Метрология и радиоизмерения

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторной работы № 6 для студентов специальности 11.05.01 «Радиоэлектронные системы и комплексы» очной формы обучения

Воронеж 2022

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

Кафедра радиоэлектронных устройств и систем

Метрология и радиоизмерения

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторной работы № 6 для студентов специальности 11.05.01 «Радиоэлектронные системы и комплексы» очной формы обучения

Воронеж 2022

УДК 721:53(073) ББК 38.113я7-5

Составитель Ю. В. Худяков

Метрология и радиоизмерения: методические указания к выполнению лабораторной работы № 6 для студентов специальности 11.05.01 «Радиоэлектронные системы и комплексы» очной формы обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: Ю. В. Худяков. – Воронеж: Изд-во ВГТУ, 2022.– 29 с.

В методических указаниях рассматриваются способы измерения временных параметров сигнала. Тематика лабораторной работы соответствует рабочей программе дисциплины «Метрология и радиоизмерения».

Предназначены для студентов 3 курса специальности 11.05.01 «Радиоэлектронные системы и комплексы» очной формы обучения.

Методические указания подготовлены в электронном виде и содержатся в файле MuP_УMД_ЛР6.pdf.

Ил. 32. Табл. 2. Библиогр.: 4 назв.

УДК 721:53(073) ББК 38.113я7-5

Рецензент – А. В. Останков, д-р техн. наук, профессор кафедры радиотехники ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

введение

Данные методические указания к выполнению лабораторных работ составлены в соответствии с программой курса «Метрология и радиоизмерения» для специальности 11.05.01 «Радиоэлектронные системы и комплексы».

В указаниях изучаются способы измерения временных параметров сигнала.

1. ЛАБОРАТОРНАЯ РАБОТА №6 ФИГУРЫ ЛИССАЖУ

1.1. ЦЕЛЬ РАБОТЫ

Целью лабораторной работы является:

1. Изучение способов измерения временных параметров сигнала

2. Изучение способов измерения временных параметров сигнала периодических сигналов с помощью осциллографа.

3. Изучение способа измерения с помощью осциллографа временных параметров периодических сигналов сложной временной структуры по интерференционным фигурам, называемым фигурами Лиссажу.

Содержанием практической части работы является измерение неизвестной частоты f_x путем сравнения с известной частотой f_0 , а также определения разности фаз $\Delta \varphi$ для сигналов с этими частотами и реализации круговой развертки осциллографа.

Для выполнения лабораторного задания студенты должны ознакомиться с программой EWB5.12

Варианты заданий представлены в таблице 1.

Таблица 1

№ варианта	f_1	n	Примечание
1	100 Гц	2	
2	500 Гц	3	
3	1 кГц	4	
4	10 кГц	5	
5	20 кГц	3	
6	50 кГц	4	
7	100 кГц	5	
8	200 кГц	2	
9	300 кГц	3	
10	500 кГц	3	
11	800 кГц	4	
12	1 МГц	5	
13	2 МГц	2	
14	3 МГц	3	
15	4 МГц	2	
16	5 МГц	3	
17	8 МГц	4	

Варианты заданий

Окончание табл. 1

№ варианта	f_{l}	n	Примечание	
18	10 МГц	3		
19	20 МГц	3		
20	25 кГц	2		
21	15 кГц	3		
22	30 МГц	2		
23	1 МГц	4		
24	150 кГц	5		

1.2. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Способ измерения частоты по интерференционным фигурам, называемым фигурами Лиссажу, обладает достаточно высокой точностью. Измерение основано на сравнении сигнала с незвестной частотой f_x с сигналом известной частотой f_0 воспроизводимой мерой. С этой целью колебания известной (образцовой) частоты f_0 подаются на один вход осциллографа (например, У). На вход X (при этом собственная развертка осциллографа отключается) поступают колебания измеряемой частоты f_x . Частоту f_0 образцового генератора подстраивают так, чтобы на экране осциллографа наблюдалась простейшая устойчивая фигура, примерные виды которой при разных фазовых сдвигах показаны в таблице 2. Форма фигур Лиссажу зависит от отношения частот т/п и начальных фаз сравниваемых колебаний.

Таблица 2

ттерференционные фигуры при разных фазовых едынах					
Соотношение	Начальный фазовый сдвиг колебания на входе У, град.				
частот f_0/f_x	0	45	90	135	180
1		\mathcal{O}	\bigcirc	\sum	
2	\bigotimes	\square		\bigwedge	\bigotimes
3	\bigvee		\mathbf{X}	\mathbb{N}	\bigwedge

Интерференционные фигуры при разных фазовых сдвигах

Соотношение частот двух гармонических колебаний может быть определено как отношение числа точек пересечения фигуры Лиссажу *m* по вертикали к числу точек пересечения *n* по горизонтали. Например, как показано на рисунке 1, это отношение составляет

$$\frac{f_x}{f_0} = \frac{m}{n} = \frac{2}{4} = \frac{1}{2},$$

Отсюда измеряемая частота определяется как $f_x = f_0/2$.

Рис. 1. Пример определения отношения частот

Точность этого метода определения частоты колебания оказывается высокой и определяется стабильностью образцового генератора, однако получение и наблюдение таких фигур достаточно сложная измерительная задача.

2. ДОМАШНЕЕ ЗАДАНИЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЕГО ВЫПОЛНЕНИЮ

2.1. ПОДГОТОВКА К ВЫПОЛНЕНИЮ РАБОТЫ

Изучить материал соответствующих лекций и следующие разделы по литературе:

а) структурные схемы аналоговых вольтметров [1, с. 190-197];

б) цифровой метод измерения частоты [1, с. 280-284];

в) генераторы гармонических колебаний [1, с.218-225];

г) универсальные осциллографы [1 .с. 246-259];

- д) структура окна и система меню программы EWB5.12
- e) меню File

ж) меню Edit

- з) меню Circuit
- и) меню Window

2.2. СВЕДЕНИЯ О СТРУКТУРЕ ОКНА И СИСТЕМЫ МЕНЮ EWB5.12

Рабочее окно программы EWB версии 5.12 показаны на рисунке 2.

Рис. 2. Снимок окна программы EWB 5.12

Окно программы EWB5.12 содержит поле меню, линейки инструментов, контрольно-измерительных приборов, линейку библиотек линейку компонентов, меню Analysis. В рабочем поле программы располагается с подключенными к ней иконками контрольномоделируемая схема измерительных приборов и краткое описание схемы (description), к сожалению, только на английском языке. При необходимости каждый из приборов может быть развернут для установки режимов его работы и наблюдения результатов. Линейки прокрутки используются только для перемещения схемы, одна из которых в развернутом виде показана в левой части окна

2.2.1. MEHIO FILE

Меню File предназначено для загрузки и записи файлов, получения твердой копии выбранных для печати составных частей схемы, а также для импорта/экспорта файлов в форматах других систем моделирования и программ разработки печатных плат.

Первые четыре команды этого меню: New (Ctrl+N), Open... (Ctrl+O), Save (Ctrl+S), Save As... — типичные для Windows команды работы с файлами и поэтому пояснений не требуют. Для этих команд имеются кнопки (иконки) со

стандартным изображением. Схемные файлы программы EWB имеют следующие расширения ewb.

Revert to Saved... — стирание всех изменений, внесенных в текущем сеансе редактирования, и восстановление схемы в первоначальном виде.

Print... (CTRL+P) - выбор данных для вывода на принтер:

- Schematic — схемы (опция включена по умолчанию);

– Description — описания к схеме;

– Part list — перечня выводимых на принтер документов;

– Label list — списка обозначений элементов схемы;

– Model list — списка имеющихся в схеме компонентов;

 Subcircuits — подсхем (частей схемы, являющихся законченными функциональными узлами и обозначаемых прямоугольниками с названием внутри);

– Analysis options — перечня режимов моделирования;

– Instruments — списка приборов.

В этом же подменю можно выбрать опции печати (кнопка Setup) и отправить материал на принтер (кнопка Print). В программе предусмотрена также возможность изменения масштаба выводимых на принтер данных в пределах от 20 до 500%.

Print Setup... — настройка принтера.

Exit (ALT + F4) — выход из программы.

Install... — установка дополнительных программ с гибких дисков.

Import from SPICE — импорт текстовых файлов описания схемы и задания на моделирование в формате SPICE (с расширением.cir) и автоматическое построение схемы по ее текстовому описанию.

Export to SPICE — составление текстового описания схемы и задания на моделирование в формате SPICE.

Export to PCB — составление списков соединений схемы в формате OrCAD и других программ разработки печатных плат.

В подменю Import/Export предусмотрены возможности обмена данными с программой разработки печатных плат EWB Layout.

2.2.2. МЕНЮ ЕДІТ

Меню Edit позволяет выполнять команды редактирования схем и копирования экрана.

Cut (CTRL+X) — стирание (вырезание) выделенной части схемы с сохранением ее в буфере обмена (Clipboard). Выделение одного компонента производится щелчком мыши на изображении (значке) компонента. Для выделения части схемы или нескольких компонентов необходимо поставить курсор мыши в левый угол воображаемого прямоугольника, охватывающего выделяемую часть, нажать левую кнопку мыши и, не отпуская ее, протянуть курсор по диагонали этого прямоугольника, контуры которого появляются уже

в начале движения мыши, и затем отпустить кнопку. Выделенные компоненты окрашиваются в красный цвет.

Сору (CTRL+C) — копирование выделенной части схемы в буфер обмена.

Paste (CTRL+V) — вставка содержимого буфера обмена на рабочее поле программы. Поскольку в EWB нет возможности помещать импортируемое изображение схемы или ее фрагмента в точно указанное место, то непосредственно после вставки, когда изображение еще является отмеченным (выделено красным) и может оказаться наложенным на создаваемую схему, его можно переместить в нужное место клавишами курсора или ухватившись мышью за один из отмеченных компонентов. Таким же образом перемещаются и предварительно выделенные фрагменты уже имеющейся на рабочем поле схемы.

Delete (Del) — стирание выделенной части схемы.

Select All (CTRL+A) — выделение всей схемы.

Сору as Bitmap — команда превращает курсор мыши в крестик, которым по правилу прямоугольника можно выделить нужную часть экрана, после отпускания левой кнопки мыши выделенная часть копируется в буфер обмена, после чего его содержимое может быть импортировано в любое приложение Windows. Копирование всего экрана производится нажатием клавиши Print Screen; копирование активной в данный момент части экрана, например, диалогового окна — комбинацией Alt+Print Screen. Перечисленные команды очень удобны при подготовке отчетов по моделированию, например, при оформлении лабораторных работ.

Show Clipboard — показать содержимое буфера обмена.

2.2.3. MEHIO CIRCUIT

Меню Circuit используется при подготовке схем, а также для задания параметров моделирования.

Rotate (CTRL+R) — вращение выделенного компонента; компонента поворачиваются против часовой стрелки на 90° при каждом выполнении команды, для измерительных приборов (амперметр, вольтметр и др.) меняются местами клеммы подключения; команда используется при подготовке схем. В готовой схеме пользоваться командой нецелесообразно, поскольку это чаще всего приводит к путанице, — в таких случаях компонент нужно сначала отключить, а затем вращать.

Flip Horizontal — зеркальное отображение компонента по горизонтали.

Flip Vertical — зеркальное отображение компонента по вертикали.

Component Properties — свойства компонента.

Greate Subcircuit (CTRL+B) — преобразование предварительно выделенной части схемы в подсхему. Выделяемая часть схемы должна быть расположена таким образом, чтобы в выделенную область не попали не относящиеся к ней проводники и компоненты.

Zoom In - увеличение изображения с указанием масштаба в диапазоне 50 — 200%.

Zoom Out - уменьшения изображения с указанием масштаба в диапазоне 50 — 200%.

Schematic Options – диалоговое окно, состоящее из нескольких закладок.

2.2.4. MEHIO WINDOW

Меню Window содержит следующие команды:

Arrange (CTRL+W) — упорядочение информации; в рабочем окне EWB путем перезаписи экрана, при этом исправляются искажения изображений компонентов и соединительных проводников;

Circuit — вывод схемы на передний план;

Description (CTRL+D) - вывод на передний план описания схемы (если оно имеется) или окна-ярлыка для его подготовки (только на английском языке).

3. ЛАБОРАТОРНОЕ ЗАДАНИЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЕГО ВЫПОЛНЕНИЮ

Для выполнения лабораторной работы необходимы два источника напряжения с одинаковыми величинами выходного напряжения и начальной фазой, которые имеются в программе EWB. Необходимый сдвиг фаз φ создается при помощи фазосдвигающей *RC* цепочкой. Чтобы фазосдвигающая *RC* цепочка задерживала сигнал, она должна быть интегрирующей. Для такой цепочки сдвиг фаз можно определить по формуле

$$\varphi = \operatorname{arctg}(2\pi f C R),$$

где R - величина сопротивления резистора; С - величина емкости конденсатора; f - частота сигнала.

Зададимся величиной сопротивления резистора 1 кОм. Тогда величину емкости конденсатора при заданном угле ф сдвиг фаз можно определить по формуле

$$C = \frac{tg\phi}{2\pi fR}.$$

Один источник напряжения E₁ переменного тока будем использовать напрямую. Его начальная фаза равна нулю или 180° в зависимости от полярности его включения. Зададимся величиной напряжения этого источника равной 10 В.

Другой источник напряжения E_2 переменного тока, имеющий в своем составе фазосдвигающую цепочку, тоже должен иметь величину выходного напряжения U_2 равную 10 В. На фазосдвигающей цепочке будет образовываться падение напряжения, поэтому исходный источник E_2 должен иметь напряжение:

$$E_2 = E_1 \sqrt{1 + tg^2 \phi} \,. \label{eq:E2}$$

Исследование фигур Лиссажу будем проводить, как представлено в таблице 2, при сдвиге фаз 0°, 45°, 90°, 135° и 180° и на следующих частотах: равных $f_1 = f_2$ и $f_2 = n \cdot f_1$, указанных в номере варианта ($f_1 = 1$ кГц, n = 4).

3.1. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_1 = F_2$. И $\Phi = 0$ Схема и результаты измерения представлены на рисунках 3,4 и 5.

Рис. 3. Снимок с экрана схемы проведения измерений при $f_1 = f_2$ и $\phi = 0$

Рис. 4. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_1 = f_2$ и $\phi = 0$

Рис. 5. Снимок с экрана результатов измерений зависимостей $e_2 = f(e_1)$ при $f_1 = f_2$ и $\phi = 0$

3.2. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_1 = F_2$. И $\Phi = 180^\circ$

Схема и результаты измерения представлены на рисунках 6,7 и 8.

Сигнал вертикального перемещения луча в режиме развертки $e_2 = f(e_1)$ происходит по закону $E_2 \sin \omega t$. Сигнал горизонтального перемещения луча такой же во времени $E_1 \sin \omega t$. С учетом фазового сдвига на 180° можно записать $E_1 \sin(\omega t + 180^0)$ или минус $E_1 \sin \omega t$, что и реализовано с источником E_1 на рисунке 6.

Рис. 6. Снимок с экрана схемы проведения измерений при $f_1 = f_2$ и $\phi = 180^\circ$

Рис. 7. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_1 = f_2$ и $\phi = 180^\circ$

Рис. 8. Снимок с экрана результатов измерений зависимостей $e_2 = f(e_1)$ при $f_1 = f_2$ и $\phi = 180^\circ$

3.3. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_1 = F_2$. И $\Phi = 45^\circ$

Величину емкости конденсатора при заданном угле сдвиг фаз φ равным 45° можно определить по формуле

$$C = \frac{tg\phi}{2\pi fR} = \frac{1}{2 \cdot 3, 14 \cdot 10^3 \cdot 10^3} = \frac{10^{-6}}{6,28} = 0,159 \cdot 10^{-6} \Phi = 0,159 \text{ MK}\Phi.$$

Исходный источник Е2 должен иметь напряжение

$$E_2 = E_1 \sqrt{1 + tg^2 \phi} = 10\sqrt{1 + tg^2 45^\circ} = 10\sqrt{1 + 1} = 10\sqrt{2} = 14,1 \text{ B}.$$

Схема и результаты измерения представлены на рисунках 9,10 и 11.

Рис. 9. Снимок с экрана схемы проведения измерений при $f_1 = f_2$ и $\phi = 45^{\circ}$ (Вольтметр PV1 предназначен для контроля напряжения U₂ на входе В осциллографа)

Рис. 10. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_1 = f_2$ и $\phi = 45^\circ$

Согласно рисунка 10 сдвиг фаз ϕ между сигналами $e_1(t)$ и $e_2(t)$ можно определить по формуле:

$$\varphi = 360^{\circ} \cdot \frac{\Delta t}{T} = 360^{\circ} \cdot \frac{125,5}{1000} \approx 45^{\circ},$$

где Т – период сигнала с частотой 1 кГц.

Рис. 11. Снимок с экрана результатов измерений зависимостей $e_{2=} f(e_1)$ при $f_1 = f_2$ и $\phi = 45^\circ$

Согласно рисунку 11 расстояние между крайними точками по курсору 1 равняется

$$VA1 - VB1 = 10,11 + 9,89 = 20B$$

3.4. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_1 = F_2$. И $\Phi = 90^\circ$

При $\phi = 90^\circ$ tg $\phi = \infty$, поэтому примем значение близким к 90°, например, 89,5°.

Величину емкости конденсатора при заданном угле сдвиг фаз φ равным 89,5° можно определить по формуле

$$C = \frac{tg\phi}{2\pi fR} = \frac{115}{2 \cdot 3,14 \cdot 10^3 \cdot 10^3} = \frac{115 \cdot 10^{-6}}{6,28} = 18,22 \cdot 10^{-6} \Phi = 18,22 \text{ мк}\Phi.$$

Исходный источник Е2 должен иметь напряжение

$$E_2 = E_1 \sqrt{1 + tg^2 \phi} = 10\sqrt{1 + tg^2 89,5^{\circ}} = 10\sqrt{1 + 13225} = 10 \cdot 115 = 1150 \text{ B}.$$

Схема и результаты измерения представлены на рисунках 12,13 и 14.

Рис. 12. Снимок с экрана схемы проведения измерений при $f_1 = f_2$ и $\phi = 89,5^{\circ}$

Рис. 13. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_1 = f_2$ и $\phi = 89,5^\circ$

Согласно рисунку 13 сдвиг фаз ϕ между сигналами $e_1(t)$ и $e_2(t)$ можно определить по формуле

$$\varphi = 360^{\circ} \cdot \frac{\Delta t}{T} = 360^{\circ} \cdot \frac{248,5}{1000} \approx 89,46^{\circ},$$

где Т – период сигнала с частотой 1 кГц.

Рис. 14. Снимок с экрана результатов измерений зависимостей $e_{2=} f(e_1)$ при $f_1 = f_2$ и $\phi = 89,5^\circ$

Согласно рисунка 14 расстояние между крайними точками по курсору 1 равняется

$$VA1 - VB1 = 13,87 + 13,78 = 27,65 B.$$

3.5. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_1 = F_2$. И $\Phi = 135$ °

Тангенс угла сдвига фаз tg равен:

$$tg135^{0} = \frac{\sin 135^{0}}{\cos 135^{0}} = \frac{\sin 45^{0}}{-\cos 45^{0}},$$
$$tg45^{0} = \frac{\sin 45^{0}}{\cos 45^{0}}.$$

Знак минус перед $\cos 45^{\circ}$ для $tg135^{\circ}$ указывает на необходимость изменения фазы первого сигнала $E_1 \cos \omega t$ на 180° по сравнению со схемой измерения при $\varphi = 45^{\circ}$, показанной на рисунке 9. Результаты расчетов аналогичны как для раздела 3.2: C = 0,159 мкФ и $E_2 = 14,1$ В.

Схема и результаты измерения представлены на рисунках 15,16 и 17.

Рис. 15. Снимок с экрана схемы проведения измерений при $f_1 = f_2$ и $\phi = 135^{\circ}$

Рис. 16. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_1 = f_2$ и $\phi = 135^\circ$

Согласно рисунка 16 сдвиг фаз ϕ между сигналами $e_1(t)$ и $e_2(t)$ можно определить по формуле

$$\varphi = 360^{\circ} \cdot \frac{\Delta t}{T} = 360^{\circ} \cdot \frac{374,9}{1000} \approx 135^{\circ},$$

где Т – период сигнала с частотой 1 кГц.

Рис. 17. Снимок с экрана результатов измерений зависимостей $e_{2=}f(e_1)$ при $f_1 = f_2$ и $\phi = 135^\circ$

Согласно рисунка 17 расстояние между крайними точками по курсору 1 равняется:

$$VA1 - VB1 = 10,2 + 9,8 = 20B,$$

такое же, как при $\phi = 45^{\circ}$, представленное на рисунке 11.

3.6. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_{2.} = 4F_1 U \Phi = 0 \circ$ Схема и результаты измерения представлены на рисунках 18,19 и 20

Рис. 18. Снимок с экрана схемы проведения измерений при $f_2=4f_1$ и $\phi=0^\circ$

Рис. 19. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_2 = 4f_1$ и $\phi = 0^\circ$

Рис. 20. Снимок с экрана и графическая коррекция результатов измерений зависимостей $e_{2=}f(e_{1})$ при $f_{2} = 4f_{1}$ и $\phi = 0^{\circ}$

Соотношение частот двух гармонических колебаний может быть определено как отношение числа точек пересечения фигуры Лиссажу m (точки 9 и 10) по вертикали к числу точек пересечения n (точки 1, 2, 3, 4, 5, 6, 7 и 8) по горизонтали. Как показано на рисунке 20, это отношение составляет

$$\frac{f_1}{f_2} = \frac{m}{n} = \frac{2}{8} = \frac{1}{4}$$

Отсюда измеряемая частота определяется как $f_2 = 4f_1$.

3.7. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_{2.} = 4 F_1 U \Phi = 180 \circ$

Схема и результаты измерения представлены на рисунках 21, 22 и 23.

Рис. 21. Снимок с экрана схемы проведения измерений при $f_2 = 4f_1$ и $\phi = 180^\circ$

Рис. 22. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_2 = 4f_1$ и $\phi = 180^\circ$

Рис. 23. Снимок с экрана результатов измерений зависимостей $e_2 = f(e_1)$ при $f_2 = 4f_1$ и $\phi = 180^\circ$

3.8 ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_{2.} = 4 F_1 U \Phi = 45 \circ$

Величину емкости конденсатора при заданном угле сдвиг фаз ϕ равным 45° и частоте $f_2 = 4f_1$, равной 4 кГц, можно определить по формуле

$$C = \frac{tg\phi}{2\pi fR} = \frac{1}{2 \cdot 3, 14 \cdot 4 \cdot 10^3 \cdot 10^3} = \frac{10^{-6}}{25, 12} = 0,0398 \cdot 10^{-6} \Phi = 39,8 \text{ H}\Phi.$$

Исходный источник Е2 должен иметь напряжение

$$E_2 = E_1 \sqrt{1 + tg^2 \phi} = 10\sqrt{1 + tg^2 45^\circ} = 10\sqrt{1 + 1} = 10\sqrt{2} = 14,1 \text{ B}.$$

Схема и результаты измерения представлены на рисунках 24, 25 и 26.

Рис. 24. Снимок с экрана схемы проведения измерений при $f_2 = 4f_1$ и $\phi = 45^\circ$

Рис. 25. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_2 = 4f_1$ и $\phi = 45^\circ$

Сдвиг фаз φ между сигналами $e_1(t)$ и $e_2(t)$ можно определить по формуле $\varphi = 360^0 \cdot \frac{\Delta t}{T} = 360^0 \cdot \frac{31,5}{250} = 45,4^\circ,$

где Т – период сигнала с частотой 4 кГц.

Рис. 26. Снимок с экрана результатов измерений зависимостей $e_2 = f(e_1)$ при $f_2 = 4f_1$ и $\phi = 45^{\circ}$

3.9. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_{2.} = 4 F_1 U \Phi = 90 \circ$

При $\phi = 90^{\circ}$ tg $\phi = \infty$, поэтому примем значение близким к $90^{\circ} - 89,5^{\circ}$.

Величину емкости конденсатора при заданном угле сдвиг фаз φ равным 89,5° и частоте $f_2=4f_1$, равной 4 кГц, можно определить по формуле

$$C = \frac{tg\phi}{2\pi fR} = \frac{115}{2 \cdot 3,14 \cdot 4 \cdot 10^3 \cdot 10^3} = \frac{115 \cdot 10^{-6}}{25,12} = 4,555 \cdot 10^{-6} \Phi = 4,56 \text{ MK}\Phi.$$

Исходный источник Е2 должен иметь напряжение

$$E_2 = E_1 \sqrt{1 + tg^2 \phi} = 10\sqrt{1 + tg^2 89, 5^\circ} = 10\sqrt{1 + 13225} = 10 \cdot 115 = 1150 \text{ B}.$$

Схема и результаты измерения представлены на рисунках 27, 28 и 29.

Рис. 27. Снимок с экрана схемы проведения измерений при $f_2 = 4f_1$ и $\phi = 89,5^{\circ}$

Рис. 28. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_2 = 4f_1$ и $\phi = 89,5^\circ$

Сдвиг фаз ϕ между сигналами $e_1(t)$ и $e_2(t)$ можно определить из рисунка 28 по формуле

$$\varphi = 360^{\circ} \cdot \frac{\Delta t}{T} = 360^{\circ} \cdot \frac{62,75}{250} = 90,3^{\circ},$$

где Т – период сигнала с частотой 4 кГц.

Рис. 29. Снимок с экрана результатов измерений зависимостей $e_2 = f(e_1)$ при $f_2 = 4f_1$ и $\phi = 89,5^\circ$

3.10. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПРИ $F_{2.} = 4 F_1 M \Phi = 135 \circ$

Тангенс угла сдвига фаз tg равен

$$tg135^{0} = \frac{\sin 135^{0}}{\cos 135^{0}} = \frac{\sin 45^{0}}{-\cos 45^{0}},$$
$$tg45^{0} = \frac{\sin 45^{0}}{\cos 45^{0}}.$$

Знак минус перед $\cos 45^{\circ}$ для $tg135^{\circ}$ указывает на необходимость изменения фазы первого сигнала $E_1 \cos \omega t$ на 180° по сравнению со схемой измерения при $\varphi = 45^{\circ}$, показанной на рисунке 24. Результаты расчетов аналогичны как для раздела 3.7: C = 0,159 мкФ и E2 = 14,1 В.

Схема и результаты измерения представлены на рисунках 30, 31 и 32.

Рис. 30. Снимок с экрана схемы проведения измерений при $f_2 = 4f_1$ и $\phi = 135^\circ$

Рис. 31. Снимок с экрана результатов измерений зависимостей $e_1(t)$ и $e_2(t)$ при $f_2 = 4f_1$ и $\phi = 135^\circ$

Сдвиг фаз ϕ между сигналами $e_1(t)$ и $e_2(t)$, представленного на рисунке 31, можно определить по формуле

$$\varphi = 360^{\circ} \cdot \frac{\Delta t}{T} = 360^{\circ} \cdot \frac{93,24}{250} = 134,3^{\circ},$$

где Т – период сигнала с частотой 4 кГц.

Рис. 32. Снимок с экрана результатов измерений зависимостей $e_2 = f(e_1)$ при $f_2 = 4f_1$ и $\phi = 135^\circ$

ЗАКЛЮЧЕНИЕ

Данные методические указания направлены на изучение способов измерения временных параметров сигнала.

При необходимости углубить теоретические знания по рассмотренным темам следует обратиться к библиографическому списку.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Нефедов В.И. Метрология и радиоизмерения: учебник для вузов / В.И. Нефедов, А.С. Сигов, В.К. Бирюков [и др.]; ред. В.И. Нефедов – 2 изд., перераб. – М.: Высш. шк., 2006 – 526 с.

2. Афонский, А. А. Измерительные приборы и массовые электронные измерения: справочник / А. А. Афонский, В. П. Дьяконов - М., СОЛОН-ПРЕСС, 2007 г., - 541 с.

3. Димов Ю.В. Метрология, стандартизация и сертификация: учебник: допущено МО РФ / Ю.В. Димов - 3-е изд. - СПб.: Питер, 2010 (СПб. : Печатный двор им. А. М. Горького, 2005). - 432 с.

4. Метрология и электрорадиоизмерения в телекоммуникационных системах: учебник для вузов : допущено МО РФ / под ред. В. И. Нефедова, А. С. Сигова. - изд. 3-е, перераб. и доп. - М. : Высш. шк., 2005 (Смоленск : Смоленская обл. типография им. В. И. Смирнова, 2005). - 598 с.

оглавление

ВВЕДЕНИЕ	3
1. Лабораторная работа №6. Фигуры Лиссажу	3
	3
1.2. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	4
2. ДОМАШНЕЕ ЗАДАНИЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЕГО ВЫПОЛНЕНИЮ	5
2.1. Подготовка к выполнению работы	5
2.2. Сведения о структуре окна и системы меню EWB5.12	5
2.2.1. Меню File	6
2.2.2. Меню Edit	7
2.2.3. Меню Circuit	8
2.2.4. Меню Window	9
3. ЛАБОРАТОРНОЕ ЗАДАНИЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЕГ	O.
ВЫПОЛНЕНИЮ	9
3.1. Проведение измерений при $f_1 = f_2$. и $\phi = 0$	10
3.2. Проведение измерений при $f_1 = f_2$. и $\phi = 180^{\circ}$	11
3.3. Проведение измерений при $f_1 = f_2$. и $\phi = 45^{\circ}$	13
3.4. Проведение измерений при $f_1 = f_2$. и $\phi = 90^\circ$	15
3.5. Проведение измерений при $f_1 = f_2$ и $\phi = 135^{\circ}$	17
3.6. Проведение измерений при $f_{2.} = 4f_1 u \phi = 0$ °	19
3.7. Проведение измерений при $f_{2.} = 4 f_1 и \phi = 180$ °	20
3.8. Проведение измерений при $f_{2.} = 4 f_1 и \phi = 45 °$	21
3.9. Проведение измерений при $f_{2.} = 4 f_1 и \phi = 90 °$	23
3.10. Проведение измерений при $f_{2.} = 4 f_1 и \phi = 135 °$	24
Заключение	26
Библиографический список	27

Метрология и радиоизмерения

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторной работы № 6 для студентов специальности 11.05.01 «Радиоэлектронные системы и комплексы» очной формы обучения

> Составитель Худяков Юрий Васильевич

> > В авторской редакции

Подписано к изданию 13.09.2022. Уч.-изд. л. 1,5.

ФГБОУ ВО «Воронежский государственный технический университет» 394006 Воронеж, ул. 20-летия Октября, 84