Аннотация дисциплины

Б1.В.ОД.7 «Математическое моделирование технологических процессов и интегральных схем»

Общая трудоемкость изучения дисциплины составляет: 7 ЗЕТ (252 ч).

Цели и задачи дисциплины: овладеть современными знаниями в области построения и использования математических моделей (ММ) технологических процессов создания полупроводниковых приборов и интегральных микросхем (ИМС), ММ полупроводниковых приборов и элементов ИМС, используемых для изучения физических процессов в полупроводниковых структурах, расчета их основных характеристик и параметров, ММ полупроводниковых приборов и элементов ИМС для схемотехнических расчетов и анализа электронных схем в дискретном и интегральном исполнении.

Компетенции обучающегося, формируемые в результате освоения дисциплины

ОПК-2	способностью выявлять естественнонаучную сущность проблем, возникающих
	в ходе профессиональной деятельности, привлекать для их решения соответ-
	ствующий физико-математический аппарат
ОПК-7	способностью учитывать современные тенденции развития электроники, изме-
	рительной и вычислительной техники, информационных технологий в своей
	профессиональной деятельности
ПКВ-1	способностью владеть современными методами расчета и проектирования мик-
	роэлектронных приборов и устройств твердотельной электроники, способно-
	стью к восприятию, разработке и критической оценке новых способов их проек-
	тирования
ПКВ-4	способностью разрабатывать модели исследуемых процессов, материалов, эле-
	ментов, приборов, устройств твердотельной электроники и микроэлектронной
	техники

Основные дидактические единицы (разделы):

Роль математического моделирования технологических процессов и полупроводниковых приборов в микроэлектронике. Численные методы моделирования. Моделирование отдельных технологических операций. Математическое моделирование полупроводниковых приборов.

В результате изучения дисциплины «Математическое моделирование технологических процессов и интегральных схем» студент должен:

знать:

– о месте и роли математических моделей технологических процессов, полупроводниковых приборов и ИМС в области разработки и производства современных изделий электронной техники (ОПК-2);

- об основных тенденциях в области создания новых ММ для приборов и элементов ИМС малых размеров (ОПК-7, ПКВ-1);
 - о границах применения моделей (ОПК-7);
- о проблемах создания MM, позволяющих осуществлять высокоэффективное автоматизированное проектирование и производство полупроводниковых приборов и ИМС (ПКВ-4);

уметь:

- использовать основные математические модели технологических процессов создания полупроводниковых структур, интегральных микросхем и дискретных полупроводниковых приборов (ПКВ-1);
- использовать основные MM, необходимые для анализа физических процессов в полупроводниках, позволяющие осуществлять физикотехнологическое моделирование полупроводниковых приборов и элементов ИМС (ПКВ-1);
- использовать основные MM для схемотехнического анализа электронных схем на основе полупроводниковых приборов и ИМС (ПКВ-1);
- использовать пакеты прикладных программ моделирования технологических процессов и полупроводниковых приборов (ПКВ-4);

владеть:

- навыками создания ММ для конкретных технологических процессов, полупроводниковых приборов и ИМС (ПКВ-4);
- навыками проведения исследования MM с помощью средств вычислительной техники (ПКВ-1).

Виды учебной работы: лекции, лабораторные работы.

Формы контроля: зачет, экзамен.