МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Кафедра автоматизированного оборудования машиностроительного производства

БАЗЫ ДАННЫХ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ для обучающихся по направлению 15.03.01 «Машиностроение» (профиль «Технологии, оборудование и автоматизация машиностроительных производств») всех форм обучения

Воронеж 2021

Составитель

ст. преп. С. Л. Новокщенов

Базы данных: методические указания к выполнению лабораторных работ для обучающихся по направлению 15.03.01 «Машиностроение» (профиль «Технологии, оборудование и автоматизация машиностроительных производств») всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост. С. Л. Новокщенов. Воронеж: Изд-во ВГТУ, 2021. 42 с.

Методические указания содержат сведения, необходимые для выполнения лабораторных работ по дисциплине «Базы данных».

Предназначены для студентов направления 15.03.01 «Машиностроение» (профиль «Технологии, оборудование и автоматизация машиностроительных производств») всех форм обучения.

Методические указания подготовлены в электронном виде и содержатся в файле МУ_ЛР_БД.pdf.

Ил. 38. Библиогр.: 5 назв.

УДК 004.9:681.3(07) ББК 32.97я7

Рецензент - А. В. Демидов, канд. техн. наук, доцент кафедры автоматизированного оборудования машиностроительного производства ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

введение

Информатику можно разделить на два направления, одно из которых, связано с изучением алгоритмов, другое – с выявлением алгоритмов в реальных явлениях. Второе направление связано с решением сложных проблем.

Перед решением таких задач осуществляется выяснение структуры данных, что связано, в первую очередь, с определением основных данных, образующих структуру элементов и связей между ними, а во-вторых, с выяснением динамики данных.

В условиях автоматизированного производства подобные задачи решаются постоянно, и, наибольший интерес представляет задача рационального выбора основного технологического оборудования, которое обеспечит оптимальные условия обработки резанием при изготовлении детали.

Для этого необходимо проанализировать огромные массивы данных, если речь идет о новом производстве. Для существующего производства данных становится намного меньше ввиду того, что оно обладает конечным числом конкретных универсальных станков.

Целью курса лабораторных работ дисциплины «Базы данных» является

<u>ОРГАНИЗАЦИЯ ЛАБОРАТОРНЫХ ЗАНЯТИЙ</u>

Занятия в лаборатории проводятся под руководством преподавателя. Для проведения лабораторных занятий группа делится на подгруппы (по 10 - 12 человек), постоянный состав которых сохраняется до окончания всего лабораторного практикума. Лабораторные работы выполняется студентами самостоятельно. По результатам выполненных работ оформляется отчет. По окончании лабораторного практикума каждый студент должен сдать зачёт. При сдаче зачёта студент обязан: 1. Знать целевое назначение работы и уметь объяснить порядок и технику её выполнения.

2. Знать устройство, приемы управления и настройку оборудования, приборов и программных средств, применяемых в работе.

3. Понимать физический и практический смысл полученных результатов.

4. Предъявить отчёт с записями со всеми необходимыми расчётами, эскизами, графиками и выводами по каждой выполненной работе.

<u>ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ</u> <u>РАБОТ</u>

Перед началом лабораторных занятий студенты знакомятся с содержанием лабораторного практикума, организацией и режимом занятий, правилами техники безопасности. Распределение обязанностей внутри подгруппы производится студентами с соблюдением принципа равного участия в работе каждого студента.

Студенты должны:

1. Изучить самостоятельно методику выполнения работы и ознакомиться с организацией рабочего места.

2. Ознакомиться под руководством преподавателя или лаборанта с устройством лабораторного оборудования и его управлением.

3. Категорически запрещается самостоятельный пуск оборудования и пользование без ведома преподавателя или лаборанта.

4. Изучить правила техники безопасности.

5. Произвести под руководством преподавателя или лаборанта настройку оборудования и приборов.

6. Выполнить самостоятельно необходимые учебные задания в соответствии с методикой. Результаты занести в рабочую тетрадь.

7. После окончания работы рабочее место сдать лаборанту.

8. Провести анализ полученных результатов и сделать выводы по работе. Оформить и сдать преподавателю отчет.

<u>ТРЕБОВАНИЯ К ОТЧЕТУ</u>

Отчет по работе оформляется на бумаге стандартного формата (формат A4). Отчет брошюруется в общую тетрадь. Отчет представляется в печатном виде. Коллективное составление и сдача отчетов не допускается.

Отчет по лабораторной работе должен быть выполнен в текстовом редакторе Microsoft Word 2010 или выше и содержать: титульный лист, название темы работы, цели работы, перечень технических и программных средств, необходимых для выполнения лабораторной работы; краткое описание исследуемого вопроса; алгоритм программы; исходные данные варианта; распечатку полученных в ходе расчета значений; выводы, содержащие анализ проведенной работы.

В выводах дается краткое объяснение сущности полученных результатов. Выводы должны быть краткими и отвечать на вопросы, поставленные в лабораторной работе.

<u>ТЕХНИКА БЕЗОПАСНОСТИ ПРИ РАБОТЕ</u> <u>СТУДЕНТОВ В ЛАБОРАТОРИИ</u>

Для того чтобы уберечь себя и товарищей от несчастного случая, а государственное имущество от аварии, необходимо хорошо знать и полностью выполнять правила внутреннего распорядка, техники безопасности и пожарной безопасности.

К лабораторным работам допускаются студенты, которые ознакомились с общими конкретными требованиями техники безопасности и прошли соответствующий инструктаж. Проведение инструктажа и проверка знаний правил техники безопасности должны быть зарегистрированы соответствующими записями в лабораторном журнале. Конкретные требования техники безопасности при проведении той или иной работы изложены в описании к лабораторным работам.

Лабораторная работа № 1 Построение базы данных технических характеристик станков токарной группы

(4 часа)

Цель работы: практически освоить методику создания базы данных технических характеристик на основе нормализации таблиц на основе функционала табличного процессора Microsoft Excel.

Технические средства и программное обеспечение:

- 1. ІВМ-РС или совместимый компьютер;
- 2. Операционная система Microsoft Windows;
- 3. Пакет офисных программ Microsoft Office.

Теоретические сведения

База данных - набор сведений, хранящихся некоторым упорядоченным способом. Можно сравнить базу данных со шкафом, в котором хранятся документы. Иными словами, база данных — это хранилище данных. Сами по себе базы данных не представляли бы интереса, если бы не было систем управления базами данных (СУБД).

Система управления базами данных представляет собой совокупность языковых и программных средств, которая осуществляет доступ к данным, позволяет их создавать, менять и удалять, обеспечивает безопасность данных и т. д. В общем СУБД — это система, позволяющая создавать базы данных и манипулировать сведениями из них. А осуществляет этот доступ к данным СУБД посредством специального языка - SQL.

SQL - язык структурированных запросов, основной задачей которого является предоставление простого способа считывания и записи информации в базу данных.

В зависимости от структуры различают:

- иерархическую,
- сетевую,
- реляционную,
- объектно-ориентированную
- гибридную модели баз данных.

Иерархическая структура базы данных

Это древовидная структура представления информации. Ее особенность в том, что каждый узел на более низком уровне имеет связь только с одним узлом на более высоком уровне.

Сетевая структура базы данных

По сути, это расширение иерархической структуры. Все то же самое, но существует связь "многие ко многим". Сетевая структура базы данных позволяет нам добавить группы в наш пример. Недостатком сетевой модели является сложность разработки серьезных приложений.

Реляционная структура базы данных

Все данные представлены в виде простых таблиц, разбитых на строки и столбцы, на пересечении которых расположены данные. Подробно об этом мы будем говорить в следующих уроках, здесь же хочется отметить, что эта структура стала настоящим прорывом в развитии баз данных.

Одной из наиболее часто применяемых моделей баз данных является реляционная, которая представляет данные в виде таблиц, состоящих из столбцов, строк и записей.

Эта форма упрощает ввод и обработку данных на ЭВМ.

После выбора модели базы данных можно перейти к её проектированию. *Проектирование баз данных* - процесс создания схемы базы данных и определения необходимых ограничений целостности. Основными задачами проектирования баз данных являются:

1) обеспечение хранения в БД всей необходимой информации;

2) обеспечение возможности получения данных по всем необходимым запросам;

3) сокращение избыточности и дублирования данных;

4) обеспечение целостности данных (правильности их содержания): исключение противоречий в содержании данных, исключение их потери и т. д.

Процесс проектирования БД представляет собой последовательность переходов от неформального словесного описания информационной структуры предметной области к формализованному описанию объектов предметной 27 области в терминах некоторой модели. В общем случае можно выделить следующие этапы проектирования (рис. 1.1).

Решение проблем проектирования на физическом уровне во многом зависит от используемой СУБД, зачастую автоматизировано и скрыто от пользователя. В ряде случаев пользователю предоставляется возможность на-

стройки отдельных параметров системы, которая не составляет большой проблемы.

Логическое проектирование заключается в определении числа и структуры таблиц, формировании запросов к БД, определении типов отчетных документов, разработке алгоритмов обработки информации, создании форм для ввода и редактирования данных в базе и решении ряда других задач.

СИСТЕМНЫЙ АНАЛИЗ

- определение потребностей и целей создания БД
- выделение предметной области из окружающей среды
- формирование возможных информационных объектов
- исследование информационных потоков
- выбор типа модели данных

ФИЗИЧЕСКОЕ ПРОЕКТИРОВАНИЕ

- реализация модели данных средствами выбранной СУБД
- отладка и испытания на работоспособность
- документирование проекта

Рис. 1.1. Этапы проектирования базы данных

Решение задач логического проектирования БД в основном определяется спецификой задач предметной области. Наиболее важной здесь является проблема структуризации данных.

Задание

 Для металлообрабатывающих станков токарной и фрезерной групп выбрать ряд моделей (10 штук на одного студента) с помощью ресурсов сети интернет производителей

- Mazak (<u>https://www.mazak.ru/</u>),

- SKM (https://www.stanki.ru/catalog/metallorezhushchie_stank i/skm/?utm_source=yandex&utm_medium=cpc&utm_ca mpaign=Metall_MS_Tokarnye_CHPU_Dop_traffic&ut m_term=Dop_traffic&utm_content=_v3%7C%7C9133 819580%7C%7C20860017815%7C%7C%D1%82%D0 %BE%D0%BA%D0%B0%D1%80%D0%BD%D1%8B %D0%B9%20%D1%81%D1%82%D0%B0%D0%BD% D0%BE%D0%BA%20dmg%20mori%7C%7C1%7C%7 Cpremium%7C%7Cnone%7C%7Csearch%7C%7Cno& yclid=5323808735829164031)

DMG

Mori

(https://ru.dmgmori.com/products/machines);

2) Составить структуру таблицы технических характеристик станков;

3) С помощью типовых функций табличного процессора Microsoft Excel создать базу данных со следующей структурой (см. рис.);

4) База данных должна содержать все необходимые технические характеристики металлообрабатывающих станков токарной группы для автоматизации процедуры выбора модели станка по информации об изготавливаемой детали (габарит/диаметр и длина, мм) и мощности привода.

Лабораторная работа № 2 Аппроксимация значений целевой функции поиска при выборе основного технологического оборудования

(4 часа)

Цель работы: практически освоить методику аппроксимации функций при помощи табличного процессора Microsoft Excel.

Технические средства и программное обеспечение:

- 1. ІВМ-РС или совместимый компьютер;
- 2. Операционная система Microsoft Windows;
- 3. Пакет офисных программ Microsoft Office.

Теоретические сведения

При создании базы данных на основе реляционной модели первым шагом является нормализация исходных таблиц. *Нормализация* представляет собой метод проектирования базы данных, который позволяет привести базу данных к минимальной избыточности (рис. 2.1). Далее рассмотрим последовательность действий при нормализации таблиц технических характеристик металлообрабатывающих станков.

	посокранение 💽 🖡				P	Поиск
03i	іл <mark>Главнал</mark> Вста	вка Размети	а страницы Форму	лы Данные Р	чцензирование Вид	Разработчик
٢	Calibri	× 11 ×	A* A* = = = +	🕅 - 🔅 Переносити	TENCT	Общий
Вста	анть 🖉 ЖКЧ		A- ===	🗉 📧 🔯 Объядлянт	и поместить в центре 👻	m - % %
Gy Ort	робмена Б	Шрифт	-	Быралнилание	5	Число
H9	* = ×	× 1.				
	A	В	с	D	E	F
1	Максимально обрабатываемый диаметр, мм	Мощность, кВт	Число оборотов главного шпинделя, об/мин	Макисмальная скорость обработки	Модель станка	Фото станка
2	180	26	7000	4398,229715	IVS-200	
3	180	26	4500	2827,433388	IVS-200M	
4	300	11	6000	3769,911184	HQR-100MSY	
5	300	15	5000	3141,592654	HQR-150MSY	
6	300	22	4500	2827,433388	SQR-200M	
7	300	22	4000	2513,274123	SQR-250M	
8	320	15	5000	3141,592654	MULTIPLEX W-200	
9	320	15	5000	3141,592654	MULTIPLEX W-2009	1
10	344	22	5000	3141,592654	HQR-200MS	
	744	22	F000	3141 503554	1100 3001404	

Рис. 2.1. Пример структуры нормализованной таблицы базы данных для станков токарной группы

	Каталот лизині те.	хнический центр Видео Запр	зосить каталог Контакть	ы В начало +7 (495) 2	10-89-89 f 🔿 🖻
ICN-6800 L					×
ысокоскоростной высо ерии HCN. Жесткая кон	жоточный горизонтальный с тракция станка обеспечивае	обрабатывающий центр ет высокую точность			
	THE			A Ph	
Спецификация	Значе	ние		1242-2-	
	Диаметр / Высота	1050 / 1300 MM		1122	
Параметры	Размер стола	630 / 630 MM		1 and 1	
235010888				A Real Property in the second	
заготовки	Максимальная нагрузка на стол	1500 Kr			
заготовки	Максимальная нагрузка на стол Тип конуса	1500 кг MAS BT-50			
заготовки Шпиндель	Максимальная нагрузка на стол Тип конуса Максимальная частота вращения	1500 кг MAS 87-50 10000 об/мин	1		

Рис. 2.2. Пример представления информации о технических характеристиках станков

Большинство сайтов производителей или дистрибьютеров металлообрабатывающих станков дают информацию о них в подобном виде, как показано на рисунке выше. При этом выбор станка будет значительно затруднен в виду разнородности данных в этих таблицах.

Поэтому первым шагом перед нормализацией данных должно стать приведение таблицы в вид, понятный проектировщику и ЭВМ. При этом структура таблицы будет определяться группой, к которой относится тот или иной станок. В настоящее время выделяют 9 групп:

- 1 Токарные;
- 2 Сверлильные и расточные;
- 3 Шлифовальные;
- 4 Комбинированные;
- 5 Зубо- и резьбонарезные;
- 6 Фрезерные;
- 7 Строгальные;

8 - Отрезные;

9 - Разные.

В начале проектирования, как правило, есть чертёж изготавливаемой детали и минимальный объем информации о её назначении. Для выбора станка необходимо иметь такие данные как габаритные размеры детали, так и мощность привода металлообрабатывающих станков.

Для выполнения лабораторных работ будут использоваться технические характеристики станков токарной и фрезерной групп. Рекомендуемые производители и сайты указаны в задании к лабораторной работе.

Далее рассмотрим подробнее как же выполнить построение зависимости с последующей аппроксимацией, применяя простейшие базовые возможности табличного процессора Microsoft Excel.

1) Для построения любых зависимостей необходимо иметь набор данных. Чем шире и точнее эти данные будут, тем точнее будет реализован поиск необходимых параметров при анализе этих таблиц.

2) В общем случае необходимо отсортировать введенные значения по возрастанию, для чего в табличном процессоре Microsoft Excel используется эта команда из группы Сортировка и фильтры (рис. 2.3).

Автосо	хранение 💽			ma	izak_base_all_	2 -	9	Поиск						
Файл	Главная	Вставка	Разметка страницы	Формулы	Данные	Рецензирование	Вид	Разра	ботчик	Справ	ка	SWR-Cneu	ификация	Рабочая груп
Получить данные ~	Из тексто Из Интерн Из таблик	юго/CSV-файл нета ы/диапазона	а В Последние источни Существующие под	ки ралючения	Обновить Все ~	 Запросы и подключения Свойства Изменить связи 		<u>)</u> Акции	Щ Гeorpaфя		Â↓ Ŗ↓ C	Я А А Я Сортировка	Фильтр	2 Очистить 2 Повторить 2 Дополнительно
	По	учить и преоб	разовать данные		3an	росы и подключения		Типі	я данных			Cop	ировка и ф	ильтр

Рис. 2.3. Месторасположение команд Сортировка и Фильтры

Следующим шагом при выборе целевой функции является построение точечной диаграммы. Для этого достаточно выделить два столбца значений. Выделение осуществляется мышкой, зажатием левой кнопки на начальной ячейке. Выбор второго столбца осуществляется после нажатия и удерживания клавиши Ctrl. Должна при этом получиться следующая картина (рис. 2.4).

180	26
180	26
230	7,5
240	3
240	3
240	3
240	3
300	22
300	22
300	15
300	11
320	15
320	15
320	6,3
344	26
344	26
344	26

Рис. 2.4. Результат выделения диапазона чисел

Затем для построения точечной диаграммы достаточно щелкнуть по кнопке в меню Вставка (рис. 2.5).

Aa	госохранение 🧿		~ ℃ ~ ~	mazak	_base_all2 +		<i>Р</i> Поиск		
Фай,	л Главная	Вставка	Разметка стра	ницы Формулы	Данные Рег	цензирование	Вид Раз	работчик	Справ
Своди табли	ная Рекомендуем	мые Таблица ицы	Г Иллюстрации	Получить надстройки	🔹 🔓 Рекоменд диаграя	уемые	с Г ^Щ с СС Карть с Харть	Сводная диаграмма ~	Д ЗД карт
	Таблицы			Надстройки		Дi Ti	очечная		
P61	-	× ~	<i>f</i> * 26			°.	· · ·	1	A.
	0	ĸ	E L	M	N	•	•••		- 21
55							2.		
56							- V		
57							узырьковая		
58						1.1.1	10		
59							6		
60									
61	Алисассь	лиаграл	AAAbi		~	5.	Другие точе	чные диаграмм	њі

Рис. 2.5. Выбор необходимого типа диаграммы для построения

Результатом будет созданная диаграмма следующего вида (рис. 2.6).

Рис. 2.6. Созданная точечная диаграмма для выбранного диапазона чисел

Далее можно настроить диаграмму, введя и расположив названия осей и прочие элементы, в нашем случае не являющиеся обязательными. Нам необходимо теперь по этим точкам построить линию тренда и получить функциональную зависимость. Построить линию тренда можно, выбрав соответствующую команду Добавить линию тренда из контекстного меню, которое вызывается щелчком правой кнопкой мыши по точкам на диаграмме (рис. 2.7).

Рис. 2.7. Вызов команды, добавляющий линию тренда

После выбора команды откроется дополнительное меню, позволяющее выбрать вид аппроксимирующей кривой и оценить точность ее (квадратичную погрешность).

Силу взаимосвязи между двумя атрибутами показывает корреляция. Силу линейных зависимостей между числовыми атрибутами характеризует коэффициент корреляции Пирсона. Смотря на эту величину, можно подобрать кривую, которая не должная быть очень сложной, знакопеременной и т. д. Ибо это сильно усложнит вычисления, хотя точность в случае той же полиноминальной функции может быть близка к 1 (единице) (рис. 2.8).

Рис. 2.8. Выбор вида линии тренда и анализ значения квадратичной погрешности

При этом следует правильно интерпретировать рассчитанную величину. Так, если значения г $\approx 0,7$, то это указывает на сильную линейную зависимость между атрибутами, г $\approx 0,5$ – на умеренную линейную зависимость, а г $\approx 0,3$ – на отсутствие зависимости.

Задание

1) Для введенных в лабораторной работе №1 данных построить точечную диаграмму для зависимости максимально обрабатываемый диаметр = f(мощности);

2) Подобрать линию тренда с максимально возможным значением квадратичной погрешности;

3) Объединить данные всей группы в один файл, построить общую диаграмму и показать её уравнение и величину квадратичной погрешности.

Лабораторная работа № 3 Проверка возможности установа детали на станок

(4 часа)

Цель работы: практически освоить методику автоматизированной проверки возможности установа детали на станок по дополнительным условиям.

Технические средства и программное обеспечение:

- 1. ІВМ-РС или совместимый компьютер;
- 2. Операционная система Microsoft Windows;
- 3. Пакет офисных программ Microsoft Office.

Теоретические сведения

Кроме анализа функционально зависимости мощности от величины максимально обрабатываемого диаметра при выборе станка необходимо убедиться в возможности установки детали на станок как таковой. Для этого необходимо контролировать следующие размеры с учетом длины и диаметра заготовки (рис. 3.1).

Рис. 3.1. Проверка возможности установа детали на станок

Главным определяющим *параметром токарного станка* является высота его центров или расстояние от оси вращения шпинделя до верхней точки станины станка.

Этот размер определяет наибольший диаметр деталей, обрабатываемый над станиной. По схеме, показанной на рис. 3.1 главным параметром является размер В. Расстояние между центрами станка, также является определяющим параметром, от которого зависит наибольшая длина детали, которая может быть обработана на станке. По съеме показанной на рис. 3.1 это размер А. Исходными данными для составления целевой функции проверки возможности установа является величина максимально обрабатываемого диаметра и указанные величины, взятые из технической характеристики станка для выбранной по расчетной мощности значения. Исходная база данных должна быть модифицирована с учетом этой схемы и должна принять следующий вид (рис. 3.2).

1	hana ayaaraar (🕋)	田 9・1	e i i i i i i i i i i i i i i i i i i i	march	iuit2+	₽ Barr			rg tol Hospitule	• () =	n 1
0	olt Francian D	creates Paul	натов странезы» — Форм	ерты Данные	Paus-caposasce Dat					Поделиться	Применания
	A Koprom E Konspram - Oppuar to off hydrox shores	andy Colors	H = H = A H =		 It Represents sour ⇒ Disqueens a noner Basenesser 	e = United to the second secon			∑лиссуни ⊡Закажил ⊘Энистеть	• - <u>}</u> ⊽ Copusions ×tancip-	D Hanna Hanna
R		- A	240								
13	Δ	п	r (n	r	r G		4 I		10	к
1	Миссимально обрабатыванскай довумогр	Моциасть. кіїт	Число оборотов гланисто апиндков, об/мля	Массикальная окорость обработни	Мадуль станка	Маклами Фологоления услевника дравно	ама Ман малай абра р	ознально батыкевалее домна	Данны	Ширина	Beauer a
2 2	180	22 15	5000 5000	3141,592654 3141,592654	QT PRIMOS 50 SG QT Primos 100	sc_stansk\Photo models\0T PRIMO5_5056.pmg sc_stansk\Photo models\0T PRIMO5 100.ppg	444	204	1305	1150 1190	1700
4	250	25	4000	2513.274123	QT-PRIMOS 150 SG	se_stanck\Photo models\QT-PRIMOS_15056.prg	580	264	1600	1230	1700
5	280	11	6000	3769,911181	QUICK TURN 100MS	se_stanok\Photo models\quirktum100ms pog	7.50	409	1750	1335	1750
.8	100	4	35/00	2199,114858	DMIG DU 6130	se_stanok/Photo models/OMTG OE 6130 (pg	300	500	19630	1430	14542
1	120	15	5000	3141,597654	DISAL LURIN 200	se stanok/Photo models/JODAL 10.800 200.jpg	3.211	150	7650	1980	2150
8	320	15	5000	3141,597654	MULTIPLEX W-200	ae stanok/Photo models/JMULIPLEX W-2000pp	370	180	3570	21/0	2200
2	340	15	6000	3769,911184	OT COMPACT 100M	sc_stanok/Photo models/QT COMPACT 100M.jpg	340	554	2600	1690	1725
10	840	11	5000	8141,592654	INTEGREK 150	se_stanok\Photo models\INTEGREK 150.jpg	340	385	2200	2420	2150
11	340	15	6000	3709.911184	QTU 200MIY	se_stanok\Photo models\QTU 200MV.jpg	340	632	2650	1090	1725
15	340	15	4000	2513,274123	QT-COMPACT 300MY	se_stanck\Photo models\QT-COMPACT 300MY [pgg]	340	1054	2600	1690	1850
13	170	73	5000	3141,592654	HIGH-70DMSY	se_stanok\Photo models\UDE-200MSV.jpg	344	13565	4670	3055	1695
14	180	76	4000	2511,274121	QUEX ION 250MY	se stenok/Photo models/(0)/07504002ab00.png	3381	991	4005	74399	24030
15	.180	18	4000	2513,274123	DUICK HUNN ZSUMB	as standk/Photo models/guickturn/500may smoothy 800-600(p.png	380	1018	4/50	75594	2720
10	390	15	6000	3769.911184	GLS 1500L	se stanok\Photo models\acodwar ad 1500Lina	390	330	5214	2700	2100

Рис. 3.2. Модифицированная база данных

Задание

1) С помощью, описанной в лабораторной работе №2 методике, исследуйте зависимости, позволяющие охарактеризовать максимально устанавливаемый диаметр и максимально обрабатываемая длина;

2) Ориентируясь на значение коэффициентов корреляции выберите наиболее эффективную зависимость между атрибутами базы данных;

3) Предложите процедуру контроля введенных пользователем параметров деталей.

Лабораторная работа № 4 Построение базы данных технических характеристик станков фрезерной группы

(4 часа)

Цель работы: практически освоить методику проектирования базы данных технических характеристик основного технологического оборудования.

Технические средства и программное обеспечение:

- 1. ІВМ-РС или совместимый компьютер;
- 2. Операционная система Microsoft Windows;
- 3. Пакет офисных программ Microsoft Office;
- 4. Microsoft Visual Studio.

Теоретические сведения

Фрезерные станки предназначены для обработки наружных и внутренних плоских, фасонных поверхностей, уступов, пазов, прямых и винтовых канавок, шлицев на валах, нарезание зубчатых колес и т. д. Основными формообразующими движениями фрезерных станков являются вращение фрезы (главное движение) и движение подачи, которое сообщают заготовке или фрезе. Приводы главного движения и подачи выполняют раздельно. Вспомогательные движения, связанные с подводом и отводом заготовки к инструменту, механизированы и осуществляются от привода ускоренных перемещений. Основные элементы механизмов станков унифицированы.

Основным параметром, характеризующим фрезерные станки общего назначения, является размер рабочей поверхности стола. Поэтому для станков фрезерной группы будут интересны следующие технические характеристики для создания процедуры автоматизированного выбора:

- Макс. диаметр обработки;

- Макс. длина обработки;

- Мощность, кВт.

Задание

1) По описанным выше методикам создайте базу данных, содержащую технические характеристики станков фрезерной группы.

Лабораторная работа № 5 Автоматизированный выбор основного технологического оборудования на основе поиска значений в базе данных

(4 часа)

Цель работы: практически освоить методику поиска значений в базе данных, созданной с использованием функционала табличного процессора Microsoft Excel.

Технические средства и программное обеспечение:

- 1. ІВМ-РС или совместимый компьютер;
- 2. Операционная система Microsoft Windows;
- 3. Пакет офисных программ Microsoft Office.

Теоретические сведения

Выбор модели станка будем осуществлять на основе анализа и прогнозирования. *Прогнозирование* – это задача

оценки целевого атрибута конкретного объекта на основе значений других атрибутов.

В выбранной нами целевой функции атрибутами являются максимально обрабатываемый диаметр и мощность привода станка. Результат прогнозирования получается подстановкой введенного пользователем значения обрабатываемого диаметра и расчет значения мощности по полученному в лабораторной работе №2 уравнению, в котором вместо X и подставляется введенное значение.

Для поиска модели и других данных достаточно использовать базовые функции табличного процессора Microsoft Excel – ПОИСКПОЗ и ИНДЕКС. В самом общем случае эти функции выглядят следующим образом:

ПОИСКПОЗ(искомое_значение; просматриваемый_массив; [тип_сопоставления])

```
ИНДЕКС(массив; номер_строки; [номер_столбца])
ИНДЕКС(ссылка; номер_строки; [номер_столбца]; [номер_области])
```

Рис. 5.1. Структура команд ПОИСКПОЗ и ИНДЕКС

Первая функция позволит нам по введенному значению обрабатываемого диаметра найти строчку, которая будет соответствовать рассчитанному значению мощности привода, а вторая же позволит по номеру строки написать модель из заданного диапазона значений.

=ПОИСКПОЗ(М8;Е2:Е1000;0)

Функция ПОИСКПОЗ возвращает относительное расположение ячейки в заданном диапазоне Excel, содержимое которой соответствует искомому значению. Т. е. данная функция возвращает не само содержимое, а его местоположение в массиве данных.

Вторая функция по номеру строки даст возможность определения модели станка, которая должна быть занесена так же в исходную таблицу.

=ИНДЕКС(F2:F1000;L9)

Т. е. функция ИНДЕКС возвращает содержимое ячейки, которая находится на пересечении заданных строки и столбца.

Изменением значения диаметра по рассчитанному значению мощности будет производиться поиск соответствующей ближайшей модели станка.

Пример

Обрабатываемый диаметр = 300 мм Результат

34	acalaana 🐑 🛱 💈	10 20 c -	• في الريمان فسيه		C (TRACK									¢19	raiHaranana 👩	
oui Boar	а <u>Ганонка</u> Аслонан <u>)</u> <u>)</u> Варсаль <u>)</u> <u>)</u> Коларовать у Франция по обращи	тисно-на принице — Ворорие Сибе: - 11 - А' А' Ξ Ж К Ц - <u>—</u> - <u>Ф</u> - <u>▲</u> - Ξ	2000年 Percention 三回参・ 急和per 三回 参・ 急和per	en det Opnete eccentration promisionen superpro-	0(auri) 111 - %	a) 33	-	Улаканае ч	Constanting of	Обичний Планой	тайгратный Хорсцай	Roy	E E	autorea autorea	2 Ra ∑ Amorparia ~ In Sansaura * ♦ Ouvcura *	актиться Примении АП О Сорторска Найм к к филоро задекото -
	loors etwere 6	Lpopt 5	Beparente	ir Mt	6 4	01	б			Cheep			R-citra		Postar	ND BANKE
63.2	* × × ×	6														
1			6	н		1 1	×	1 1		M	N		D.	2	0	8
	Модель станка	Фото станка			,	MARC		Модель	cranna	мин		Моде	њ станика		Мощность,	Модель станка
1	OT OBMOS SO LC	Data and the second state	OT SOULOG EDGC			1460	76	Marco Torre	10004	180		07.000	100 50 50			ANT/CA 8800
-	OT Primer 100	D. (base scanor, (moto moders)	divelowers startbull			1000	10	wiege run	Bandia	190		GIPPING	103 30 30		60	FI ANT D ION 900
-	DUDRIMOS 150 SG							195	Parverni	State					45	DOWNER MASTER LINK
-	CHIEV LUNN MODAS							100						-	45	191725
6	DMTIS CKE 6130					- 17	acentra.	a Marina and	er.		17				45	SLANT THRN FORM
7	DUAL THIN 200								20						45	SLANT TURN SOT
8	MILETIPLEY W.200					T	nafrapana	IN THE OWNER AND	19	USL600/30H					45	SLANT TURN 600
9	OT-COMPACT 100M							32		D'Allever stamik	Photo mod	-INUN-FOO	10Hame		45	SLANT TURN 550
10	INTEGREX I-150							20	0	3300	2200		Cherriften D.		45	SLANT TURN 500B
11	QTU 200MY														45	POWER MASTER Chu
12	OT-COMPACT BOOMY														45	INTEGREX e-570H
13	HOR ZOOMSY														45	INTEGREX & SOUR
14	CHIEX TURN 25DMY														45	Mega Turn 1600h
15	QUACK TURN 250MB														37	TAKISAWALA-450
16	GLS-1500L	D:\Base_stanok\Photo models\.	goodway-gsl-1500Ljog			Monape	entra, ella								37	VORTEX HEODV/8:
17	Mess Turn 400					100									37	TAKISAWA LS-800
18	HAAS TE-1					580				and the st	1944				37	VORTEX i-630V/6
19	QTU-350 HP					80				R ² - 0, 198					27	VORTEX 1400/160
20	QUICK TURN 350M					70									37	VORTEX H630V/62
21	MULTIPLEX 5300-1					1.27				12					37	INTEGRET e-1250V
22	MULTIPLEX W 300					00									36	VIC 800G 305
28	HEADMAN HCI 400					50									30	DUICK THEN 3508
24	TAKISAWA LA-150(L)					80				0.64		and the second s			30	MEGA TURN 6005
25	MEGA TURN SOOMS					30									30	MEGA TURN 600
26	INTEGREK J-200					20									30	INTEGREX I-40057
27	INTEGREX J-300							4		1	140				30	INTEGREX I-400
28	INTEGREX J-400					10					1				30	INTEGREX E-420H-
29	INTEGREX I-100					0					2.2	2.5	10 10		30	INTEGREX I-SOUS
30	integers 200							X0 800	10	10 (K.H.	10.0	200	-	800	30	KM1 KIL72C
31	TURNING CENTER M 3	12							Maxin	енальна обрабатыв	асман длам	IT2, MM			30	INTEGREX F SOCH
32	TAKISAWA LA-250														30	MEGA TURN 900
33	UN-600/30H	D:\Base_stanok\Photo.models\	UN-60 200	3300	2200										30	Orbitec.20
80 31 32 33	Infrgrex () 200 THENING CENTER M 3 TAKISAWA (A-250 UN-650/30H Juert (R)	n D:/Base_starok/Photo.models/	UN-60 200	3300	2200				Мако	еннансьна обрабатыя 	аемай досно	пр, мм			80 30 30 30 30	KMT K INTEGRED MEGA TU Orbits
	N	аксимальны	й диамет	р, мм				300								
		Расчётная мо	ощность,	кВт						17						
		Требуемая м	одель ста	анка			UN	1-600/	/30F	н						

Рис. 5.2. Пример результата работы

3300

D:\Base stanok\Photo models\UN-600 30H.png

2200

32

200

Дальше эти данные можно использовать в любом внешнем приложении, и создать, например, свою СУБД. Эта система будет учитывать существующую на предприятии специфику и выдавать оперативно необходимые данные.

Задание

- 2) Нормализовать таблицу его параметров
- 3) Выбрать целевую функцию
- 4) Построить линию тренда и получить ее уравнение
- 5) Разработать процедуру автоматизированного по-

иска

Лабораторная работа № 6

Автоматизированный выбор технологических инструментов для токарной обработки

(4 часа)

Цель работы: практически освоить методику разработки процедуры автоматизированного выбора на основе базовых функций табличного процессора.

Технические средства и программное обеспечение:

- 1. ІВМ-РС или совместимый компьютер;
- 2. Операционная система Microsoft Windows;
- 3. Пакет офисных программ Microsoft Office.

Теоретические сведения

Основным инструментом для токарной обработки является резец, который в общем случае состоит из следующих конструктивных элементов (рис. 6.1).

Рис. 6.1. Конструкция державки резца

Основные размеры державки резца показаны на рис. 6.2.

Основные размеры а и b определяются видом точения (черновое, чистовое), диаметром обработки и величиной подачи. Определяющими исходными данными в нашем случае будут диаметр обработки и величина подачи.

Структура таблицы для автоматизированного выбора размеров державки резца примет следующий вид (рис. 6.3).

Ap	atanyannen 💽	B. Contraction of the		100		P Bass		
tak C	A Callel	тана Разнета п + [11 - А	V. = = =	er - Effigue	Pagesieposaere	Erci Falp	aforen Opani	
10.000	× ×	a - 11 - 14 - 1	·	II II II CEAN		erije - 📧-	5,00 1 4	#eputt-posts
44	starsa G	Speer.	4	Reported		5	Non 15	
43		- 5 0116G	D 40 23+25					
4	A	В	C	D	E	F	G	н
1	Диаметр	2	0	Точение	чержовое	-		
2	Подача	до 3	Paan	лер держа	вки резца	OT 16x25	qo 25x25	
3	от 16x25 до 25x25	0	20	×	2	2	-	-
4	от 16x25 до 25x25	20	40	×	×	- 20	2	- 22
5	от 16 x 25 до 25 x 40	40	60	×	×	×	•	•
6	от 16 x 25 до 25 x	60	100	x	x	×	- 2	- 23
7	от 16 x 25 до 25 x	100	400	×	x	×	×	5
8	от 20 x 30 до 40 x	400	500	×	x	×	×	×
9	до 40 x 60	500	600	×	×	×	x	×
10	до 40 x 60	600	1000	×	×	×	×	×

Рис. 6.3. Структура таблицы автоматизированного поиска

При выборе вида точения и подачи определяются номера строки и столбца. С помощью функций =ИНДЕКС() осуществляется поиск значений, содержащейся в ячейке.

При этом осуществляется проверка, если в ячейке содержаться данные, то в результат работы будет выводиться рекомендуемый диапазон размеров державки резца, в противном случае должна выдаваться соответствующая ошибка

=ЕСЛИ(N8="x";ИНДЕКС(А3:A11;L4;1)

Задание

1) Разработать алгоритм процедуры автоматизированного поиска размеров державки резца;

2) Реализовать алгоритм средствами табличного процессора Microsoft Excel.

Лабораторная работа № 7 База данных технологических инструментов для фрезерной обработки

(4 часа)

Цель работы: практически освоить методику разработки процедуры автоматизированного выбора на основе базовых функций табличного процессора.

Технические средства и программное обеспечение:

- 1. ІВМ-РС или совместимый компьютер;
- 2. Операционная система Microsoft Windows;
- 3. Пакет офисных программ Microsoft Office.

Теоретические сведения

Фреза — инструмент с одним или несколькими режущими лезвиями (зубьями) для фрезерования на станке. По конструктивным особенностям инструмент бывает следующих видов (рис. 7.1):

- 1) дисковый;
- 2) торцевой;
- 3) цилиндрический;
- 4) угловой:
- 5) концевой;
- 6) фасонный;
- 7) червячный;
- 8) кольцевой.

Торцовая

Цилиндрическая

Концевая

Дисковая

Шпоночная

Фасонная

Угловая

Рис. 7.1. Виды фрез

Как и для большинства изделий, применяющихся при изготовлении машин и механизмов, параметры фрез стандартизованы, на каждый вид фрез имеются соответствующие ГОСТы.

Таблицы размеров имеют формат, типичный для ГОСТ и могут быть представлены в разных частях документа, что усложняет читаемость этих данных. Поэтому первым шагом при реализации баз данных таких конструктивных элементов является сведение всех необходимых данных в одну таблицу и нормализация полученной таблицы.

Рис. 7.2. Пример структуры таблиц конструктивных размеров фрез

В табличном процессоре Microsoft Excel для дальнейшей работы необходимо создать базу данных со следующей структурой (рис. 7.3).

Авто	осохран	ение 💌	協 9	• 🥙 - :	Ŧ	
Файл	1 <u>F</u>	павная	Вставка	Разметка	а страницы	Форму
Ê	4	Вырезать	1	Calibri	~ 1'	ı ⊸ A^ A
Вставі *	ить 🥰 Буфеј	Формат по об р обмена	бразцу Гъ	ж к ч	• 🖽 • Шрифт	<u>⊘</u> ~ <u>A</u> .
A2		- I 2	< <i>×</i> .	fx		
1	А	В	С	D	E	F
1		d	d1		L1	z
2		2	4	7	39	3
3		2,5	4	8	40	4
4		3	4	8	42	4
5		3,5	4	10	42	4
6						

Рис. 7.3. Структура базы данных конструктивных размеров фрез

Задание

1) Используя материалы сети Internet выбрать конструкцию тип фрезы и найти её ГОСТ;

2) С помощью табличного процессора Microsoft Excel создать базу данных конструктивных размеров фрез;

3) Проанализируйте техническую характеристику станков и технологических операций, предложите процедуру автоматизированного выбора фрезы.

Лабораторная работа № 8 Создание 3D-моделей технологических инструментов для сверлильных операций

(4 часа)

Цель работы: практически освоить методику разработки процедуры автоматизированного выбора на основе базовых функций табличного процессора.

Технические средства и программное обеспечение:

- 1. ІВМ-РС или совместимый компьютер;
- 2. Операционная система Microsoft Windows;
- 3. Пакет программ Microsoft Office;
- 4. SolidWorks.

Теоретические сведения

Базы данных могут применяться не только для анализа технических характеристик, но и для использования этих данных при проектировании на основе 3D моделей.

Построим модель сверла Ø4,8 мм. Для этого на плоскости YX в CAD/CAM/CAE-системе SolidWorks рисуем окружность и вытягиваем ее в два направления на длину l = 52 и длину l1 = 80 - 52 = 28 (рис. 10).

а) тип документа

б) начальный этап создания основания

б) выбор плоскости и создание основания

Рис. 8.1. Начальный этап создания 3D-модели геометрии сверла

При этом, по умолчанию создастся единое тело, нам же необходимо иметь две «отдельные» части. Для этого при создании второго элемента Вытянуть достаточно снять соответствующую галочку (рис. 11),

Рис. 8.2. Настроенная геометрии основания 3D-модели сверла

Далее переходим к созданию геометрии зуба, при этом допустимы следующие отношения размеров: $f = 0,1 \Box d = 0,1 \Box 4,8 = 0,48$, $r = 0,1 \Box d = 0,1 \Box 4,8 = 0,48$, угол $\Psi = 45^{0}$.

Рис. 8.3. Выбор плоскости для создания геометрии зуба

Рис. 8.4. Геометрические элементы и размеры, необходимые для создания зуба

Далее строим плоскость под углом в 45⁰, для чего поставим в конце хвостовика ещё одну справочную точку. На этой плоскости создадим траекторию с выходом режущего инструмента (рис.).

а) создание точки

Рис. 8.5. Настройка справочной плоскости

Рис. 8.6. Траектория формы зуба

С помощью команды **Г** Вырез по траектории создаем паз соответствующей формы выделением двух созданных ранее эскизов (рис. 8.7).

Рис. 8.7. Созданная геометрия зуба сверла

Таких зубьев в сверле два, для создания второго используем команду Круговой массив . Выделяем созданную геометрию и создаем массив из 2-х элементов на угле в 360 градусов (рис. 8.8).

Рис. 8.8. Построение второго зуба

Далее осталось сделать «согнуть» зубья по спирали, для чего можно использовать команду Гибкие. Для создания такого элемента необходимо выбрать базовое цилиндрическое тело и элемент, который необходимо «согнуть» (рис. 8.9).

Рис. 8.9. Алгоритм работы команды «Гибкие»

Созданная геометрия основания сверла показана на рис. 8.10.

Рис. 8.10. 3D-модель основания сверла

Для изменения количества витков достаточно поменять значение угла поворота в команде ист. Вводя различные значения можно получить необходимую геометрию (рис. 8.11).

5	йибжие1 ×	Ø		//	10	Гибиже1 ×	۲	
Deo,q	изгиба	^		Comment of	Beos	estaña	0	a com
ß	Крутовой массив4					Крутеной массие!		1
	О Изгибание В Поворот О Заострение О Ростягивание		V			О Изгибание © Поозрот О Заестринан О Растагивания		J
	🖓 Грубые кромки		11			Прубые кронки		<u></u>
1	В60градусов	0	11		120	450rpagecos	C	21
10.	= 10 A A							
8	10000001	٥		[]				
8 5 	「日本」 「 「 「 「 「 「 「 「 「 「 「 「 「	0		[]				
Si I Seon	🗐 🕅 Ф 🔶 ибоист х притоба гериторой нассира	0		1				
8 ✓ Short Ø	Image: Second to a	0	V	1				
eson Si li Baon	Image: Second state Image: Second state xmmtds represent stateses Image: Second stateses Image: Second stateses	•	V					

Рис. 8.11. Настройка геометрии

Далее необходимо создать режущую часть, угол которой указан на чертеже в ГОСТе и в данном случае равен

118⁰. Геометрия режущей части создается круговым вырезом элемента у основания сверла (рис. 8.12).

Рис. 8.12. Создание геометрии режущей части

Созданная геометрия сверла показана на рис. 8.13.

Рис. 8.13. Созданная 3D-модель геометрии сверла

Задание

1) Освоить методику построения геометрии сверла;

2) В табличном процессоре Microsoft Excel создать базу данных, содержащую конструктивные параметры свёрл;

3) Проанализировать техническую характеристику сверлильных станков, предложить процедуру выбора сверла для конкретной операции.

Лабораторная работа № 9 Применение стандартизованных конструктивных изделий и автоматизированный выбор. Крепёж

(4 часа)

Цель работы: практически освоить методику разработки процедуры автоматизированного выбора на основе базовых функций табличного процессора.

Технические средства и программное обеспечение:

- 1. ІВМ-РС или совместимый компьютер;
- 2. Операционная система Microsoft Windows;
- 3. Пакет офисных программ Microsoft Office;
- 4. SolidWorks.

Теоретические сведения

Крепежные элементы используются при создании машин и устройств различного назначения. Все они стандартизованы, на размеры деталей (болты, винты, гайки и т. д.) имеются соответствующие ГОСТы. Кроме типовой таблицы, содержащей информацию о размерах детали в базу данных, можно добавить 3D модели стандартизованных элементов, размеры которых можно будет выбирать при импортировании модели в сборочную единицу.

Рис. 9.1. Примеры 3D-моделей крепёжных деталей

Создание 3D моделей деталей выполняется типовыми для CAD/CAM/CAE систем образом, используя методы прибавления толщины или вращения основания или их комбинацию.

Исходными данными для создания моделей будут чертежи, приведённые в ГОСТах (рис. 9.2).

Рис. 9.2. Пример исходных данных

В ГОСТах таблицы размеров имеют следующий вид (рис. 9.3).

Рис. 9.3. Вид и содержание таблиц размеров

В таком виде таблицы неудобны, потому их надо перевести в более простой вид, структура которого должна соответствовать таблице параметров SolidWorks.

Вставка таблицы параметров осуществляется в меню

Рис. 9.4. Вставка таблицы параметров

Таблица размеров детали в этом случае примет следующий вид (рис. 9.5).

Рис. 9.5. Исходная таблица размеров для крепежных элементов

Чтобы иметь доступ к данным таблицы во внешнем файле её лучше сохранить в выбранном на диске место. Для этого достаточно выполнить команду в Excel Файл – Сохранить как. После этого созданную в модели детали таблицу следует удалить и вставить в модель новую таблицу из внешнего файла (рис. 9.6).

Рис. 9.6. Связь внешней таблицы параметров с параметрами модели

Далее необходимо создать конфигурации изделия, в соответствии с размерами, указанными в ГОСТе.

Задание

1) С помощью ресурсов сети Internet выбрать тип и ГОСТ крепёжного элемента;

2) В CAD/CAM/CAE системе SolidWorks создать 3Dмодель крепёжного элемента;

3) Средствами SolidWorks и табличного процессора Microsoft Excel создать таблицу параметров во внешнем файле;

4) Прикрепить внешний файл к модели, создать несколько конфигураций;

5) Отработать методику вставки 3D модели с изменяемыми параметрами в документ сборки.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Тарасов С. В. СУБД для программиста. Базы данных изнутри М.: СОЛОН-Пресс, 2021 с., ил.
- Келлехер Дж Наука о данных: Базовый курс / Джон Келлехер, Брендан Тирии; Пер. с англ. – М.; Альпина-Паблишер, 2020. – 222 с.
- 3. Нагао М., Катаяма Т., Узмура С. Структура и базы данных: Пер. японс. М.: Мир, 1986. 197 с., ил.
- Карпова И. П. Базы данных. Курс лекций и материалы для практических заданий. Учебное пособие. М.: Питер, 201. 240 с.
- Коннолли, Томас. Базы данных: проектирование, реализация и сопровождение. Теория и практика / Томас Коннолли, Каролин Бегг; [перевод с английского Р. Г. Имамутдиновой, К. А. Птицына]. - 3-е изд. - Москва [и др.]: Вильямс, 2018. - 1439 с.

оглавление

ВВЕДЕНИЕ	3
ОРГАНИЗАЦИЯ ЛАБОРАТОРНЫХ ЗАНЯТИЙ	3
ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ РАБОТ	4
ТРЕБОВАНИЯ К ОТЧЕТУ	5
ТЕХНИКА БЕЗОПАСНОСТИ ПРИ РАБОТЕ	
СТУДЕНТОВ В ЛАБОРАТОРИИ	5
Лабораторная работа №1. Построение базы данных	
технических характеристик станков токарной группы	6
Лабораторная работа №2. Аппроксимация значений	
целевой функции поиска при выборе основного	
технологического оборудования	.11
Лабораторная работа №3 Проверка возможности установа	
летали на станок	.17
Пабораториая работа NoA. Построение бази лании и	
лаобраторная работа м≥4. Постросние базы данных технических характеристик станков фрезерной группы	10
технических характеристик станков фрезерной группы	1)
Лабораторная работа №5. Автоматизированный выбор	
основного технологического осорудования на основе	20
поиска значении в оазе данных	. 20
Лабораторная работа №6. Автоматизированный выбор	
технологических инструментов для токарной обработки	.23
Лабораторная работа №7. Автоматизированный выбор	
технологических инструментов для фрезерной	
обработки	25
Лабораторная работа №8. Автоматизированный выбор	
технологических инструментов для сверлильных	
операций	.29
Пабораторная работа №9 Применение стандартизованных	
конструктивных изделий и автоматизированный выбор	
Крепёж	36
ГИЕЛИОГРАФИЧЕСКИЙ СПИСОК	10
	40

БАЗЫ ДАННЫХ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ для обучающихся по направлению 15.03.01 «Машиностроение» (профиль «Технологии, оборудование и автоматизация машиностроительных производств») всех форм обучения

Составитель Новокщенов Сергей Леонидович

В авторской редакции

Подписано к изданию 01.12.2021. Уч.-изд. л. 2,6.

ФГБОУ ВО «Воронежский государственный технический университет» 394026, Воронеж, Московский просп., 14