МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

«УТВЕРЖДАЮ»

« 31 » августа 2021 г.

РАБОЧАЯ ПРОГРАММА дисциплины (модуля)

«Электроника»

Направление подготовки (специальность) <u>11.03.01 «Радиотехника»</u>
Профиль (специализация)	«Радиотехнические средства передачи,
	приема и обработки сигналов»
Квалификация выпускник	ка бакалавр
	льной программы 4 года / 4 года 11 месяцев
Форма обученияОчна	заочная
Год начала подготовки	2018
Автор программы	/P.П. Краснов/
Заведующий кафедрой радиотехники	—————————————————————————————————————
Руководитель ОПОП	Лат /А.В. Останков/

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Цель преподавания дисциплины – обеспечение студентов базовыми знаниями, навыками и представлениями в области электронной техники.

1.2. Задачи освоения дисциплины

Для достижения цели ставятся задачи:

- 1.2.1. Изучение элементной базы современной радиоэлектроники и основных направлений ее развития.
- 1.2.2. Ознакомление с характеристиками радиокомпонентов РЭА, электронных приборов и интегральных микросхем.
- 1.2.3. Получение навыка правильного выбора схемотехнических решений при разработке радиоэлектронной аппаратуры.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина (модуль) «<u>Электроника</u>» относится к дисциплинам <u>обязательной части</u> блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «<u>Электроника</u>» направлен на формирование следующих компетенций:

ОПК-1 — способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности.

Код	Результаты обучения, характеризующие				
компетенции	сформированность компетенции				
	Знает основные типы активных элементов, их модели и				
	способы количественного описания при использовании в				
	радиотехнических цепях и устройствах				
ОПК-1	Умеет выбирать проектные решения для данных				
	технического задания				
	Владеет приемами использования современной элементной				
	базы				

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «<u>Электроника</u>» составляет зачетных(е) единиц(ы).

3

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

о тах форма обутения					
Вид учебной работы		Всего	(Семестрь	J
		часов	3		
Контактная работа по видам заня	ятий	54	54		
(всего)		34	34		
В том числе:					
Лекции			36		
Практические занятия (ПЗ)			-		
Лабораторные работы (ЛР)			18		
Самостоятельная работа		54	54		
Часы на контроль		54	54		
Курсовой проект (работа) (есть, нет	г)	нет	-		
Контрольная работа (есть, нет)		нет	-		
Вид промежуточной аттестации			Зачет		
(зачет, зачет с оценкой, экзамен)			Sayer		
Общая трудоемкость	час	108	108		
	зач. ед.	3	3		

Заочная форма обучения

Вид учебной работы	Всего		Семестрь	J	
		часов	2		
Контактная работа по видам занят	гий	22	22		
(всего)		22	22		
В том числе:					
Лекции		10	10		
Практические занятия (ПЗ)		-	-		
Лабораторные работы (ЛР)		12	12		
Самостоятельная работа		82	82		
Часы на контроль		4	4		
Курсовой проект (работа) (есть, нет)		нет	нет		
Контрольная работа (есть, нет)		есть	есть		
Вид промежуточной аттестации			Зачет		
(зачет, зачет с оценкой, экзамен)			Sayer		
Общая трудоемкость	час	108	108		
	зач. ед.	3	3		

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	СРС	Всег о, час
		3 семестр	36		18	54	108
1	Полупроводни-ковая электроника	Полупроводниковые биполярные транзисторы. Устройство и принцип действия. Режимы работы. Схемы включения. Дифференциальные параметры. Транзистор как четырехполюсник. Статические вольтамперные характеристики. Режим покоя. Цепи смещения. Параметры усилительного каскада. Обратная связь. Виды обратной связи. Виды усилительных каскадов. Каскад с ОЭ. Каскад с ОБ. Каскад с ОК. Полевые транзисторы. ПТ с управляющим рп-переходом. Параметры ПТ. Схема включения с ОИ. Схема включения с ОС. МДПтранзисторы. МДП-транзистор с индуцированным каналом. МДПтранзистор со встроенным каналом. Операционные усилители. Внутренняя структура ОУ. Схемы включения ОУ: дифференциальное включение, инвертирующее включение. Схемы включения ОУ: интегратор, дифференциатор. Усилительсумматор. Диодные и транзисторные тиристоры. Симметричные тиристоры. Симметричные тиристоры.	22		18	36	76
2	Интегральная электроника	Основные понятия. Гибридные ИМС. Полупроводниковые ИМС. Биполярные и МДП- интегральные транзисторы Базовые технологические операции: эпитаксия, легирование, осаждение пленок, травление, литография. Технологии изготовления ИМС,	4			6	10

		технологии формирования				
		транзисторов.				
3	Вакуумная электроника	Общие принципы функционирования элементов вакуумной электроники. Вакуумный диод. Виды накала. Особенности построения схем с применением элементов вакуумной электроники. Вакуумный триод. ВАХ, параметры, схемы включения. Вакуумный тетрод, пентод. Схемы включения, работа с дополнительными сетками.	4		6	10
4	Акустоэлектрон ика	Пьезоэлектрические преобразователи. Отражатели объемных волн. Акустические волноводы. Концентраторы. Кварцевые резонаторы	2		2	4
5	а	Оптоэлектроника. Полупроводниковые лазеры. Инжекционные лазеры. Полупроводниковый лазер с электронной накачкой. СИД. Приемники излучения. Фоторезисторы. Фотодиоды. <i>p-i-n</i> фотодиоды. Лавинные фотодиоды. Фототранзисторы. Фоточувствительные приборы с зарядовой связью. Оптроны.	4		4	8
		Контроль				
		Итого	36	18	54	108

заочная форма обучения

№ п/п		Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всег о, час
		2 семестр	10		12	82	108
1	Полупроводни- ковая электро- ника	Полупроводниковые биполярные транзисторы. Устройство и принцип действия. Режимы работы. Схемы включения. Дифференциальные параметры. Транзистор как четырехполюсник. Статические вольтамперные характеристики. Режим покоя. Цепи смещения. Параметры усилительного каскада. Обратная связь. Виды обратной связи. Виды усилительных каскадов. Каскад с ОЭ. Каскад с ОБ. Каскад с ОК.	6		12	40	58

		Полевые транзисторы. ПТ с управляющим <i>pn</i> -переходом. Параметры ПТ. Схема включения с ОИ. Схема включения с ОИ. Схема включения с ОС. МДП-транзисторы. МДП-транзистор с индуцированным каналом. МДП-транзистор со встроенным каналом. Операционные усилители. Внутренняя структура ОУ. Схемы включения ОУ: дифференциальное включение, инвертирующее включение, неинвертирующее включение. Схемы включения ОУ: интегратор, дифференциатор. Усилительсумматор. Диодные и транзисторные тиристоры. Симметричные тиристоры.				
2	Интегральная электроника	Основные понятия. Гибридные ИМС. Полупроводниковые ИМС. Биполярные и МДП- интегральные транзисторы Базовые технологические операции: эпитаксия, легирование, осаждение пленок, травление, литография. Технологии изготовления ИМС, технологии формирования транзисторов.	1		10	11
3	Вакуумная электроника	Общие принципы функционирования элементов вакуумной электроники. Вакуумный диод. Виды накала. Особенности построения схем с применением элементов вакуумной электроники. Вакуумный триод. ВАХ, параметры, схемы включения. Вакуумный тетрод, пентод. Схемы включения, работа с дополнительными сетками.	1		12	13
4	Акустоэлектрон ика	Пьезоэлектрические преобразователи. Отражатели объемных волн. Акустические волноводы. Концентраторы. Кварцевые резонаторы	1		10	11
5	Оптоэлектроник а	Оптоэлектроника. Полупроводниковые лазеры. Инжекционные лазеры. Полупроводниковый лазер с электронной накачкой. СИД. Приемники излучения. Фоторезисторы. Фотодиоды. <i>p-i-n</i>	1		12	13

фотодиоды. Лавинные фотодиоды. Фототранзисторы. Фоточувствительные приборы с				
зарядовой связью. Оптроны.				
Контроль				4
Итого	10	12	82	108

5.2 Перечень лабораторных работ

Неделя семестра	Наименование лабораторной работы					
	3 семестр					
2-4	Исследование статических характеристик биполярного транзистора в схеме с бщим эмиттером					
6-8	Исследование статических характеристик полевого транзистора с управляющим pn-переходом в схеме с общим истоком					
10-12	Исследование статических характеристик МДП-транзистора в схеме с общим истоком					
14-16	Исследование каскадов с применением операционных усилителей					
17-18	Завершающее занятие для завершения защиты результатов исследований					

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Учебным планом по дисциплине «<u>Электроника</u>» не предусмотрено выполнение курсового проекта (работы).

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность	Критерии оценивания	Аттестован	Не аттестован
------------------	---	------------------------	------------	---------------

	компетенции			
	Знает основные типы активных элементов, их модели и способы количественного описания при использовании в радиотехнических цепях и устройствах	Знание учебного материала и готовность к его обсуждению и применению в рамках выполнения заданий на практических занятиях	Готовность представить аргументированные рассуждения в области принципов функционирования основных электронных компонентов	Неспособность представить аргументированные рассуждения, отно- сящиеся функционированию основных электронных компонентов
ОПК-1	Умеет выбирать проектные решения для данных технического задания	Решение стандартных практических задач в соответствии с индивидуальным вариантом задания	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеет приемами использования современной элементной базы	Решение прикладных задач из области электронной техники	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 5 семестре для очной формы обучения:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл	Неудовл
	Знает основные типы	Знание учебного	Студент	Студент	Студент	Студент
	активных элементов, их	материала и	демонстриру	демонст-	демонстриру	демонстриру
	модели и способы	готовность	ет полное	рирует	ет частичное	ет
	количественного	к его изложению на	понимание	понимание	понимание	незначитель
	описания при	зачете и применению	учебного	большей	материала,	ное
	использовании в	в рамках выполнения	материала,	части	способность	понимание
	радиотехнических цепях	заданий на	ярко	учебного	при	материала,
	и устройствах	лабораторных	выраженную	материала,	получении	непонимани
ОПК-1		занятиях	способность	способность	сторонней	е заданий.
OHK-1	Умеет выбирать	Умение	самостоятел	при	помощи к	Попытки
	проектные решения для	использовать	ьно	незначитель	выполнению	самостоя-
	данных технического	учебный материал	использоват	ной помощи	практичес-	тельного
	задания	при выполнении	ь знания,	использоват	ких и	решения
		практических	умения и	ь знания,	лабораторны	практи-
		расчетов,	навыки в	умения и	х занятий.	ческих
		проведении	процессе	навыки в	Попытки	задач
		лабораторных работ	выполнения	процессе	самостоя-	оказываютс
		и на зачете	практичес-	выполнения	тельного	я у него

Владеет приемами		ких и	практичес-	решения	малорезуль
использования		лабораторны	ких и	практи-	тативными
современной	Применение	х занятий, а	лабораторны	ческих	
элементной базы	методов расчета	также при	х занятий, а	задач	
	параметров	решении	также при	демонстриру	
	простейших	практи-	решении	ЮТ	
	устройств	ческих	практи-	нестабильно	
	в рамках	задач на	ческих	сть	
	лабораторных	экзамене	задач на	результатов	
	занятий и на зачете		экзамене		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1 Биполярный транзистор это:

А- полупроводниковый прибор с двумя взаимодействующими pn - переходами

В- полупроводниковый прибор с двумя рп и одним пр - переходом

С- полупроводниковый прибор с одним пр и двумя рп - переходами

D – полупроводниковый прибор с переходом металл-полупроводник

2 Полевой транзистор имеет следующие выводы:

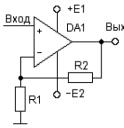
А – база, исток, затвор

В – коллектор, сток, база

С – база, эмиттер, исток

D – сток, исток, затвор

3 Входная характеристика биполярного транзистора, включенного по схеме с общим эмиттером, описывается функцией


$$A = I_6 = f(U_{\kappa_3}) npu U_{\kappa_3} = const$$

$$B - I_{\kappa} = f(U_{\kappa 9}) npu I_{\delta} = const$$

$$C - I_3 = f(U_{36}) npu U_{\kappa 6} = const$$

$$D - I_{\kappa} = f(U_{\kappa \delta}) npu I_{\mathfrak{s}} = const$$

4 На рисунке изображен ОУ, включенный по схеме:

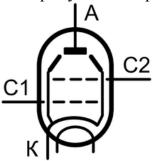
А – интегратора

В – дифференциатора

С – инвертирующего усилителя

D – неинвертирующего усилителя

5 Какой вид отрицательной обратной связи используется в типовой схеме включения ОУ?


А – последовательная по току

В - последовательная по напряжению

С – параллельная по току

D – параллельная по напряжению

6 На рисунке изображен

А – триод

В – тетрод

С – лучевой тетрод

D – пентод

7 Свойства акустических волн, обусловливающие их применение в радиотехнике и электронике – это:

А – Относительно низкая скорость распространения, простота и высокая эффективность возбуждения в пьезоэлектрических материалах

В – Высокая скорость распространения, быстрое затухание

С – Простота и высокая эффективность возбуждения в пьезоэлектрических материалах, низкая частота

D – Высокая частота, высокая скорость распространения

8 Акустическая волна на объемных волнах возбуждается:

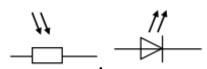
А – Во входном пьезопреобразователе при подаче на вход переменного напряжения

В – Движением электронов в звукопроводе

С – Встречно-штырьевым преобразователем

D – Разностью потенциалов на границе пьезоэлектрика и полупроводника

9 Оптроны или оптронные пары служат:


А – для гальванической развязки цепей передачи данных или для коммутации в цепях управления

В – для связи цепей переменного и постоянного тока

С – для связи высоковольтных цепей

D – для фильтрации помех

10 Элементы оптоэлектроники имеют следующие условно графические обозначения на принципиальных схемах. Определите правильное соответствие

А – фоторезистор, фотодиод

В – фоторезистор, светодиод

С – фотодиод, фоторезистор

D – светодиод фоторезистор

- 11 Если на выходе операционного усилителя при отсутствии входного сигнала присутствует ненулевое напряжение, его называют
- А нулевым сигналом
- В выходным напряжением
- С напряжением смещения нуля
- D выходным током
- **12** В каком режиме должен находиться транзистор, чтобы по выходной ВАХ можно было определить параметр h_{21} ?
- А в активном
- В в отсечке
- С в насыщенном
- D в режиме пробоя
- **13** Коэффициент усиления по напряжению, выраженный в децибелах, определяется по формуле
- $A U_{\text{вых}} / U_{\text{вх}}$
- $B-20 \; lg(U_{\scriptscriptstyle BMX} \, / \, U_{\scriptscriptstyle BX})$
- $C-10 lg(U_{\scriptscriptstyle BMX}/U_{\scriptscriptstyle BX})$
- $D ln(U_{BLIX} / U_{BX})$
- 14 Лавинный пробой это:
- А электрический пробой, возникающий при высоком напряжении обратно смещенного перехода
- B электрический пробой, возникающий при высоком напряжении прямо смещенного перехода
- С электрический пробой, возникающий при низком напряжении обратно смещенного перехода
- D электрический пробой, возникающий при низком напряжении прямо смещенного перехода
- 15 Эффект Миллера заключается в
- А увеличении коэффициента усиления усиливающего элемента
- В увеличении эквивалентной емкости усилительного элемента
- С расширении динамического диапазона выходного сигнала
- D нагревании усилительного элемента
- **7.2.2. Примерный перечень заданий для решения стандартных задач** Не предусмотрено учебным планом
- **7.2.3.** Примерный перечень заданий для решения прикладных задач Не предусмотрено учебным планом

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Общие принципы усиления сигналов. Структурная схема усилителя.
- 2. Биполярные транзисторы pnp и npn-типа. Схемы включения. Вольтамперные характеристики.
- 3. Дифференциальные (h) параметры биполярных транзисторов. Режимы и классы работы. Понятие смещения.
 - 4. Цепи смещения биполярных транзисторов.
 - 5. Цепи стабилизации биполярных транзисторов.
 - 6. Усилительный каскад по схеме с ОЭ.
- 7. Полевые транзисторы с управляющим pn-переходом. Статические характеристики, параметры.
- 8. Схемы включения полевых транзисторы с управляющим рппереходом.
 - 9. Цепи смещения в каскаде на ПТ с управляющим рп-переходом.
 - 10. Усилительный каскад на ПТ с управляющим рп-переходом.
 - 11. МДП транзисторы с индуцированным каналом.
 - 12. МДП транзисторы со встроенным каналами.
- 13. Параметры усилительных каскадов. Виды обратных связей. Коэффициент передачи усилителя с обратной связью.
- 14. Операционные усилители. Структурная схема. Принцип работы дифференциального каскада. Обозначение операционных усилителей.
- 15. Схемы включения операционных усилителей: инвертирующая, неинвертирующая.
- 16. Схемы включения операционных усилителей: интегратор, дифференциатор.
 - 17. Схемы включения операционных усилителей: усилитель-сумматор.
- 18. Схемы включения операционных усилителей: повторитель, дифференциальный усилитель.
 - 19. Схемы включения операционных усилителей: компараторы.
 - 20. Тиристоры. Назначение и классификация.
 - 21. Диодные тиристоры, диак.
 - 22. Триодные тиристоры. Симистор.
- 23. Принципы работы приборов вакуумной электроники. Электронная эмиссия.
 - 24. Вакуумный диод. Накал.
 - 25. Цепи накала электронных ламп.
- 26. Вакуумный триод: принцип работы, статические и динамические характеристики, ВАХ.
 - 27. Схемы включения вакуумного триода.
- 28. Вакуумный тетрод: принцип работы, ВАХ, особенности работы. Динатронный эффект.

- 29. Лучевой тетрод: принцип работы, ВАХ, особенности работы.
- 30. Вакуумный пентод: принцип работы, ВАХ, схемы включения.
- 31. Гибридные и пленочные интегральные схемы.
- 32. Радиоэлементы пленочных микросхем.
- 33. Полупроводниковые интегральные схемы. Методы создания радиоэлементов.
 - 34. Акустоэлектроника. Линии задержки на объемных кристаллах.
- 35. Акустоэлектроника. Встречно-штыревые преобразователи ПАВ, ПАВ-фильтры.
 - 36. Акустоэлектроника. Пьезоизлучатели. Кварцевые резонаторы.
- 37. Оптоэлектроника. Принципы генерации оптического излучения. Светоизлучающие диоды.
 - 38. Фотодиоды, ріп-фотодиоды.
 - 39. Фоторезисторы, фототранзисторы
- 40. Оптроны. Резисторные, диодные, транзисторные, тиристорные оптопары.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Не предусмотрены

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится в виде опроса по лабораторным работам и теоретическому материалу. Максимальное количество набранных баллов -15.

Оценка «Зачтено» ставится в случае, если студент набрал более 9 баллов и выше - иначе ставится оценка «Незачтено».

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного
11/11	(темы) диециплины	компетенции	средства
1	Полупроводниковая	ОПК-1	Устный опрос,
1	электроника	OHK-1	зачет
2	Интегральная электроника	ОПК-1	Устный опрос,
2		OHK-1	зачет
3	Вакуумная электроника	ОПК-1	Устный опрос,
3		OHK-1	зачет
4	Акустоэлектроника	ОПК-1	Устный опрос,
4		OHK-1	зачет
5	Оптоэлектроника	ОПК-1	Устный опрос,
3		OHK-I	зачет

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

При преподавании дисциплины «<u>Электроника</u>» в качестве формы оценки знаний студентов используются формы устного опроса при защите лабораторных работ и задания на зачет на бумажном носителе.

Задания к зачету включают два теоретических вопроса, относящихся к области знаний, определяемой перечнем вопросов к зачету (см. п. 7.2.2).

При проведении зачета разрешается использование:

- конспектов лекций;
- учебной литературы в бумажной форме.

Использование мобильных телефонов, планшетов, ноутбуков и/или иных устройств, предоставляющих беспроводную связь, <u>не допускается</u>.

Время подготовки к ответу по заданию составляет 30...45 мин. Затем осуществляется проверка уровня подготовки в ходе устной беседы с экзаменатором, на которую отводится до 15 минут, и выставляется оценка в соответствии с требованиями из п. 7.1.2.

8. УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Кучумов, А.И. Электроника и схемотехника / А.И. Кучумов. М.: Гелиос APB, 2005. 336 с.
- 2. Петров, К.С. Радиоматериалы, радиокомпоненты и электроника / К.С. Петров. СПб.: Питер, 2003. 506 с.
- 3. Краснов, Р.П. Основы электроники / Р.П. Краснов, Б.В. Матвеев. Воронеж: ФГБОУ ВПО «Воронежский государственный технический университет», 2013. 165 с.
- 4. Миловзоров, О.В. Электроника / О.В. Миловзоров, И.Г. Панков. М.: Высшая школа, 2006. 288 с.
- 5. Гусев, В.Г. Электроника и микропроцессорная техника / В.Г. Гусев. М.: Высшая школа, 2005. 396 с.
- 6. Краснов, Р.П. Методическое руководство к лабораторным работам № 1-4 по курсу «Электроника» / Р.П. Краснов. Воронеж: ФГБОУ ВПО «Воронежский государственный технический университет», 2014. 34 с.
- 7. Краснов, Р.П. Методическое руководство к выполнению самостоятельной работы по курсу «Электроника» для студентов направления 210400.62 «Радиотехника» (профиль "Радиотехнические средства передачи, приема и обработки сигналов") очной и заочной форм обучения / Р.П. Краснов. Воронеж: ФГБОУ ВПО «Воронежский государственный технический университет»; 2014. 15 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Офисный пакет приложений MicroSoftOffice, Beб-браузер Internet Explorer; Open Office Text; Open Office Cale. Свободно распространяемое ПО. Научная электронная библиотека elibrary (www. elibrary.ru)

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Лаборатория № 210, оснащенная лабораторными стендами «Электронные приборы» для проведения лабораторных работ

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «<u>Электроника</u>» читаются лекции, проводятся лабораторные занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные занятия проводятся путем макетирования измерительных схем. Они направлены на получение навыков снятия основных видов характеристик активных электронных компонентов цепей.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины производится устным опросом при защите результатов лабораторных работ. Освоение дисциплины оценивается на зачете (3 семестр).

Вид учебных	Деятельность студента
занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью словарей и справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции, практическом или лабораторном занятии.
Практические занятия	Не предусмотрены
Лабораторные занятия	Работа с конспектом лекций, просмотр рекомендуемой литературы. Изучение теоретических материалов и подготовка домашних заданий к лабораторным работам. Выполнение лабораторных измерений, расчет параметров элементов по полученным результатам.
Самостоятельная работа	Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения;

	- участие в работе студенческих научных конференций, олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка	отовка При подготовке к зачету необходимо ориентироваться на конспекты		
к зачету	лекций, рекомендуемую литературу и результаты расчетов,		
	полученных на лабораторных занятиях.		
Подготовка	Не предусмотрено		
к экзамену			

При наличии среди обучающихся студентов-инвалидов и лиц с OB3 особенности изучения ими дисциплины согласуются с преподавателем в индивидуальном порядке.

АННОТАЦИЯ

к рабочей программе дисциплины Б1.О.15 «Электроника»

Направление подготовки (специа	льность) 11.03.01 «Радиотехника»			
Плофиль (специализация)	код и наименование направления подготовки/специальности «Радиотехнические средства передачи,			
	приема и обработки сигналов»			
	название профиля/программы			
Квалификация выпускника	бакалавр			
	программы <u>4 года</u> / <u>4 года 11 месяцев</u>			
Форма обучения Очная / заоч	ная			
Форма обучения Очная / заоч	я (при наличии)			
Год начала подготовки 2018	-			
навыками и представлениями в обл Задачи изучения дисциплины - Изучение элементной базы направлений ее развития. - Ознакомление с хар электронных приборов и интеграль	и: современной радиоэлектроники и основных актеристиками радиокомпонентов РЭА, вных микросхем. ного выбора схемотехнических решений при			
Перечень формируемых компетенц ОПК-1 – способен использова	ций: ать положения, законы и методы пя решения задач инженерной деятельности.			
Форма итогового контроля по дисц	иплине: <u>зачет</u> (зачет, зачет с оценкой, экзамен)			