический университет, 2017. 109 с.
- 6. **Шушлебин И.М.** Избранные главы теоретической физики: статистическая физика [Электронный ресурс]: учеб. пособие / И.М. Шушлебин, Л.И. Янченко. Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, 2019. 90 с. Гарантированный срок размещения в ЭБС до 01.03.2025. ISBN 978-5-7731-0767-5. URL: http://www.iprbookshop.ru/93257.html

Дополнительная литература

- 7. **Паршаков А.Н.** Квантовая физика для инженеров [Электронный ресурс]: учеб. пособие / А.Н. Паршаков. Саратов: Вузовское образование, 2019. 404 с. ISBN 978-5-4487-0531-1. URL: http://www.iprbookshop.ru/86463.html
- 8. **Трясучёв В.А.** Квантовая механика для студентов технических вузов [Электронный ресурс] / В.А. Трясучёв. Томск: Томский политехнический университет, 2017. 156 с. ISBN 978-5-4387-0746-2. URL: https://e.lanbook.com/book/106765
- 9. **Тюрин Ю.И.** Физика. Квантовая физика [Электронный ресурс]: учебник / Ю.И. Тюрин, И.П. Чернов, Ю.Ю. Крючков. Томск: ТПУ, 2009. 320 с. ISBN 5-98298-457-4. URL: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=10282
- 10. **Рембеза Е.С.** Квантовая, атомная и ядерная физика [Электронный ресурс]: курс лекций: учеб. пособие / Е.С. Рембеза, В.С. Железный, А.А. Косякова. Электрон. текстовые, граф. дан. (3,95 Мб). Воронеж: ФГБОУ ВПО «Воронежский государственный технический университет», 2011.
- 11. **Шушлебин И.М.** Квантовая механика в задачах и вопросах: учеб. пособие / И.М. Шушлебин, Л.И. Янченко; ФГБОУ ВО «Воронеж. гос. техн. ун-т». Воронеж: Воронежский государственный технический университет, 2018. 83 с. ISBN 978-5-7731-0595-4
- 12. **Квантовая механика и статистическая физика в микроэлектронике**: методические указания к выполнению практических работ для студентов направления 11.03.04 «Электроника и наноэлектроника» всех форм обучения / сост. Е.Ю. Плотникова. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2023 30 с. (№ 225-2023)
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Программное обеспечение компьютеров для самостоятельной и аудиторной работы:

- Операционные системы семейства MSWindows;
- Пакет офисных программ LibreOffice;
- Программа просмотра файлов WinDiview;
- Программа просмотра файлов формата pdf Adobe Acrobat Reader;
- Интернет-браузеры Mozilla Firefox, Google Chrome;
- Математический пакет MathCad Express, Smath Studio;
- Среда разработки Python;
- Система управления курсами Moodle;

Используемые электронные библиотечные системы:

Модуль книгообеспеченности АИБС «МАРК SQL»: http://bibl.cchgeu.ru/provision/struct/;

- ЭБС Издательства «ЛАНЬ», в том числе к коллекциям «Инженерно-технические науки», «Физика»: http://e.lanbook.com/;
- ЭБС IPRbooks: http://www.iprbookshop.ru;
- научная электронная библиотека eLIBRARY.RU: http://elibrary.ru/.

Информационные справочные системы:

- портал федеральных государственных образовательных стандартов высшего образования: http://fgosvo.ru;
- единое окно доступа к образовательным ресурсам: http://window.edu.ru/;
- открытый образовательный ресурс НИЯУ МИФИ: http://online.mephi.ru/;
- открытое образование: https://openedu.ru/;
- физический информационный портал: http://phys-portal.ru/index.html
- Профессиональные справочные системы «Техэксперт»: https://cntd.ru
- Электронная информационная образовательная среда ВГТУ: https://old.education.cchgeu.ru

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

1. Лекционная аудитория 311/4, укомплектованная специализированной мебелью и оснащенная оборудованием для лекционных демонстраций: мультимедиа-проектором, стационарным экраном, наборами демонстрационного оборудования (учебный корпус № 4, расположенный по адресу: Московский пр., 179):

```
комплект учебной мебели: рабочее место преподавателя (стол, стул); рабочие места обучающихся (столы, стулья) на 22 человека. проектор BenQ MP515 DLP; экран ScreenMedia настенный. огнетушитель.
```

2. Дисплейный класс для проведения практических занятий и самостоятельной работы студентов, укомплектованный специализированной мебелью и оснащенный персональными компьютерами с лицензионным программным обеспечением с возможностью подключения к сети «Интернет» и доступом в электронную информационно-образовательную среду университета, ауд. 209/4 (учебный корпус № 4, расположенный по адресу: Московский пр., 179):

```
комплект учебной мебели: рабочее место преподавателя (стол, стул);
рабочие места обучающихся (столы, стулья) на 20 человек.
компьютер-сборка каф.9;
компьютер в составе: (H61/IntelCorei3/Kв/M/20" LCD);
компьютер-сборка каф.7;
компьютер-сборка каф.3;
компьютер в составе: (H61/IntelCorei3/Кв/M/23" LCD);
компьютер-сборка каф.5;
компьютер-сборка каф.4;
компьютер-сборка каф.8;
компьютер-сборка каф.2;
компьютер-сборка каф.6;
компьютер-сборка каф.10;
комп. в сост: Сист.блок RAMEC GALE, монитор 17" LCD;
компьютер-сборка каф.1;
экран Projecta ProScreen настенный рулонный;
проектор BenQ MP515 DLP;
огнетушитель.
```

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Квантовая механика и статистическая физика в микроэлектронике» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение навыков использования физических законов и уравнений квантовой механики для решения практических задач. Занятия проводятся путем решения стандартных и прикладных задач в аудитории.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию обо всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины производится тестированием. Освоение дисциплины оценивается на зачете.

	T		
Вид учебных	Деятельность студента		
занятий			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно		
	фиксировать основные положения, выводы, формулировки, обобщ		
	ния; помечать важные мысли, выделять ключевые слова, термины		
	Проверка терминов, понятий с помощью энциклопедий, словаро		
	справочников с выписыванием толкований в тетрадь. Обозначение		
	вопросов, терминов, материала, которые вызывают трудности, поиск		
	ответов в рекомендуемой литературе. Если самостоятельно не удает-		
	ся разобраться в материале, необходимо сформулировать вопрос и		
	задать преподавателю на лекции или на практическом занятии.		
Практические	Конспектирование рекомендуемых источников. Работа с конспектом		
занятия	лекций, подготовка ответов к контрольным вопросам, просмотр ре-		
	комендуемой литературы. Прослушивание аудио- и видеозаписей по		
	заданной теме, решение задач по алгоритму.		
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвое		
работа	нию учебного материала и развитию навыков самообразования. Са-		
	мостоятельная работа предполагает следующие составляющие:		
	- работа с текстами: учебниками, справочниками, дополнительной		
	литературой, а также проработка конспектов лекций;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций, олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка	Готовиться к промежуточной аттестации следует систематически, в		
к промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не		
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Дан-		
	ные перед зачетом три дня эффективнее всего использовать для по-		
	вторения и систематизации материала.		

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1	Актуализирован раздел 8.1 в части состава учебной литературы, необходимой для освоения дисциплины.	04.02.2025	AND
2			
3			
4			