МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

> **УТВЕРЖДАЮ** И.о. декана факультета В.И. Ряжских « 29 » августа 2017 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Математика»

Направление подготовки 22.03.02 МЕТАЛЛУРГИЯ **Профиль** «Технология литейных процессов» Квалификация выпускника бакалавр Нормативный период обучения 4 года Форма обучения очная Год начала подготовки 2016 / Кострюков С.А. / Автор программы Заведующий кафедрой Высшей математики и

физико-математического моделирования

/ Батаронов И.Л. /

Руководитель ОПОП

Ям.С.— / Печенкина Л.С. /

Воронеж 2017

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

сообщить студентам определенную сумму математических знаний, необходимых при изучении других учебных дисциплин,

привить студентам навыки использования изученного математического аппарата в стандартных ситуациях

воспитать математическую культуру, уровень которой должен обеспечить способность самостоятельно приобретать нужные математические знания путем чтения математической и специальной литературы.

1.2. Задачи освоения дисциплины

- получить представление о математике как особом способе познания мира, общности ее понятий и представлений
- научиться использовать основные понятия и методы математического анализа, аналитической геометрии, линейной алгебры, дифференциальных уравнений, теории вероятностей и математической статистики; математические модели простейших систем и процессов в естествознании и технике
- овладеть навыками употребления математической символики для выражения количественных и качественных отношений объектов
- научить основным приемам обработки экспериментальных результатов и умению пользоваться универсальными системами компьютерной математики при решении математических и вычислительных задач

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Математика» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Математика» направлен на формирование следующих компетенций:

ОПК-4 - готовность сочетать теорию и практику для решения инженерных задач

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-4	знать основные положения и методы векторной и линейной алгебры и аналитической геометрии, дифференциального и интегрального исчисления, обыкновенных дифференциальных уравнений, теории вероятностей и математической статистики
	уметь применять математические методы и вычислительную технику для решения практических задач
	навыками анализа вероятностных и статистических данных; навыками применения математических методов в профессиональной деятельности.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Математика» составляет 11 з.е. Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Drywy ywasynai nasawy	Всего	Семестры		
Виды учебной работы	часов	1	2	
Аудиторные занятия (всего)	162	72	90	
В том числе:				
Лекции	90	36	54	
Практические занятия (ПЗ)	54	36	18	
Лабораторные работы (ЛР)	18	ı	18	
Самостоятельная работа	162	90	72	
Часы на контроль	72	36	36	
Виды промежуточной аттестации -				
экзамен	+	+	+	
Общая трудоемкость:				
академические часы	396	198	198	
зач.ед.	11	5,5	5,5	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Элементы теории множеств и высшей алгебры	Множества и подмножества. Операции над множествами. Отношения и отображения. Множество действительных чисел. Логическая символика. Комплексные числа в алгебраической форме и действия над ними. Геометрическая интерпретация, тригонометрическая и показательная формы комплексного числа. Формулы Эйлера и Муавра. Извлечение корней из комплексного числа. Многочлены и алгебраические уравнения. Теорема Безу. Основная теорема алгебры. Рациональные дроби. Разложение рациональных дробей на простейшие. Прямоугольные матрицы и действия над ними. Квадратные матрицы и их определители. Основные свойства определителей. Методы вычисления определителей. Обратная матрица. Ранг матрицы и его вычисление. Матричные уравнения Системы плинейных уравнений с п неизвестными. Формулы Крамера. Системы тинейных уравнений с п неизвестными. Метод Гаусса. Теорема Кронекера—Капелли. Системы однородных линейных уравнений. Фундаментальная система решений.	12	14	4	24	54

2	Аналитическая геометрия	Векторы и линейные операции над ними. Проекция вектора на ось. Координаты вектора в заданном базисе. Декартовы координаты векторов и точек. Действия над векторами, заданными своими координатами. Скалярное, векторное и смешанное произведения векторов, их основные свойства, координатные выражения и применение. Системы координат на плоскости. Декартова и полярная системы координат. Преобразование системы координат при параллельном переносе и повороте осей координат. Уравнение линии на плоскости. Кривые второго порядка: окружность, эллипс, гипербола и парабола. Прямая на плоскости. Различные формы уравнения прямой. Угол между прямыми. Расстояние от точки до прямой. Плоскость в пространстве. Различные формы уравнения плоскости. Угол между плоскостями. Расстояние от точки до плоскости. Прямая в пространстве. Уравнения поверхности и линии в пространстве. Поверхности второго порядка. Исследование формы поверхности методом сечений.	8	8	2	14	32
3	Введение в математический анализ	Понятие функции. Числовые функции одной действительной переменной. Способы задания функции. Обратные, сложные и неявные функции. Числовые последовательности. Предел числовой последовательности. Понятие числового ряда. Необходимый признак сходимости. Предел функции. Односторонние пределы. Ограниченные и неограниченные функции. Действия с пределами. Замечательные пределы. Число е. Бесконечно большие и бесконечно малые функции. Сравнение бесконечно малых и бесконечно больших функции. Непрерывность функции в точке. Классификация точек разрыва. Непрерывность элементарных функций. Свойства функций, непрерывных на отрезке. Основные элементарные функции, их свойства и графики.	6	6	2	12	26
4	Дифференци- альное исчис- ление функций одной действи- тельной пере- менной	Производная функции, ее геометрический и механический смысл. Основные правила нахождения производных. Таблица основных производных. Производная сложной и обратной функции. Лиф-	10	8	2	22	42

		ренциал, их физический смысл.					
	Интегральное исчисление функций одной действительной переменной	Понятие о первообразной и неопределенном интеграла. Свойства неопределенного интеграла. Таблица основных неопределенных интегралов. Интегрирование методами замены переменной и по частям. Интегрирование рациональных дробей и тригонометрических функций. Интегрирование некоторых иррациональных и трансцендентных функций. Определенный интеграл как предел интегральной суммы. Формула Ньютона—Лейбница. Основные свойства определенного интеграла. Вычисление определенного интеграла методами замены переменной и по частям. Несобственные интегралы с бесконечными пределами и от неограниченных функций. Признаки сходимости несобственных интегралов. Геометрические и физические приложения определенного интеграла.	10	4	2	18	34
	Дифференци- альное исчис- ление функций нескольких пе- ременных	Понятие функции нескольких переменных. Частные производные и дифференциал. Дифференцирование сложных функций. Полная производная. Дифференцирование неявных функций. Частные производные и дифференциалы высших порядков. Экстремум функции нескольких переменных. Наибольшее и наименьшее значения функции в намкнутой области. Условный экстремум.		2	0	12	22
7	Кратные инте- гралы	Двойной интеграл, его основные свойства. Сведение двойного интеграла к повторному в декартовой системе координат. Двойной интеграл в полярных координатах. Тройной интеграл. Вычисление тройного интеграла в декартовых, цилиндрических и сферических координатах. Вычисление интегралов, зависящих от параметра. Геометрические и механические приложения кратных интегралов.	6	4	0	10	20
	Обыкновенные дифференциаль ные уравнения	Понятие об дифференциальных уравнениях. Задача Коши и краевая задача. Существование и единственность решения задачи Коши. Уравнения 1-го порядка, интегрируемые в квадратурах: с разделяющимися переменными, однородные, линейные, Бернулли, в полных дифференциалах. Дифференциальные уравнения высших порядков, допускающие понижение порядка. Линейные дифференциальные уравнения: однородные и неоднородные. Общее решение. Фундаментальная система решений. Метод Лагранжа вариации постоянных. Линейные дифференциальные уравнения <i>п</i> -го порядка с постоянными коэффициентами. Уравнения с правой частью специального вида. Нормальные системы дифференциальных уравнений. Линейные нормальные системы. Задача Коши. Метод исключения. Физический смысл нормальной системы. Понятие об устойчивости решения дифференциальных уравнений.	12	4	4	20	40
9	Теория вероят- ностей	Математические модели случайных явлений. Понятие случайного события. Алгебраические опера-	12	4	0	20	36

I	Итого		90	54	18	162	324
10	Основы мате- матической статистики	Методы статистического описания результатов наблюдений: Выборка и способы ее представления. Числовые характеристики выборочного распределения. Статистическое оценивание характеристик распределения генеральной совокупности по выборке: Точечные оценки. Методы точечного оценивания. Интервальные оценки. Доверительные интервалы параметров нормально распределенной генеральной совокупности. Проверка статистических гипотез. Способы проверки гипотез. Критерий χ^2 и его применение. Элементы регрессионного анализа: Линейная регрессия. Метод наименьших квадратов.	6	0	2	10	18
		ции над событиями. Частота события и её свойства. Вероятность события. Классическая вероятностная схема. Геометрические вероятности. Вероятностное пространство. Комбинаторный метод вычисления вероятностей. Теоремы сложения и умножения. Условная вероятность. Независимость событий. Формулы полной вероятности и Байеса. Формула Бернулли. Случайные величины. Закон распределения. Функция распределения, плотность распределения вероятностей. Математическое ожидание, дисперсия и другие числовые характеристики. Основные законы распределения случайных величин. Случайные векторы: Законы распределения и числовые характеристики. Корреляционный момент. Условные законы распределения. Независимость случайных величин. Функции случайных величин: Числовые характеристики и свойства. Законы распределения. Закон больших чисел. Неравенство Чебышева. Предельные теоремы вероятностей: Теорема Бернулли. Центральная предельная теорема. Теоремы Муавра—Лапласа.					

5.2 Перечень лабораторных работ

No	Наименование лабораторной работы	Объем часов	Виды контроля			
	ІІ семестр					
1	Знакомство с системами компьютерной математики	2	отчет			
2	Решение алгебраических уравнений. Комплексные числа	2	отчет			
3	Решение задач векторной и линейной алгебры	2	отчет			
4	Пределы. Дифференцирование	4	отчет			
5	Интегрирование	2	отчет			
6	Решение дифференциальных уравнений	4	отчет			
7	Статистическая обработка выборочных данных	2	отчет			
Итого	Итого часов:					

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы).

Предусмотрены следующие темы письменных работ.

Первый семестр

- 1. Контрольная работа № 1 «Элементы высшей алгебры» (7 неделя).
- 2. Контрольная работа № 2. "Пределы. Дифференцирование" (17 неделя).
- 3. Типовой расчет «Аналитическая геометрия. Векторная алгебра» (выдается на 8 неделе, принимается на 12 неделе).

Второй семестр

- 1. Контрольная работа «Функции нескольких переменных» (6 неделя).
- 2. Типовой расчет № 1. «Кратные интегралы. Дифференциальные уравнения» (выдается на 7 неделе, принимается на 12 неделе).
- 3. Типовой расчет № 2. «Вероятности событий. Случайные величины» (выдается на 13 неделе, принимается на 17 неделе).

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-4	знать основные положения и методы векторной и линейной алгебры и аналитической геометрии, дифференциального и интегрального исчисления, обыкновенных дифференциальных уравнений, теории вероятностей и математической статистики	Активная работа на практических занятиях, ответ не менее чем на по- ловину заданных в процессе опроса вопросов	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь применять математические методы и вычислительную технику для решения практических задач владеть навыками анализа вероятностных и статистических данных;	Решение не менее половины стандартных практических задач Решение не менее половины прикладных задач в	Выполнение работ в срок, предусмотренный в рабочих программах Выполнение работ в срок, предусмотренный в рабочих	Невыполнение работ в срок, предусмотренный в рабочих программах Невыполнение работ в срок, предусмотренный в работ

навыками применения математических методов в профессио-	конкретной пред-	программах	бочих программах
нальной деятельности.			

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 1, 2 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-4	знать основные положения и методы векторной и линейной алгебры и аналитической геометрии, дифференциального и интегрального исчисления, обыкновенных дифференциальных уравнений, теории вероятностей и математической статистики	Тест	Выполнение теста на 90-100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правиль- ных отве- тов
	уметь применять мате- матические методы и вычислительную технику для решения практиче- ских задач	Решение стандартных практических задач	Задачи ре- шены в пол- ном объеме и получены верные от- веты	Продемонстр ирован верный ход решения всех, но не по- лучен верный ответ во всех задачах	Продемонстр ирован вер- ный ход ре- шения в большинстве задач	Задачи не решены
	владеть навыками анализа вероятностных и статистических данных; навыками применения математических методов в профессиональной деятельности.	Решение прикладных задач в кон-кретной предметной области	Задачи ре- шены в пол- ном объеме и получены верные от- веты	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован вер- ный ход ре- шения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

Первый семестр

- 1. Если у неоднородной системы n линейных алгебраических уравнений с n неизвестными определитель равен нулю, то
 - А) ее можно решать по формулам Крамера
 - Б) ее можно решать матричным методом
 - В) ее можно решать методом Гаусса
 - Γ) ее нельзя решать

2. Матрицы можно умножать
А) всегда
Б) если число строк в первой матрице равно числу столбцов во второй
В) если число столбцов в первой матрице равно числу строк во второй Г) только квадратные
3. Обратная матрица есть у
А) любой матрицы
Б) любой квадратной матрицы
В) любой квадратной невырожденной матрицы
Г) это редкое свойство, оно у матриц встречается индивидуально
4. Векторы $\bar{e}_1 = \bar{i} + 7\bar{k}$, $\bar{e}_2 = \alpha \bar{i} + 2\bar{j} + 4\bar{k}$, $\bar{e}_3 = 3\bar{i} + 2\bar{j} + \bar{k}$ образуют базис
при α, равном
A) 0; Б) 1; В) -1 ; Γ) 2; Д) $\frac{1}{2}$.
5. Векторное произведение равно нулю для
А) коллинеарных векторов
Б) компланарных векторов
В) перпендикулярных векторов
Г) оно не равно нулю, если векторы ненулевые.
6. Смешанное произведение трех векторов равно
А) объему параллелепипеда, построенного на них
Б) по модулю равно объему параллелепипеда, построенного на них
В) объему тетраэдра, построенного на них
Г) площади параллелограмма
7. Прямая $\frac{x+2}{4} = \frac{y-1}{\alpha} = \frac{z}{3}$ параллельна плоскости $3x-2y+2z+1=0$ при α равном
7. Прямая $\frac{1}{4} = \frac{1}{\alpha} = \frac{1}{3}$ паравлельна плоскости $3x-2y+2z+1=0$ при α равном
A) $-\frac{8}{3}$; B) $\frac{3}{4}$ Г) 1; Д) -3.
8. Окружность – это геометрическое место точек плоскости, равноудаленных
А) от данной точки этой же плоскости
Б) от двух данных точек этой же плоскости
В) от данной прямой и данной точки
Г) правильный ответ не указан
9. Дифференциал равен
А) угловому коэффициенту касательной к графику функции в точке касания
Б) скорости изменения функции
В) приращению ординаты касательной
Г) производной в точке касания
10. Если для любого $\varepsilon > 0$ существует N такое, что для любого x из $ x > N$
следует $ f(x)-a < \varepsilon$, то
A) $\lim_{x \to a} f(x) = \infty$; B) $\lim_{x \to \infty} f(x) = a$; B) $\lim_{x \to a} f(x) = -\infty$; $\prod_{x \to a} f(x) = 0$; $\prod_{x \to a} f(x) = 0$;
$\lim_{x\to\infty} f(x) = a.$
11. Из непрерывности функции
А) следует дифференцируемость
Б) не следует дифференцируемость
В) следует непрерывность производной
12. С помощью правила Лопиталя
А) раскрывают любые неопределенности при вычислении пределов
Б) раскрывают неопределенность 0/0, бесконечность/бесконечность при вычислении

Π 1	nei	пei	IOB
	$\rho \circ \rho$	40,	IUL

- В) находят производные
- Г) находят приращения
- 13. Если пределы функции слева и справа в точке разрыва конечны и не равны, то это
 - А) устранимая точка разрыва
 - Б) точка разрыва первого рода
 - В) точка разрыва второго рода.
- 14. Второй дифференциал функции f(x) в точке x имеет вид

A)
$$df(x) \cdot \Lambda x$$

$$F(x)dx^2$$

B)
$$d(f(x \cdot \Delta x)$$
.

$$\Gamma$$
) $d^2 f(x) \cdot \Delta x$: Π) $f''(x)$

A) $df(x) \cdot \Delta x$; Б) $f(x) dx^2$; В) $d(f(x \cdot \Delta x); \Gamma) d^2 f(x) \cdot \Delta x; Д) f''(x) dx^2$. 15. Представление функции $y = \sin x$ рядом Тейлора в окрестности точки x = 0 имеет вид

A)
$$1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}+...;$$

$$\mathrm{E}(x) + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots;$$

B)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots$$

B)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots;$$
 Γ) $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots;$

Д)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$
; E) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$

E)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

Второй семестр

1. Одна из первообразных для функции $\sin(5x-7)$ имеет вид

1)
$$5\cos(5x-7)$$
; 2) $3-5\cos(5x-7)$

1)
$$5\cos(5x-7)$$
; 2) $3-5\cos(5x-7)$; 3) $1-\frac{1}{5}\cos(5x-7)$; 4) $-2\cos(5x-7)$;

5)
$$\frac{1}{5}\cos(5x-7)-2$$
.

2. Неопределенный интеграл $\int \frac{x^2 dx}{\sqrt[3]{r^3 + 1}}$ равен

1)
$$c + \frac{1}{3}(x^3 + 1)$$
; 2) $(x^3 + 1)^{\frac{1}{3}} + c$; 3) $c - (x^3 + 1)^{\frac{1}{3}}$;

4)
$$\frac{1}{2}(x^3+1)^{\frac{2}{3}}+c$$
; 5) $\frac{1}{2}(x^3+1)^{-\frac{2}{3}}+c$

3. Площадь криволинейной трапеции, ограниченной графиками функций

$$y = (x-2)^2$$
, $y^2 = x-2$ равна

$$1)\frac{1}{6}$$
, $2)\frac{1}{2}$; $3)2$; $4)\frac{1}{3}$; $5)\frac{2}{3}$

4. Несобственный интеграл $I = \int_{0}^{\infty} xe^{-x^2} dx$

1) расходится; 2)
$$I = \frac{1}{2}$$
; 3) $I = 1$; 4) $I = 0$; 5) $I = -1$.

2)
$$I = \frac{1}{2}$$
;

3)
$$I = 1$$
;

4)
$$I = 0$$
;

5)
$$I = -1$$
.

5. Частная производная функции $z = tg \frac{x}{y}$ по y в точке $M(\pi, 1)$ равна

1) 0; 2)
$$\frac{1}{\pi}$$
; 3) 1; 4) $-\pi$; 5) $\pi+1$.

- 6. Двойной интеграл по определению это
 - А) два повторных

- Б) предел интегральных сумм
- В) предел интегральных сумм по некоторой правильной области
- Γ) предел интегральных сумм при условии, что он существует и не зависит от способа разбиения области.
- 7. Двойной интеграл $\iint\limits_D f(x,y)dy$ по области D ограничен линиями

 $y = e^{x-1}$, x = 2, x = 0, y = 0 равен повторному

1)
$$\int_{0}^{1} dx \int_{0}^{\frac{1}{e}} f(x, y) dy$$
; 2) $\int_{0}^{1} dy \int_{0}^{1+\ln y} f(x, y) dx$; 3) $\int_{0}^{2} dx \int_{0}^{e^{x-1}} f(x, y) dy$;

4)
$$\int_{0}^{1} dy \int_{0}^{2} f(x, y) dx$$
; 5) $\int_{0}^{2} dx \int_{0}^{e^{x}} f(x, y) dy$.

8. Площадь области D, ограниченной кривыми: $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, $y \ge 0$ выражается повторным интегралом

1)
$$\int_{0}^{\pi} d\varphi \int_{0}^{2} \rho d\rho$$
; 2) $\int_{0}^{\pi} d\varphi \int_{1}^{2} \rho d\rho$; 3) $\int_{0}^{\pi} d\varphi \int_{1}^{2} d\varphi$; 4) $\int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} \rho d\rho$; 5) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{1}^{4} \rho d\rho$.

9. Интеграл $\int \frac{dx}{x + \sqrt{x + 6}}$ после подстановки $x + 6 = t^2$ примет вид

a)
$$\int \frac{2dt}{t^2 + t}$$
; 6) $\int \frac{2t}{t^2 + t - 6} dt$; B) $\int \frac{2dt}{t^2 + t + 6}$; Γ) $\int \frac{2dt}{t^2 + 6}$.

10. Среди перечисленных интегралов укажите все, которые вычисляются с помощью формулы интегрирования по частям:

a)
$$\int \cos^3 x \, dx$$
; 6) $\int x \cos x \, dx$; B) $\int x \cos x^2 \, dx$; Γ) $\int x \, e^x \, dx$;

д)
$$\int x e^{x^2} dx$$
; e) $\int x \ln x dx$; ж) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$.

- 11. Дифференциальное уравнение $y' y = \frac{y+1}{x}$ является
 - 1) с разделяющимися переменными;
 - 2) Бернулли;
 - 3) линейным;
 - 4) однородным.
- 12. Общим решением дифференциального уравнения y'' + 5y' + 6y = 0 является
 - 1) $c_1 \cos(-3x) + c_2 \sin(-2x)$
 - $2) \quad c_1 e^{-3x} + c_2 e^{-2x}$
 - 3) $c_1 e^{3x} + c_2 e^{2x}$
 - 4) $c_1 e^{-3x} + c_2 \sin(-2x)$
- 13. Общим решением дифференциального уравнения y'' + y' = 0 является
 - 1) ce^{-x}
 - 2) $c_1 + c_2 e^{-x}$
 - 3) $c_1 e^x + c_2 e^{-x}$
 - $4) \quad c_1 \sin x + c_2 \cos x$
- 14. Является ли частным решением дифференциального уравнения является функция?

$$y'' = -4x + 1 y = -\frac{2}{3}x^3 + \frac{x^2}{4}$$

$$y'' = 12x^2 y = x^4$$

$$y'' = -10 y = -5x^2$$

$$y'' = 3x - 2 y = x^4$$

- 15. Когда применяется классический способ задания вероятности:
 - А) пространство элементарных событий бесконечно, все события равновозможные и независимые;
 - Б) пространство элементарных событий замкнуто, все события независимы;
 - В) пространство элементарных событий конечно, все события равновозможные;
 - Γ) пространство элементарных событий конечно, все элементарные события независимы.
- 16. Когда применяется геометрический способ задания вероятности:
 - А) пространство элементарных событий бесконечно, все события равновозможные и независимые;
 - Б) пространство элементарных событий замкнуто, все события независимы;
 - В) пространство элементарных событий конечно, все события равновозможные;
 - Г) пространство элементарных событий конечно, все элементарные события независимы.
- 17. Функция распределения вероятностей случайной величины:
 - А) невозрастающая;
 - Б) неубывающая;
 - В) возрастающая;
 - Г) убывающая.
- 18. Плотность распределения вероятностей это функция
 - а) неубывающая и удовлетворяющая свойству нормировки;
 - б) отрицательная и удовлетворяющая свойству нормировки;
 - в) неотрицательная и неудовлетворяющая свойству нормировки;
 - г) неотрицательная и удовлетворяющая свойству нормировки;
- 19. Коэффициент корреляции случайных величин характеризует:
 - а) степень независимости между случайными величинами;
 - б) степень нелинейной зависимости между случайными величинами;
 - в) степень линейной зависимости между случайными величинами;
 - г) степень регрессии между случайными величинами.
- 20. Статистической гипотезой называют:
 - а) предположение относительно статистического критерия;
 - б) предположение относительно параметров или вида закона распределения генеральной совокупности;
 - в) предположение относительно объема генеральной совокупности;
 - г) предположение относительно объема выборочной совокупности.

7.2.2 Примерный перечень заданий для решения стандартных задач

Первый семестр

1. Решить систему линейных уравнений методом Крамера:

$$2x_1 - 3x_2 + x_3 = -7$$

$$x_1 + 4x_2 + 2x_3 = -1$$

$$x_1 - 4x_2 = -5.$$

2. Исследовать систему и решить методом Гаусса

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = -2 \\ x_1 + 2x_2 - 2x_3 - x_4 = -5 \\ 2x_1 - x_2 - 3x_3 + 2x_4 = -1 \\ x_1 + 2x_2 + 3x_3 - 6x_4 = -10 \end{cases}$$

3. Найти координаты вектора \bar{x} в базисе \bar{e}_1 , \bar{e}_2 , \bar{e}_3 .

$$e'_1 = e_1 + e_2 + 3e_3$$

$$e'_2 = 3/2 e_1 - e_2$$

$$e'_3 = -e_1 + e_2 + e_3$$

$$x = \{1, 2, 4\}$$

- 4. Даны точки A(1, 2, 3), B(-1, 0, 2), C(0,1, -1), D(2, -3, 0). Найти:
 - 1) орт вектора АВ,
 - 2) Направляющие косинусы вектора СВ,
 - 3) Проекцию вектора АВ на вектор СВ,
 - 4) Угол между векторами АВ и АС,
 - 5) Площадь треугольника АВС,
 - 6) Объем пирамиды АВСД,
 - 7) Длину высота треугольника АВС, опущенную из С на АВ,
 - 8) Высоту в пирамиде, опущенную из D на ABC,
 - 9) Лежат ли точки A,B,C,E в одной плоскости, если E(-1,1,2).
- 5. Найти пределы

1)
$$\lim_{x \to 1} \frac{x^4 - x}{x^2 + x - 2}$$
; 2) $\lim_{x \to 2} \frac{\sqrt{1 + x + x^2} - \sqrt{7 + 2x - x^2}}{x^2 - 2x}$; 3) $\lim_{x \to \infty} \left(\frac{5x - 2}{5x + 2}\right)^x$; 4) $\lim_{x \to 0} \frac{1 - \cos 4x}{2x \cdot \lg 2x}$

6. Найти производные функций:

1)
$$y = \frac{x^4 + x}{x^3 + 1}$$
; 2) $y = 3^{tg^4x}$; 3) $y = \ln \cos 7x$; 4) $y = \sqrt{x^3 + 2x + 3}$; 5) $y = (x^4 + 1)\sin^2 3x$.

- 7. Найти точку пересечения прямой и плоскости, если $\frac{x}{2} = \frac{Y-1}{1} = \frac{z+1}{2}, x+2y+3z-29 = 0$
- 8. Найти интервалы выпуклости, вогнутости и точки перегиба кривой $y = \sqrt[3]{4x^3 12x}$
- 9. Найти точки экстремума и асимптоты кривой

$$y = \frac{16}{x(4 - x^2)}$$

10. Вычислить приближенно arcos(0,9).

Второй семестр

1. Вычислить интегралы:

1)
$$\int \frac{(6x-1)}{x^2-6x+13} dx$$
 2) $\int (7x-10)\cos 4x dx$

3)
$$\int \frac{(arctg x)^4 + 1}{1 + x^2} dx$$
 4) $\int \frac{x^3 + x + 2}{(x+2)x^3} dx$

2. Вычислить интеграл

1)
$$\int_{2}^{4} \left(\frac{3}{x} - \frac{6}{x^2} - \sin \frac{\pi x}{8} \right) dx$$
. 2) $\int_{0}^{\pi/2} x \sin 3x dx$.

- $y = 2 e^x$, $\ln \sqrt{3} \le x \le \ln \sqrt{8}$. 3. Вычислить длину дуги кривой
- 4. Вычислить площадь сегмента, отсекаемого прямой y = -x от параболы $y = 2x x^2$.
- 5. Вычислить частные производные 1-го порядка и дифференциал функции двух переменных:

$$f = \frac{x(x-y)}{y^2}.$$

- 6. Исследовать функцию $z = x^2 + xy + y^2 + x y + 1$ на экстремум.
- 7. Изменить порядок интегрирования.

Б Порядок интегрирования.
$$\int_{-\sqrt{2}}^{-1} dx \int_{-\sqrt{2-x^2}}^{0} f \, dy + \int_{-1}^{0} dx \int_{x}^{0} f \, dy.$$

8. Вычислити

$$\iint_{D} (x^{2}y + 3xy^{2}) dx dy$$

$$D: \quad x = -1, \quad x = 1, \quad y = 1, \quad y = 2.$$

9. Найти площадь фигуры, ограниченной данными линиями: $y^2-2y+x^2=0, \\ y^2-10y+x^2=0,$

$$y^{2} - 2y + x^{2} = 0,$$

$$y^{2} - 10y + x^{2} = 0,$$

$$y = \frac{1}{\sqrt{3}}x, \quad y = \sqrt{3}x.$$

- 10. Вычислить $\iiint_{V} y \cos(y+z) dx dy dz$, если $V: y = \sqrt{x}, y = 0, z = 0, x+y = \frac{\pi}{2}$.
- 11. Решить дифференциальные уравнения.

1)
$$y' = (1 + y^2)x^2$$
; 2) $y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$. 3) $y' + xy = (x-1)e^x y^2$.

12. Найти решение задачи Коши

$$y'-y/x = x^2$$
, $y(1) = 0$.

13. Найдите общее решение дифференциального уравнения

1)
$$y'' - 2y' - 8y = 80\cos 2x$$
, 2) $y'' - 6y' + 13y = 25xe^{2x}$,

2)
$$y'' - 6y' + 13y = 25xe^{2x}$$
,

- 14. Решить задачу Коши $y'' 4y' + 4y = -x^2 + 3x$, y(0) = 3, y'(0) = 4/3.
- 15. Найти решение задачи Коши.

$$y'' - 6y' + 8y = 4/(1 + e^{-2x}), y(0) = 1 + 2\ln 2, y'(0) = 6\ln 2.$$

16. Решить систему дифференциальных уравнений

$$\begin{cases} \dot{x} = 4x + 3, \\ \dot{y} = x + 2y; \end{cases} \quad x(0) = -1, \ y(0) = 0.$$

- 17. Экзаменационный билет для письменного экзамена состоит из 10 вопросов по 2 вопроса из 20 по каждой из пяти тем, представленных в билете. По каждой теме студент подготовил лишь половину всех вопросов. Какова вероятность того, что студент сдаст экзамен, если для этого необходимо ответить хотя бы на один вопрос по каждой из пяти тем в билете?
- 18. Прибор может собираться из высококачественных деталей и из деталей обычного качества. Известно, что около 40 % приборов собирается из высококачественных деталей, при этом вероятность безотказной его работы за время t равна 0.95. Если прибор собран из деталей обычного качества, эта вероятность равна 0.7. Прибор испытывался в течение времени t и работал безотказно. Найти вероятность того, что он собран из высококачественных деталей.

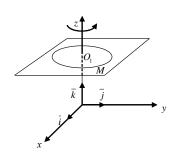
19. Дан закон распределения дискретной случайной величины X. Найти математическое ожидание, дисперсию и среднеквадратическое отклонение. Построить график функции распределения.

 X
 45
 70
 95
 120
 145

 p
 0.1
 0.2
 0.5
 0.1
 0.1

20. Задана функция распределения F(x) случайной величины X. Найти плотность распределения вероятностей f(x), математическое ожидание, дисперсию, среднее квадратическое отклонение и вероятность попадания случайной величины на отрезок [0, 1]. Построить графики функции распределения и функции плотности распределения.

$$F(x) = \begin{cases} 0, & x < 0, \\ x^3/8, & 0 \le x \le 2, \\ 1, & x > 2. \end{cases}$$


7.2.3 Примерный перечень заданий для решения прикладных задач

Первый семестр

- 1. Записать разложение силового вектора \overline{F} по базису $\overline{i},\overline{j},\overline{k}$, зная, что сила \overline{F} приложена к точке M(x,y,z) и направлена к началу координат, а величина силы \overline{F} прямо пропорциональна расстоянию от точки M до начала координат. Коэффициент пропорциональности равен k.
- 2. Вектор \overline{E} приложенный в произвольной точке пространства M имеет направление радиус-вектора $\overline{r} = \overline{OM}$ и длину $|\overline{E}| = \frac{q}{r^2}, r = |\overline{r}|, q > 0 const.$ Как записать вектор \overline{E} ? С каким физическим законом связан вектор \overline{E} ?
- 3. К точке O приложены силы $\overline{F_i}$, i=1,2,3,4, одинаковой величины $|\overline{F_i}|=F$. Зная, что $(\overline{F_1},\overline{F_2})=(\overline{F_2},\overline{F_3})=(\overline{F_3},\overline{F_4})=72^\circ$, найти значение и направление равнодействующей.
- 4. Найти центр тяжести системы, состоящей из двух материальных точек A_1 и A_2 , в которых сосредоточены массы m_1 и m_2 . Радиус-векторы точек A_1 и A_2 соответственно равны $\overline{r_1}$ и $\overline{r_2}$.
- 5. Найти величину равнодействующей двух сил, приложенных к одной точке, зная величину составляющих сил и угол между ними.

Решить задачу для случая трех составляющих сил, предполагая известными величины этих сил и три угла между направлениями сил, взятых попарно.

- 6. Пусть электрон, заряд которого равен e, движется со скоростью v в магнитном поле постоянной напряженности \overline{H} . В таком случае на электрон действует отклоняющая сила \overline{F} , определяемая формулой $\overline{F} = \frac{e}{c}[\overline{v} \times \overline{H}]$, где c скорость света. Найти величину силы \overline{F} .
- 7. Три силы $\overline{F_1}, \overline{F_2}, \overline{F_3}$, приложены в одной точке, имеют взаимно перпендикулярные направления, $F_i = |\overline{F_i}|, i = 1,2,3$. Определить величину их равнодействующей \overline{F} и работу, которую она совершает, когда ее точка приложения, двигаясь прямолинейно, перемещается из начала в конец вектора $\overline{F_3}$.
- 8. Пусть вращательное движение жидкости вокруг оси О задано вектором угловой ско-

рости $\overline{\omega} = \omega \overline{k}$. Радиус-вектор частицы жидкости, находящейся в точке M(x,y,z) относительно центра ее вращения, обозначим через $\overline{\rho}$. Вектор $\overline{\mathbf{v}}(M) = [\overline{\omega} \times \overline{\rho}]$ является вектором линейной скорости вращающейся частицы жидкости.

- 1) Показать на чертеже векторы $\overline{\omega}, \overline{\rho}, \overline{v}$.
- 2) Найти разложение вектора \bar{v} по базису \bar{i} , \bar{j} , \bar{k} и значение $|\bar{v}|$.
- 9. Закон изменения тока в электромагните без шунта определяется формулой $i(t) = \frac{E}{R_1 + R_2} (I e^{\frac{L}{R_1 + R_2} t}).$ Считая все параметры этой формулы постоянными, найти скорость тока в момент времени t = 0.
- 10. Сила действия кругового электрического тока на небольшой магнит, ось которого расположена на перпендикуляре к плоскости круга, проходящем через его центр, выражается формулой $F = \frac{cx}{(a^2 + x^2)^{3/2}}$, где c const, x расстояние от центра круга до магнита $(0 < x < \infty)$, a радиус круга. При каком значении x величина F будет наибольшей?
- 11. Движение материальной точки происходит по закону $S = Ae^{-kt} \sin \omega t$, $(A, k, \omega > 0)$, который называется законом затухающих колебаний. Найти скорость движения, ускорение и силу, под действием которой происходит это движение.
- 12. В полушар радиусом *R* вписать прямоугольный параллелепипед наибольшего объёма.

Второй семестр

- 1. Напряжение синусоидального тока дается формулой $E(t)=E_0\sin\frac{2\pi t}{T}$, а ток формулой $J(t)=J_0\sin(\frac{2\pi t}{T}-\varphi_0)$, где E_0 и J_0 постоянные величины; T период; φ_0 так называемая разность фаз. Вычислить работу тока за время от $t_1=0$ до $t_2=T$.
- 2. Котел, имеющий форму эллиптического параболоида $z = \frac{x^2}{4} + \frac{y^2}{9}$ и высотой H = 4 м, заполнен жидкостью плотностью $\delta = 0.8 \, \text{т/m}^3$. Вычислить работу, которую нужно затратить на перекачивание жидкости через край котла.
- 3. Вычислить координаты центра масс однородной плоской фигуры, ограниченной линиями $y = 6 x^2$, y = 2.
- 4. Найти момент инерции I_z тела, образованного общей частью шара $x^2+y^2+\left(z-R\right)^2 \leq R^2$ и конуса $x^2+y^2-z^2 \leq 0$, если плотность тела равна единице.
- 5. Найти координаты центра тяжести тела, ограниченного поверхностями $2z = x^2 + 4x + y^2 2y + 5$, z = 2, если плотность тела изменяется по закону: $\rho = \rho_0((x+2)^2 + (y-1)^2)$;
- 6. Найти моменты инерции относительно координатных плоскостей однородного тела плотности ρ_0 , ограниченного поверхностями:

$$z = 4 - x^2 - y^2$$
, $z = 1$, $x = 0$, $y = 0$ ($x \ge 0$, $y \ge 0$).

- 7. Найти моменты инерции I_x и I_y относительно осей Ox и Oy однородной пластинки с плотностью $\rho=\rho_0$, ограниченной кривыми: $y=0,\ y=x,\ y=2-x;$
- 8. Частица массы m движется по оси Ox, отталкиваясь от точки от x = 0 с силой $3mr_0$ и притягиваясь к точке x = 1 с силой $4mr_1$, где r_0 и r_1 расстояния до этих точек. Определить движение частицы с начальными условиями

$$x(0) = 2$$
, $\dot{x}(0) = 0$.

- 9. Электрическая цепь состоит из последовательно включенных источника постоянного тока, дающего напряжение V, сопротивления R, самоиндукции L и выключателя, который включается при t=0. Найти зависимость силы тока от времени (при t>0).
- 10. Решить предыдущую задачу, заменив самоиндукцию L конденсатором емкости C. Конденсатор до замыкания цепи не заряжен.
- 11. Скорость V молекул идеального газа подчиняется распределению Максвелла:
- $f(v) = \sqrt{\frac{2}{\pi}} \beta^{3/2} v^2 \exp\left(-\frac{1}{2}\beta v^2\right), \quad v \ge 0, \; \beta = \frac{m}{kT}$. Молекула диссоциирует при ударе о стенку, если ее кинетическая энергия превышает энергию диссоциации E_d . Какая доля молекул способна к диссоциации? Оцените эту долю для $E_d = 5kT$.
- 12. Молекулы, адсорбированные на поверхности, при высоких температурах образуют двумерный идеальный газ. При этом скорость V молекулы случайная величина, распределенная по закону Релея: $f(v) = \frac{v}{\sigma^2} \exp\left(-\frac{v^2}{2\sigma^2}\right), \quad v \ge 0, \quad \sigma^2 = \frac{kT}{m}$. Найти среднее значение и флуктуацию (СКО) кинетической энергии молекулы $K = mv^2/2$.
- 13. Определить область изменений уровней напряжения при условии нормального закона распределения. При этом имеются следующие исходные данные (табл. 3.2)

Таблица 3.2.

Исходные данные

Параметр	Уровни напряжения							
	1	2	3	4	5	6	7	8
U,кB	106,5	108,0	111,5	110,2	109,4	112,0	107,9	109,6

- 14. Вероятность того, что суточный расход электроэнергии не превысит установленной нормы, равна 0.75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
- 15. Найти вероятность того, что 80 из 400 цифровых вольтметров не будут соответствовать классу точности, если вероятность появления такого события в каждом испытании составляет 0.2.

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Первый семестр

- 1. Множества и операции над ними. Логическая символика.
- 2. Комплексные числа и действия над ними.

- 3. Тригонометрическая и показательная формы комплексного числа. Операции умножения и деления.
- 4. Формулы Эйлера и Муавра. Извлечение корня *n*-й степени из комплексного числа.
- 5. Многочлены. Теоремы Гаусса и Безу. Разложение многочлена на линейные и квадратичные множители.
- 6. Разложение рациональных дробей на простейшие дроби.
- 7. Матрицы. Действия над матрицами. Элементарные преобразования матриц.
- 8. Определители. Свойства определителей. Вычисление определителей 2-го, 3-го и *n*-го порядка.
- 9. Невырожденные квадратные матрицы. Обратная матрица. Ранг матрицы.
- 10. Системы n линейных уравнений с n неизвестными. Формулы Крамера.
- 11. Решение произвольных систем линейных уравнений. Метод Гаусса. Теорема Кронекера-Капелли.
- 12. Однородная система линейных уравнений. Фундаментальная система решений.
- 13. Векторы и линейные операции над ними. Проекция вектора на ось.
- 14. Разложение вектора по базису. Декартовы координат векторов и точек. Модуль вектора. Направляющие косинусы.
- 15. Скалярное произведение векторов, его основные свойства. Приложения скалярного произведения.
- 16. Векторное произведение векторов, его основные свойства. Приложения векторного произведения.
- 17. Смешанное произведение трех векторов и его приложения. Двойное векторное произведение.
- 18. Системы координат на плоскости. Преобразования декартовых систем координат.
- 19. Прямая на плоскости: Различные формы уравнения прямой.
- 20. Угол между прямыми на плоскости. Расстояние от точки до прямой.
- 21. Кривые второго порядка на плоскости: эллипс, гипербола и парабола, их характеристики.
- 22. Плоскость в пространстве: Различные формы уравнения плоскости. Угол между плоскостями. Расстояние от точки до плоскости.
- 23. Прямая в пространстве: Различные формы уравнения прямой в пространстве. Угол между прямыми. Взаимное расположение прямой и плоскости.
- 24. Поверхности второго порядка.
- 25. Понятие функции. Числовые функции. Основные характеристики функции. Обратная функция. Сложная функция.
- 26. Числовые последовательности. Предел. Бесконечно малые и бесконечно большие последовательности. Предельные точки. Принцип Больцано-Вейерштрасса.
- 27. Предел функции. Односторонние пределы.
- 28. Бесконечно большие и бесконечно малые функции. Свойства пределов. Признаки существования пределов.
- 29. Замечательные пределы. Предел последовательности $\left(1+\frac{1}{n}\right)^n$. Число e.
- 30. Эквивалентные бесконечно малые функции и их применение.
- 31. Непрерывность функции в точке. Классификация точек разрыва. Свойства функций, непрерывных на отрезке.
- 32. Производная функции, ее геометрический и механический смысл. Уравнения касательной и нормали к кривой.
- 33. Основные правила нахождения производных. Производная сложной и обратной функции.
- 34. Дифференцирование функций, заданных неявно и параметрически. Логарифмическая производная.
- 35. Дифференциал функции. Геометрический смысл дифференциала. Основные правила нахождения дифференциалов. Инвариантность формы дифференциала.
- 36. Производные и дифференциалы высших порядков.
- 37. Основные теоремы о дифференцируемых функциях.
- 38. Формулы Тейлора и Маклорена.
- 39. Раскрытие неопределенностей по правилу Лопиталя.
- 40. Условие монотонности функции. Экстремум функции. Необходимое и достаточное условия экстремума. Наибольшее и наименьшее значения непрерывной на отрезке функции.
- 41. Направление выпуклости функции. Точки перегиба.
- 42. Асимптоты функции. Общая схема исследования функции и построение ее графика.

Второй семестр

- 1. Понятие о первообразной и неопределенном интеграле. Свойства неопределенного интеграла.
- 2. Интегрирование методами замены переменной и по частям. Интегрирование рациональных дробей и тригонометрических функций. Интегрирование иррациональных и трансцендентных функций.
- 3. Понятие определенного интеграла. Формула Ньютона—Лейбница. Основные свойства определенного интеграла. Производная интеграла по верхнему пределу.
- 4. Вычисление определенного интеграла методами замены переменной и по частям.
- 5. Несобственные интегралы 1 и 2 рода. Признаки сходимости несобственных интегралов.
- 6. Геометрические и физические приложения определенного интеграла.
- 7. Понятие функции нескольких переменных. Область определения. Предел и непрерывность.
- 8. Частные производные и дифференциал функций нескольких переменных. Их геометрический смысл. Частные производные и дифференциалы высших порядков.
- 9. Дифференцирование сложных функций нескольких переменных. Полная производная. Инвариантность формы первого дифференциала. Дифференцирование неявных функций.
- 10. Приложения частных производных. Касательная плоскость и нормаль к поверхности. Формула и ряд Тейлора.
- 11. Экстремум функции нескольких переменных. Необходимые и достаточные условия экстремума.
- 12. Наибольшее и наименьшее значения функции в замкнутой области. Условный экстремум. Метод множителей Лагранжа.
- 13. Двойной интеграл, его основные свойства. Сведение двойного интеграла к повторному в декартовой системе координат. Двойной интеграл в полярных координатах.
- 14. Тройной интеграл. Вычисление тройного интеграла в декартовых, цилиндрических и сферических координатах.
- 15. Основные приложения двойного и тройного интеграла.
- 16. Основные сведения о дифференциальных уравнениях. Основные уравнения 1-го порядка, интегрируемые в квадратурах. Теорема существования и единственности решения задачи Коши.
- 17. Дифференциальные уравнения высших порядков. Основные понятия. Методы понижения порядка.
- 18. Линейные дифференциальные уравнения *п*-го порядка. Основные свойства.
- 19. Однородные и неоднородные линейные уравнения *п*-го порядка. Метод Лагранжа.
- 20. Линейные уравнения n-го порядка с постоянными коэффициентами.
- 21. Системы дифференциальных уравнений. Начальная задача. Нормальная линейная система. Метод исключения.
- 22. Понятие устойчивости решения дифференциального уравнения.
- 23. Случайные события. Операции над событиями.
- 24. Частота событий и ее свойства.
- 25. Классическое, статистическое и геометрическое определения вероятности случайного события.
- 26. Комбинаторный метод вычисления вероятностей.
- 27. Теоремы сложения и умножения вероятностей.
- 28. Формула полной вероятности. Формула Байеса.
- 29. Последовательность независимых испытаний (схема Бернулли). Асимптотики Пуассона и Муавра—Лапласа.
- 30. Случайные величины. Закон распределения случайной величины.
- 31. Функция распределения случайной величины.
- 32. Плотность распределения вероятностей случайной величины.
- 33. Числовые характеристики случайных величин.
- 34. Равномерный закон распределения.
- 35. Биномиальный закон распределения.
- 36. Распределение Пуассона. Простейший поток событий.
- 37. Показательный закон распределения.
- 38. Нормальный закон распределения.
- 39. Случайные векторы. Их вероятностное описание.
- 40. Функция распределения случайного вектора.
- 41. Плотность распределения вероятностей случайного вектора.
- 42. Числовые характеристики случайного вектора. Свойства корреляционного момента.

- 43. Условные законы распределения. Признак независимости случайных величин.
- 44. Функции случайных величин. Их числовые характеристики. Свойства математического ожидания и дисперсии.
- 45. Законы распределения функций случайных величин.
- 46. Предельные теоремы теории вероятностей.
- 47. Предмет и задачи математической статистики. Выборка и способы ее представления.

Выборочные характеристики.

- 48. Точечные оценки и их свойства.
- 49. Интервальные оценки. Доверительные интервалы для параметров нормально распределенной генеральной совокупности.
- 50. Проверка статистических гипотез. Критерий согласия Пирсона.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

На основании вопросов для подготовки к экзамену формируются билеты. В каждом билете содержатся три теоретических вопроса и две задачи из разных разделов дисциплины.

Экзамен для студентов проводится по смешанной системе (письменно-устно). Студент должен дать полный письменный ответ на билет. Затем преподаватель беседует со студентом. Возможны уточняющие вопросы.

Каждый правильный ответ на вопрос в билете оценивается 3 баллами, задача оценивается в 5 баллов. Максимальное количество набранных баллов – 19.

Оценка «Неудовлетворительно» ставится в случае, если правильные ответы только на теоретические вопросы или решены только практические задачи, или студент набрал менее 8 баллов.

Оценка «Удовлетворительно» ставится в случае, если студент набрал 8-10 баллов.

Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 16 баллов. Оценка «Отлично» ставится в случае, если студент набрал 17-19 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Элементы теории множеств и высшей алгебры	ОПК-4	Тест, контрольная работа, экзамен
2	Аналитическая геометрия	ОПК-4	ИДЗ, экзамен
3	Введение в математический анализ	ОПК-4	Устный опрос, контрольная работа, экзамен
4	Дифференциальное исчисление функций одной действительной переменной	ОПК-4	Тест, контрольная работа, экзамен
5	Интегральное исчисление функций одной действительной переменной	ОПК-4	Тест, экзамен
6	Дифференциальное исчисление функций нескольких переменных	ОПК-4	Устный опрос, контрольная работа, экзамен
7	Кратные интегралы	ОПК-4	ИДЗ, защита, экзамен

8	Обыкновенные дифференциальные	ОПК-4	ИДЗ, защита, экзамен
	уравнения		
9	Теория вероятностей	ОПК-4	Тест, ИДЗ, экзамен
10	Основы математической статистики	ОПК-4	Устный опрос, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Курс математического анализа/Л. И. Камынин. Москва: Московский государственный университет имени М.В. Ломоносова, 2001, Режим доступа: http://www.iprbookshop.ru/13140.html ЭБС "IPRbooks"
- 2. Гусак, А. А. Математический анализ и дифференциальное уравнение. Примеры и задачи [Электронный ресурс] : учебное пособие / А. А. Гусак. Электрон. текстовые данные. Минск : ТетраСистемс, 2011. 415 с.—978-985-536-228-0.—Режим доступа: http://www.iprbookshop.ru/28122.html
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика : учеб. пособие. М.: Высшее образование, 2008. -479 с.
- 4. Пискунов Н.С. Ч. 1. Дифференциальное и интегральное исчисления, 2010.
- 5. Пискунов Н.С. Ч. 2. Дифференциальное и интегральное исчисления, 2006.
- 6. Сборник задач по математике для втузов. Под общ. ред. А.В. Ефимова, А.С. Поспелова. В 4 частях. Ч. I, II, IV. 2001–2003.
- 7. Кузнецов Л.А. Сборник задач по высшей математике. Типовой расчет. 2008.
- 8. Кострюков С.А., Пешков В.В., Шунин Г.Е. Компьютерный практикум по численным методам: учеб. пособие [Электронный ресурс]. Воронеж: ФГБОУ ВПО «Воронеж. гос. техн. университет», 2013.
- 9. Кострюков С.А., Пешков В.В., Шунин Г.Е., Ястребков В.Н. Обыкновенные дифференциальные уравнения: методические указания. [Электрон.ресурс кафедры ВМФММ].

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

ПО: Windows, Open Office, Acrobat Reader.

Для выполнения домашних заданий рекомендуется использовать Mathstudio, Maxima, <u>www.wolframalpha.com</u>, демо-версия Maple 5.4

Современная профессиональная база данных www.Mathnet.ru, www.t-library.ru

Электронная библиотечная система IPRbooks http://www.iprbookshop.ru/

Информационные справочные системы dict.sernam.ru, Wikipedia, Math-Net.Ru http://eios.vorstu.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных и практических занятий необходима учебные аудитория, оснащенные техническими средствами для проведения занятий по математике. Для выполнения лабораторных работ требуется специализированная лаборатория, оборудованная персональными компьютерами.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Математика» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков использования математического аппарата для решения задач, в том числе прикладного характера. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются с применением вычислительной техники в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с

	выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных работ для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.