МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

Декан факультега М. Пасмурнов

РАБОЧАЯ ПРОГРАММА

дисциплины

«Дискретная математика»

Специальность 10.05.01 КОМПЬЮТЕРНАЯ БЕЗОПАСНОСТЬ

Специализация

Квалификация выпускника специалист по защите информации

Нормативный период обучения 5 лет и 6 м.

Форма обучения очная

Год начала подготовки 2016

Автор программы

/Ююкин Н.А./

Заведующий кафедрой Высшей математики и физико-математического моделирования

Руководитель ОПОП

/Батаронов / И.Л.

/Остапенко А.Г./

Воронеж 2017

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

- воспитание достаточно высокой математической культуры в области дискретной математики;
- привитие навыков современных видов математического мышления в области дискретной математики;
- использование методов дискретной математики в практической деятельности.

1.2. Задачи освоения дисциплины

- дать ясное понимание необходимости изучения дискретной математики как части математического образования в общей подготовке инженера, в том числе выработать представление о роли и месте дискретной математики в современной цивилизации и мировой культуре;
- ознакомить слушателей с основами комбинаторики, теории автоматов, теории графов и их приложениями к задачам математической кибернетики;
- привить навыки свободного обращения с основными дискретными объектами и корректного употреблении понятий и символов дискретной математики для выражения количественных и качественных отношений реального мира;
- показать примеры эффективного использования основных понятий и методов дискретной математики на практике.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Дискретная математика» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Дискретная математика» направлен на формирование следующих компетенций:

ОПК-2 - способностью применять аппарат дискретной математики для решения профессиональных задач

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-2	знать принципы построения алгоритмов дискретной математики
	уметь применять аппарат дискретной математики для решения прикладных задач
	владеть навыками постановки и решения задач дискретной математики в профессиональной деятельности

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Дискретная математика» составляет 10 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Puru vinofinoŭ poforiu		Семе	естры
Виды учебной работы	часов	6	7
Аудиторные занятия (всего)	184	40	144
В том числе:			
Лекции	92	20	72
Практические занятия (ПЗ)	92	20	72
Самостоятельная работа	140	68	72
Часы на контроль	36	1	36
Виды промежуточной аттестации - экзамен,	_	-	_
зачет	+	+	+
Общая трудоемкость:			
академические часы	360	108	252
зач.ед.	10	3	7

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

Шестой семестр 1 Теория графов. Основные понятия теории графов. Матричные способы задания и операции над графами. Маршруты в графах. Деревья. Эйлеровы и гамильтоновы графы. Фундаментальные циклы и	№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
графов. Основные понятия теории графов. Матричные способы задания и операции над графами. Маршруты в графах. Деревья. Эйлеровы и гамильтоновы графы.			Шестой семестр				
разрезы. Связь теории графов с бинарными 20 20 68 отношениями и векторными пространствами. Планарность и раскраска графов. Покрытия и независимость. Кратчайшие маршруты в графах. Задача коммивояжера. Потоки в		Теория графов.	Основные понятия теории графов. Матричные способы задания и операции над графами Маршруты в графах Деревья. Эйлеровы и гамильтоновы графы Фундаментальные циклы и разрезы. Связь теории графов с бинарными отношениями и векторными пространствами. Планарность и раскраска графов. Покрытия и независимость. Кратчайшие маршруты в графах. Задача	20 A A A A A A A A A A A A A A A A A A A		68	108

	1			I	1	
		сетях. Сетевое				
		планирование и				
		управление. Анализ				
		технических систем (на				
		примере электрической				
		цепи). Сигнальные графы.				
		Переключательные сети (
		схемы).				
		Седьмой семестр				
2	Элементы	Простейшие				
	комбинаторики	комбинаторные				
		конфигурации. Метод	36	36	36	108
		включений и исключений.	30	30	30	100
		Рекуррентные уравнения.				
2						
3	Теория	Понятие конечного				
	конечных	автомата. Эквивалентность				
	автоматов.	в автоматах. Процедура				
		минимизации конечных автоматов. Автоматные				
		языки. Автоматные				
		функции и эксперименты	36	36	36	108
		с автоматами.	50	30	30	100
		Модификации конечных				
		автоматов. Процедура				
		минимизации не				
		полностью описанного				
		автомата.				
		Итого	92	92	140	324

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компо тенци	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-2	знать принципы построения алгоритмов дискретной математики	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь применять аппарат дискретной математики для решения прикладных задач	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками постановки и решения задач дискретной математики в профессиональной деятельности	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6, 7 семестре для очной формы обучения по двух/четырехбалльной системе:

«зачтено»

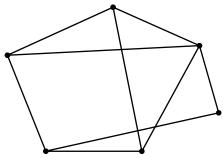
«не зачтено»

	Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ОПК-2		знать принципы построения алгоритмов дискретной математики	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
		уметь применять аппарат дискретной математики для решения прикладных задач	Решение стандартных практических задач	Продемонстриров а н верный ход решения в большинстве задач	Задачи не решены
		владеть навыками постановки и решения задач дискретной математики в профессиональной деятельности	Решение прикладных задач в конкретной предметной области	Продемонстриров а н верный ход решения в большинстве задач	Задачи не решены

ИЛИ

«отлично»;

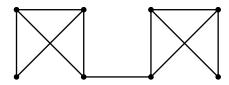
«хорошо»;

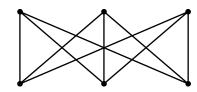

«удовлетворительно»;

«неудовлетворительно».

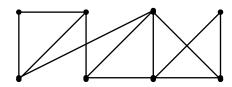
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-2	знать принципы	Тест	Выполнени	Выполнение	Выполнение	В тесте
	построения		е теста на	теста на 80-	теста на 70-	менее 70%
	алгоритмов		90- 100%	90%	80%	правильны
	дискретной					х ответов
	математики					
	уметь применять	Решение	Задачи	Продемонст	Продемонстр	Задачи не
	аппарат	стандартных	решены в	р ирован	ирован	решены
	дискретной	практически	полном	верный ход	верный ход	
	математики для	х задач	объеме и	решения	решения в	
	решения		получены	всех, но не	большинстве	
	прикладных		верные	получен	задач	
	задач		ответы	верный		
				ответ во всех		
				задачах		
	владеть	Решение	Задачи	Продемонст	Продемонстр	Задачи не
	навыками	прикладных	решены в	р ирован	ирован	решены
	постановки и	задач в	полном	верный ход	верный ход	
	решения задач	конкретной	объеме и	решения	решения в	
	дискретной	предметной	получены	всех, но не	большинстве	
	математики в	области	верные	получен	задач	
	профессионально		ответы	верный		
	й деятельности			ответ во всех		
				задачах		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)


7.2.1 Примерный перечень заданий для подготовки к тестированию 1 Дан граф


Сумма степеней всех его вершин равна:

- 1) 6; 2) 9; 3) 12; 4) 15; 5) 18.
- 2 Представленный на рисунке граф задает отношение, которое является:
- 1) рефлексивным; 2) симметричным; 3) транзитивным; 4) отношением порядка; 5) отношением эквивалентности.


- 3 Радиус графа, изображенного на рисунке равен:
- 1) 2; 2) 3; 3) 4; 4) 5; 5) 7.

- 4 Хроматическое число ниже приведенного графа равно:
- 1) 2; 2) 3; 3) 4; 4) 6; 5) 9.

5 В приведенном на рисунке графе число фундаментальных циклов равно:

- 1) 4; 2) 5; 3) 6; 4) 8; 5) 12.
- 6 Имеется 5 видов конвертов без марок и 4 вида марок. Конверт и марку для посылки письма можно выбрать:
 - 1) 120; 2) 24; 3) 20; 4) 5; 5) 4 способами.
- 7 Среди натуральных чисел от 20 до 1000 включительно имеются такие, которые не делятся ни на одно из чисел 7, 11 и 13. Всего таких чисел: 1) 28; 2) 304; 3) 635; 4) 705; 5) 953.
- 8 Решением рекуррентного уравнения $a_{n+2} 4a_{n+1} + 4a_n = 3^n$ с начальными условиями $a_0 = 5, a_1 = 7$ является последовательность:
 - $1) \ \ 4 \times 2^{n} \div 2n \times 3^{n} \ ; \ 2) \ \ 2^{n} \div (4 2n) \times 3^{n} \ ; \ 3) \ \ (4 + 2n) \times 2^{n} + 3^{n} \ ; \ 4) \ \ (4 2n) \times 2^{n} + 3^{n} \ ;$
 - 5) $2^{n} + (4 + 2n) \times 3^{n}$.
- 9 Внутреннее состояние конечного автомата в любой момент времени

полностью определяется:

1) состоянием автомата в предыдущий момент времени; 2) символом, поданным на его вход; 3) конечной последовательностью символов, поступающих на его вход; 4) символом на выходе и внутренним состоянием автомата в предыдущий момент времени; 5) правильного ответа нет.

10 Имеется конечный автомат, заданный таблицей состояний

Текущее	Следующе	е состояние	Вы	ход
состояние	0	1	0	1
s ₀	<i>s</i> ₁	s 2	1	0
<i>s</i> ₁	S 4	s ₂	0	0
s ₂	s ₃	s ₀	1	0
s 3	S 4	s ₀	0	0
S 4	S 4	s ₄	0	0

Число состояний минимального конечного автомата, покрывающего заданный автомат, равно:

1) 5; 2) 4; 3) 3; 4) 2; 5) 1.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Докажите тождества, используя только определения операций над множествами.
- 4. $A = \{a,b,c\}$, $B = \{1,2,3,4\}$, $P_1 \subseteq A \times B$, $P_2 \subseteq B^2$. Изобразите P_1 , P_2 графически. Найдите $[P_1 \circ P_2]^{-1}$. Проверьте с помощью матрицы $[P_2]$, является ли отношение $[P_2]$ рефлексивным, симметричным, антисимметричным, транзитивным?
- 5. Найдите область определения, область значений отношения P .

Является ли отношение *P* рефлексивным, симметричным, антисимметричным, транзитивным?

- 6. Является ли алгеброй следующий набор $B = \langle B, \Sigma \rangle$?
- 11. Составьте таблицы истинности формул.
- 12. Проверьте двумя способами, будут ли эквивалентны следующие формулы...
 - а. составлением таблиц истинности;
 - b. приведением формул к СДНФ или СКНФ с помощью эквивалентных преобразований.
- 13.С помощью эквивалентных преобразований приведите формулу к ДНФ, КНФ, СДНФ, СКНФ. Постройте полином Жегалкина.
- 14. Найдите сокращенную, все тупиковые и минимальные ДНФ булевой функции f(x, y, z) двумя способами:
 - а. методом Квайна:
 - b. с помощью карт Карно.

Каким классам Поста принадлежит эта функция?

- 15.С помощью карт Карно найдите сокращенную, все тупиковые и минимальные ДНФ, КНФ булевой функции $f(x_1, x_2, x_3, x_4)$, заданной вектором своих значений.
- 16. Является ли полной система функций? Образует ли она базис?
- 17.С помощью алгебры логики проверьте истинность соотношения для любых множеств A, B, C. Если соотношение неверно, постройте контрпример.

1.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$
$$A \times (B \cup C) = (A \times B) \cup (A \times C).$$

4.
$$P_{1} = \{\langle a,1 \rangle, \langle a,2 \rangle, \langle b,3 \rangle, \langle c,2 \rangle, \langle c,3 \rangle, \langle c,4 \rangle\},$$

$$P_{2} = \{\langle 1,1 \rangle, \langle 2,1 \rangle, \langle 2,2 \rangle, \langle 2,3 \rangle, \langle 2,4 \rangle, \langle 3,3 \rangle, \langle 4,4 \rangle\}.$$

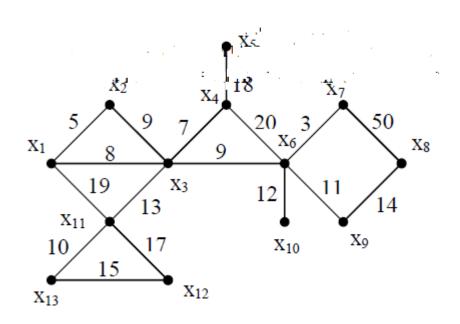
5.
$$P \subseteq R^2, \langle x, y \rangle \in P \iff x^2 + y^2 = 1$$
.

6.
$$\langle w; +, 0 \rangle$$

11.
$$(x \lor y) \leftrightarrow (y \downarrow \overline{x}), (x \mid \overline{y}) \rightarrow (z \oplus \overline{xy}).$$

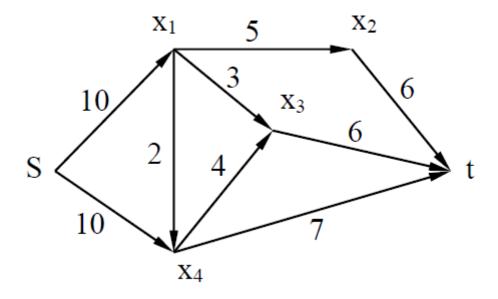
12.
$$x \to (y \oplus z) \dot{e} (x \to y) \oplus (x \to z)$$
.

13.
$$(x \vee \overline{y}) \rightarrow (\overline{z} \oplus \overline{x}).$$

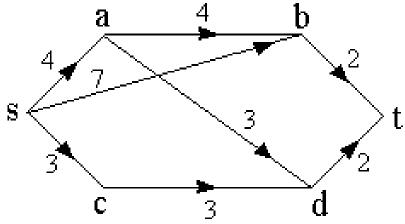

14.
$$f(0,1,0) = f(1,0,0) = f(1,0,1) = 0$$
.

16.
$$\mathfrak{I} = \{x \vee y, \overline{x} \oplus y\}.$$

17.
$$(A \cup B) \setminus (C \cap A) = (B \setminus C) \setminus (A \cup C)$$
.


7.2.3 Примерный перечень заданий для решения прикладных задач

1. С использованием алгоритмов Краскала и Прима построить кратчайший остов для графа и определить его суммарный вес


a. 100 b. 120 c. 125 d. 130

2. Для взвешенного орграфа найти кратчайший путь из вершины s в вершину t.

a. sabt b. scdt c. sbt d. sadt (b)

3. Определить максимальный поток в сети

a. 18 b. 21 c. 20 d. 19

- 4. В урне содержатся 6 синих, 7 зеленых и 4 красных шара. Из нее берут без возвращения 5 шаров, причем порядок выбора не существенен. Сколькими способами можно выбрать не менее 4 синих шаров? а. $C6\ 4C11\ 1\ + C6\ 5$ b. $C6\ 4\ + C6\ 5\ c$. $C6\ 4C11\ 1\ + C11\ 5\ d$. $A6\ 4A11\ 1\ + A6\ 5$
- 5. 10 мужчин, двое из которых Петров и Иванов, размещаются в гостинице в два 3-х местных и один 4-х местный номера. Определить число способов размещения, при которых Иванов и Петров попадут в 4-х местный номер. а. C10 3,3,4 b. C8 3,3,2 c. A10 3,3,4 d. C10 3,3,4 (b)
- 6. Все студенты первого курса изучают три языка программирования. 19 студентов изучают Pascal, 14 выбрали Си, 17 решили заняться Java. 4 студента слушают курсы и по Pascal, и по Си, трое изучают Pascal и Java, трое Си и Java. Известно, что никто не изучает сразу три языка. Сколько студентов изучают только Java? а. 17 b. 14 c. 11 d. 9 (c)
- 7. Из 20 студентов надо назначить 5 дежурных. Сколькими способами это можно сделать? а. 100 b. 125 с. 14200 d. 15504 (d)

- 8. Сколько словарей надо издать, чтобы можно было выполнять переводы с любого из десяти языков на любой другой из этих десяти языков? а. 20 b. 100 c. 90 d. 120 (c)
- 9. Построить СДНФ функции $f(x,y,z) = x \vee y \vee z \wedge (x \vee y) a$. $(xyz \vee xyz \vee xyz \vee xyz)$ b. $(xyz \vee xyz \vee xyz \vee xyz)$ c. $(xyz \vee xyz \vee xyz \vee xyz)$ d. $(xyz \vee xyz \vee xyz \vee xyz)$ (d)
- 10. Построить СКНФ формулы $((((x \rightarrow y) \rightarrow x) \rightarrow y) \rightarrow z)$ а. $(xyz \land xyz)$ $yz \land xyz$ $yz \land xyz \land xyz \land xyz$ $z \land xyz \land xyz \land xyz$ $z \land xyz \land xyz$

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Задачи теории графов.
- 2. Основные определения теории графов.
- 3. Матричные способы задания графов.
- 4. Основные операции над графами.
- 5. Понятие маршрута.
- 6. Связность в графах.
- 7. Связность и матрица смежности графа.
- 8. Матрица взаимодостижимости.
- 9. Свободные деревья.
- 10. Ориентированные, упорядоченные и бинарные деревья.
- 11. Эйлеровы графы.
- 12. Алгоритм построения эйлерова цикла в эйлеровом графе.
- 13. Гамильтоновы графы.
- 14. Оценка числа эйлеровых и гамильтоновых графов.
- 15. Фундаментальные циклы.
- 16.Разрезы.
- 17.Отношения на множествах и графы.
- 18. Векторные пространства, связанные с графами.
- 19.Планарные графы.
- 20. Раскраска графов.
- 21.Покрывающее множество вершин и ребер.
- 22. Независимые множества вершин и ребер.
- 23. Доминирующее множество вершин.
- 24. Расстояние в графах.
- 25. Алгоритм Форда-Беллмана.
- 26. Алгоритм Дейкстры.
- 27. Алгоритм нахождения кратчайших маршрутов в бесконтурном графе.
- 28.Постановка задачи коммивояжера.
- 29. Обходы графа по глубине и ширине.
- 30.Решение задачи коммивояжера.
- 31.Основные определения сети и потоков в ней.
- 32. Теорема Форда и Фалкерсона.
- 33. Алгоритм построения максимального потока в сети.
- 34. Элементы сетевого графика.

- 35. Временные параметры сетевого графика.
- 36. Распределение ограниченных ресурсов в сетевых графиках.
- 37.Законы Кирхгофа.
- 38. Уравнения контурных токов.
- 39. Уравнения узловых напряжений.
- 40.Общие представления о сигнальных графах.
- 41.Преобразования сигнальных графов.
- 42. Формула Мэзона.
- 43. Переключательные схемы.

7.2.5 Примерный перечень заданий для решения прикладных задач

- 1. Понятие о комбинаторике и комбинаторных конфигурациях. Основные правила комбинаторики.
- 2. Определение перестановок элементов конечного множества. Расчет числа перестановок. Примеры.
- 3. Размещения из п элементов по т элементов. Число размещений. Примеры.
- 4. Сочетания из п элементов по т элементов. Число сочетаний. Примеры.
- 5. Размещения и сочетания с повторениями. Определения и примеры расчетов числа сочетаний и размещений с повторениями.
- 6. Понятие о латинских прямоугольниках и квадратах. Формулы для нахождения их числа.
- 7. Конечные проективные плоскости. Постулаты для точек и прямых, расположенных на проективной плоскости. Порядок конечной проективной плоскости. Конечная проективная плоскость второго порядка.
- 8. Понятие блок-схемы. Уравновешенные и частично уравновешенные неполные блок-схемы. Матрица инцидентности блок-схемы. Подклассы блок-схем.
- 9. Объединение комбинаторных конфигураций. Примеры подсчета числа комбинаторных конфигураций для простейших случаев объединения.
- 10. Принцип включения и исключения. Доказательство принципа для произвольного числа объединяемых множеств.
- 11. Число булевых функций, существенно зависящих от всех своих переменных.
- 12. Определение рекуррентного соотношения. Общее решение однородного рекуррентного уравнения. Пример решения.
- 13. Частное и общее решение неоднородного линейного рекуррентного уравнения. Общие рецепты нахождения частного решения. Привести пример решения.
- 14. Общие сведения о производящих функциях. Обычные и экспоненциальные производящие функции.
- 15. Биномиальные коэффициенты и их производящая функция. Доказательство тождества для биномиальных коэффициентов.
- 16. Числа Фибоначчи. Рекуррентные соотношения для чисел Фибоначчи. Использование производящей функции для выражения общего члена чисел Фибоначчи.
- 17. Трансверсали. Определение систем различных представителей (трансверсалей) множесва. Теорема Холла о существовании трансверсалей. Критическое подсемейство множеств.
- 18. Перманент матрицы. Определение, примеры расчета и основные свойства.
- 19. Число трансверсалей. Матрица инцидентности множества. Формулировка теоремы о связи числа трансверсалей с перманентом матрицы инцидентности. Задача о встречах.
- 20. Матрицы Адамара. Определение, условия ортогональности и нормальности. Абсолютное значение определителя матрицы Адамара n го порядка..
- 21. Эквивалентные преобразования матриц Адамара. Приведение матриц Адамара к нормализованному виду. Размерности матриц Адамара.

- 22. Кронекерово произведение матриц и его использование для построения матриц Адамара высокого порядка исходя их матриц меньшего порядка.
- 23. Понятие конечного автомата. Общие свойства автоматических устройств дискретного действия. Функциональное построение современных цифровых вычислительных машин и электрическое состояние их элементов.
- 24. Формальное (абстрактное) определение конечного автомата. Входной и выходной алфавиты, множества внутренних состояний, переходная и выходная функции. Последовательность работы конечного автомата.
- 25. Пример конечного автомата. Способы его описания с помощью диаграммы и таблицы состояний.
- 26. Эквивалентность автоматов. Основные определения и термины. Входная и выходная строки, строка состояния и функции, связывающие эти строки. Покрытие, эквивалентность и минимальность автоматов.
- 27. Отношения покрытия и эквивалентности автоматов. Морфизм, эпиморфизм и изоморфизм автоматов. Пример изоморфных автоматов.
- 28. Эквивалентные состояния автоматов. r эквивалентность, эквивалентность и классы эквивалентности. Пример конечного автомата, имеющего эквивалентные состояния.
- 29. Примеры процедур минимизации конечных автоматов на основе отношений эквивалентности между упорядоченными парами состояний.
- 30. Машины Тьюринга. Принцип действия и формальное определение.
- 31. Примеры машин Тьюринга, определяющих четность числа единиц в последовательности, одинаковость числа единиц и нулей в последовательности, сложения двух неотрицательных чисел.
- 32. Понятие формальной грамматики. Символы, предложения и язык формальной грамматики. Грамматики порождающие и распознающие. Зависящие от контекста и контекстно-свободные грамматики.
- 33. Автоматные грамматики. Акцепторы с конечным числом состояний. Диаграммы состояний конечного акцептора. Теоремы автоматных грамматик (без доказательства).
- 34. Понятие ограниченно детерминированной (автоматной) функции. Единичная задержка.
- 35. Схемы из функциональных элементов и элементов задержки. Определение и связь с автоматным отображением. Понятие моделирования автоматной функции. Базис схемы из функциональных элементов и элементов задержки.
- 36. Эксперименты по отличимости состояний автоматов. Определения и основные свойства..
- 37. Не полностью описанные (частичные) автоматы. Безразличные позиции (неопределенные символы) в таблице состояний. Допустимая входная последовательность. Покрытие и совместимость выходных строк.
- 38. Понятия недетерминированного и вероятностного автоматов.
- 39. Понятие нечеткого множества.
- 40. Меры сходства и различия нечетких множеств.

Разбиение нечеткого множества

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

(Например: Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов — 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
 - 2. Оценка «Удовлетворительно» ставится в случае, если студент

набрал от 6 до 10 баллов

- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Теория графов.	ОПК-2	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
2	Элементы комбинаторики	ОПК-2	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
3	Теория конечных автоматов	ОПК-2	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения

дисциплины

No	Авторы, составители	Заглавие	Годы здания.	спечен
п/п			Вид	
			издани	
			Я	
		7.1.1. Основная литература		
7.1.1.3	Судоплатов С.В.	Дискретная математика: Учебник. – М	2005	0,
		ИНФРАМ, 2005. – 256 c.	печат.	
		7.1.2. Дополнительная литература		
7.1.2.1	Новиков Ф.А.	Дискретная математика для	2005	0,3
		программистов Учебник. – СПб:	I I	
		Питера, 2005. – 364 с.	печат.	
		7.1.3 Методические разработки		
7.1.3.1	Ююкин Н.А.,	Математическая логика и теория	2007	
	Моисеев С.И., Федотенко Г.Ф.	алгоритмов: учеб. пособие	печат.	
7.1.3.2	Ююкин Н.А.	Дискретная математика. Часть 1.	2004	
		Элементы теории графов учеб. пособие.	магн.	
			носитель	
7.1.3.3	Ююкин Н.А.	Дискретная математика. Ч. 2: Элементы	2011	
		комбинаторики и теории конечных автоматов учеб. пособие	магн. носитель	

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

ПО: windows, open office? Acrobat reader

Для выполнения домашних заданий рекомендуется использовать

Mathstudio

Современная профессиональная база данных

Mathnet.ru, e-library/ru

Информационные справочные системы

dist.sernam.ru, Wikipedia

http://eios.vorstu.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных и практических занятий необходимы учебные аудитории, оснащенные техническими средствами для проведения занятий по математике

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Дискретная математика» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета <u>параметров и текущих значений дискретных объектов</u>. Занятия проводятся путем решения конкретных задач в аудитории.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции
	или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.

Подготовка к	Готовиться к промежуточной аттестации следует
промежуточной аттестации	систематически, в течение всего семестра. Интенсивная
	подготовка должна начаться не позднее, чем за месяц-полтора
	до промежуточной аттестации. Данные перед зачетом
	экзаменом три дня эффективнее всего использовать для
	повторения и систематизации материала.