МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Декан дорожно-транспортного факультета
В.Л. Тюнин /
2025 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Современные приводы

наземных транспортно-технологических средств»

Специальность 23.05.01 Наземные транспортно-технологические средства

Специализация <u>Подъемно-транспортные</u>, строительные, дорожные средства и оборудование

Квалификация выпускника инженер

Нормативный период обучения 5 лет 11 мес.

Форма обучения заочная

Год начала подготовки 2025 г.

Автор программы

/ С.А. Никитин /

Заведующий кафедрой строительной техники и инженерной механики им. профессора Н.А. Ульянова

Руководитель ОПОП

-/РА Жилин /

Воронеж 2025

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Формирование у студентов знаний и навыков по проектированию, эксплуатации и обслуживанию современных приводов, используемых в наземных транспортно-технологических средствах, с учетом требований энергоэффективности, надежности и автоматизации.

1.2. Задачи освоения дисциплины

- 1. Изучение принципов работы различных типов современных приводов, включая электрические, гидравлические и комбинированные системы.
- 2. Анализ конструктивных особенностей и методов расчета основных параметров приводов транспортных средств.
- 3. Овладение методами диагностики, технического обслуживания и ремонта приводных систем.
- 4. Изучение вопросов автоматизации и цифрового управления приводами для повышения их эффективности.
- 5. Развитие навыков проектирования

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Современные приводы наземных транспортно-технологических средств» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Современные приводы наземных транспортно-технологических средств» направлен на формирование следующих компетенций:

ОПК-1 - Способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей;

Компетенция	Результаты обучения, характеризующие
Компетенция	сформированность компетенции
ОПК-1	Знать: принципы работы, конструктивные
	особенности и классификацию современных
	приводов наземных транспортно-технологических
	средств; методы расчета, проектирования и выбора
	параметров приводных систем; основные
	технологии автоматизированного управления

приводами и системы диагностики их состояния.

Уметь: выполнять расчет и подбор приводов в зависимости от эксплуатационных условий транспортных средств; проводить диагностику и техническое обслуживание электромеханических, гидравлических и комбинированных приводов; анализировать и применять методы цифрового управления приводными системами.

Владеть: навыками работы с измерительными и диагностическими приборами контроля ДЛЯ параметров приводных систем; методами моделирования оптимизации приводов И специализированного использованием обеспечения; приемами программного эксплуатации современных регулировки И приводных требований систем c учетом энергоэффективности и надежности.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Современные приводы наземных транспортно-технологических средств» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий

Заочная форма обучения

Рини унобиой роботи	Всего	Семестры
Виды учебной работы	часов	6
Аудиторные занятия (всего)	12	12
В том числе:		
Лекции	6	6
Практические занятия (ПЗ)	4	4
Лабораторные работы (ЛР)	2	2
Самостоятельная работа	159	159
Часы на контроль	9	9
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

п/п	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Всего, час
1	Общие принципы построения и классификация современных приводов	 Классификация приводов: электрические, гидравлические, пневматические и комбинированные системы. Основные требования к приводам транспортных средств: мощность, надежность, энергоэффективность. Сравнительный анализ различных приводных систем по эксплуатационным характеристикам. 	2	2	2	24	30
2	Электромеханические приводы и их особенности	 Принципы работы и конструкция электромеханических приводов. Системы управления электроприводами: частотное регулирование, векторное управление. Методы диагностики и контроля состояния электромеханических приводов. 	2	2	-	24	28
3	Гидравлические и пневматические приводы	 Принципы работы гидравлических приводов, их конструкция и применение. Особенности работы пневматических приводов в транспортных системах. Методы повышения эффективности и надежности гидравлических и пневматических приводов. 	2	-	-	26	28
4	Комбинированные и гибридные приводные системы	 Гибридные приводы: сочетание электрических и механических систем. Основы работы и преимущества комбинированных приводов в транспортной технике. Энергоэффективные решения в современных гибридных и комбинированных приводах. 	-	-	-	26	26
5	Автоматизация и цифровое управление приводами	 Использование программируемых логических контроллеров (ПЛК) в системах управления приводами. Датчики и системы обратной связи в цифровом управлении. Применение искусственного интеллекта и алгоритмов машинного обучения в управлении приводами. 	-	-	-	30	30
6	Диагностика, техническое обслуживание и перспективы развития приводов	 Методы технического обслуживания и прогнозирования отказов приводных систем. Применение цифровых технологий и ІоТ (интернета вещей) в диагностике приводов. Перспективные направления развития приводных технологий в транспорте. 	-	- 4	2	29	29 171

- 5.2 Перечень лабораторных работ1. Изучение механического привода НТТС2. Изучение электромеханических приводов НТТС3. Изучение гидрообъемного привода НТТС

- 4. Изучение комбинированных приводов НТТС
- 5. Изучение систем управления электроприводами

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе-	е аттестован». Результаты обучения, характеризующие	Критерии оценивания	Аттестован	Не аттестован
· ·	сформированность компетенции	·		
ОПК-1	Знать: принципы работы,	1		Невыполнение
	конструктивные особенности			работ в срок,
	и классификацию		предусмотренны	
	современных приводов	современных приводов	-	й в рабочих
	наземных	наземных	программах	программах
	транспортно-технологических			
		х средств; методы расчета,		
	1 1	проектирования и выбора		
	= = =	параметров приводных		
	систем; основные технологии			
	-	автоматизированного		
	1	управления приводами и		
	, ,	системы диагностики их		
	состояния.	состояния.		
	Уметь: выполнять расчет и	*		Невыполнение
	подбор приводов в	подбор приводов в	1 1 /	работ в срок,
				предусмотренны
	•	эксплуатационных условий		й в рабочих
		транспортных средств;	программах	программах
		проводить диагностику и		
	техническое обслуживание			
	*	электромеханических,		
		гидравлических и		
	комбинированных приводов;			
	анализировать и применять			
	методы цифрового управления			
	приводными системами.	управления приводными		
		системами.		
	Владеть: навыками работы с	Владеет навыками работы с	Выполнение	Невыполнение
	*	измерительными и	r · · · · · · · · · · ·	работ в срок,
	диагностическими приборами	диагностическими	предусмотренны	предусмотренны

для контр	оля параметров	приборами	для	контрол	я й в рабочих	к й в рабочих
приводных	систем; методами	параметров		приводны	х программах	х программах
моделирован	ия и оптимизации	систем;		методам	И	
приводов с	использованием	моделирован	RИF		И	
специализир	ованного	оптимизациі	и пр	иводов	c	
программног	го обеспечения;	использован	ием			
приемами	эксплуатации и	специализир	ованн	ОГО		
регулировки	современных	программно	го об	беспечени	1 ;	
приводных	систем с учетом	приемами	эксплу	уатации	И	
требований		регулировки	co	временны	X	
энергоэффек	тивности и	приводных	систем	и с учето	M	
надежности.		требований				
		энергоэффек	тивно	сти	И	
		надежности.				

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 6 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-1	Знать принципы работы, конструктивные особенности и классификацию современных приводов наземных транспортно-технологическ их средств; методы расчета, проектирования и выбора параметров приводных систем; основные технологии автоматизированного управления приводами и системы диагностики их состояния.		Выполнени е теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
		стандартных практически х задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонст р ирован верный ход решения в большинств е задач	Задачи не решены
	диагностическими	Решение прикладных задач в конкретной	Задачи решены в полном объеме и	Продемонстр ирован верный ход решения всех, но не	Продемонст р ирован верный ход решения в	Задачи не решены

параметров привод	ных	предметной	получены	получен верный	большинств	
систем; метод	ами	области	верные	ответ во всех	е задач	
моделирования	И		ответы	задачах		
оптимизации приводон	з с					
использованием						
специализированного						
программного обеспече	ния;					
приемами эксплуатаци	и и					
регулировки современ	ных					
приводных систем с уче	том					
требований						
энергоэффективности	И					
надежности.						

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - 7.2.1 Примерный перечень заданий для подготовки к тестированию
 - 1. Какой тип привода наиболее часто используется в электромобилях?
 - А) Гидравлический
 - В) Пневматический
 - С) Электромеханический
 - D) Комбинированный
 - 2. Какой из следующих методов применяется для регулирования скорости электродвигателя?
 - А) Изменение длины провода в обмотке
 - В) Частотное управление
 - С) Использование диодов
 - D) Понижение температуры обмотки
 - 3. Какой из приводов обеспечивает наиболее точное позиционирование?
 - А) Гидравлический
 - В) Пневматический
 - С) Шаговый электродвигатель
 - D) Асинхронный электродвигатель
 - 4. Как называется система, в которой электродвигатель и двигатель внутреннего сгорания работают совместно?
 - А) Полностью электрический привод
 - В) Гибридный привод
 - С) Пневматический привод
 - D) Гидравлический привод
 - 5. Что измеряет тахометрический датчик в приводной системе?
 - А) Давление масла
 - В) Температуру привода
 - С) Скорость вращения вала
 - D) Напряжение питания
 - 6. Какой вид электродвигателя используется в большинстве современных электромобилей?

- А) Коллекторный двигатель постоянного тока
- В) Асинхронный или синхронный двигатель с постоянными магнитами
- С) Шаговый двигатель
- D) Двигатель переменного тока без регулирования

7. Какой из перечисленных методов увеличивает КПД гибридного привода?

- А) Использование более тяжелых аккумуляторов
- В) Рекуперация энергии при торможении
- С) Постоянная работа на максимальной мощности
- D) Повышенное сопротивление трения в механизмах

8. Какой основной недостаток имеет пневматический привод в транспортных системах?

- А) Высокий уровень шума
- В) Низкий КПД по сравнению с гидравлическими и электрическими приводами
- С) Сложность конструкции
- D) Большие потери энергии на тепло
- 9. Какой из элементов не входит в состав гидравлического привода?
 - A) Hacoc
 - В) Гидроцилиндр
 - С) Конденсатор
 - D) Гидрораспределитель

10. Какой из параметров важен при диагностике состояния электропривода?

- А) Температура обмоток и вибрация
- В) Цвет корпуса двигателя
- С) Длина кабелей питания
- D) Высота установки привода

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Рассчитайте мощность электродвигателя, если крутящий момент составляет 150 H·м, а угловая скорость 100 рад/с.
 - А) 10 кВт
 - В) 12 кВт
 - С) 15 кВт
 - D) 18 кВт
- 2. Определите силу тока в обмотке электродвигателя, если его мощность составляет 5 кВт, а напряжение 400 В.
 - A) 5 A
 - B) 12,5 A
 - C) 15 A
 - D) 10 A
- 3. Какова частота вращения вала электродвигателя, если его

синхронная частота равна 3000 об/мин, а скольжение составляет 4%? А) 2880 об/мин В) 2940 об/мин С) 3000 об/мин D) 2800 об/мин 4. Определите мощность гидропривода, если давление в системе составляет 20 МПа, а расход жидкости — 0,01 м³/с. А) 100 кВт В) 200 кВт С) 150 кВт D) 50 кВт 5. В пневматической системе давление составляет 0,6 МПа, а рабочий объем цилиндра — 0,002 м³. Какова сила, действующая на поршень при отсутствии потерь? A) 500 H B) 1200 H C) 900 H D) 800 H 6. Электромобиль движется с мощностью 50 кВт и скоростью 20 м/с. Какова сила тяги на колесах? A) 1500 H B) 2500 H C) 2000 H D) 3000 H 7. Определите КПД электродвигателя, если потребляемая мощность составляет 8 кВт, а выходная — 6,4 кВт. A) 75% B) 80% C) 85% D) 70% 8. Гидроцилиндр перемещает груз с силой 10 кН на расстояние 2 м за 5 секунд. Какова его мощность? А) 4 кВт В) 5 кВт С) 3 кВт D) 6 кВт 9. Определите емкость аккумулятора, если он обеспечивает работу электродвигателя мощностью 2 кВт в течение 2 часов при напряжении 48 В. A) 60 A·ч

10. Какова работа, выполненная электродвигателем мощностью 5 кВт

B) 83,3 А·ч С) 50 А·ч D) 100 А·ч

за 10 минут?

- А) 3 МДж
- В) 2,5 МДж
- С) 4 МДж
- D) 1,5 МДж

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Какой тип привода наиболее целесообразно использовать в городских автобусах для снижения выбросов СО₂?
 - А) Дизельный
 - В) Гибридный
 - С) Пневматический
 - D) Гидравлический
- 2. Вы проектируете электропривод для роботизированного транспортного средства. Какой двигатель обеспечит наиболее точное позиционирование?
 - А) Асинхронный двигатель
 - В) Гидравлический привод
 - С) Шаговый двигатель
 - D) Двигатель постоянного тока без управления
- 3. Какой метод торможения целесообразно использовать в электромобиле для увеличения запаса хода?
 - А) Фрикционный тормоз
 - В) Рекуперативное торможение
 - С) Использование тормозных колодок высокой жесткости
 - D) Принудительное снижение напряжения на двигателе
- 4. Как можно уменьшить потери энергии в гидравлическом приводе экскаватора?
 - А) Увеличить длину гидравлических шлангов
 - В) Использовать более густую рабочую жидкость
 - С) Применять системы рекуперации энергии
 - D) Снизить давление в системе
- 5. Вы разрабатываете пневматический привод для автоматизированного сортировочного комплекса. Какое его преимущество по сравнению с гидравликой?
 - А) Высокая точность позиционирования
 - В) Быстродействие и простота конструкции
 - С) Возможность работы при больших нагрузках
 - D) Высокий КПД
- 6. Какие факторы нужно учитывать при выборе аккумуляторной батареи для электропогрузчика?
 - А) Размер колес и подвески
 - В) Емкость, напряжение и допустимый ток разряда

- С) Цвет корпуса и способ крепления
- D) Толщину проводки

7. Каким способом можно увеличить срок службы электродвигателя транспортного средства?

- А) Работать на максимальной мощности без перегрева
- В) Использовать двигатель с низким КПД
- С) Применять систему активного охлаждения и диагностики перегрева
- D) Избегать частых включений и отключений двигателя

8. Какой из параметров важен при выборе системы управления для гибридного привода?

- А) Длина кабелей и количество разъемов
- В) Гибкость алгоритмов переключения режимов работы
- С) Материал корпуса контроллера
- D) Тип смазочных материалов

9. Как можно повысить надежность работы электроприводов на карьерах и в сложных погодных условиях?

- А) Использовать системы с воздушным охлаждением без защиты
- В) Устанавливать приводы без учета запыленности среды
- С) Применять герметичные корпуса и системы предиктивного обслуживания
- D) Исключить системы контроля температуры и вибрации

10. Какие технологии помогут улучшить энергоэффективность привода беспилотного грузового транспорта?

- А) Использование тяжелых механических редукторов
- В) Применение многоскоростных коробок передач
- С) Внедрение интеллектуальных систем управления с анализом нагрузки
- D) Исключение системы обратной связи из алгоритма управления

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом

7.2.5 Примерный перечень заданий для подготовки к экзамену

- 1. Какие основные типы приводов применяются в наземных транспортных средствах?
- 2. Каковы основные требования к приводным системам транспортных средств?
- 3. Какие преимущества и недостатки имеют электрические приводы по сравнению с гидравлическими?
- 4. В чем разница между пневматическим и гидравлическим приводом?
- 5. Какие факторы определяют выбор типа привода для транспортного средства?
- 6. Каков принцип работы электромеханического привода?
- 7. В чем заключается частотное управление электроприводами?

- 8. Как работает система векторного управления электродвигателем?
- 9. Какие типы электродвигателей наиболее часто применяются в транспортных приводах?
- 10.В чем отличие асинхронных и синхронных электродвигателей в приводных системах?
- 11. Как осуществляется управление электромеханическими приводами с помощью инверторов?
- 12. Какие системы охлаждения применяются в мощных электроприводах?
- 13. Каковы основные причины отказов электромеханических приводов?
- 14. Как рассчитывается мощность электромеханического привода?
- 15. Какую роль играют датчики в системе управления электроприводами?
- 16. Каковы принципы работы гидравлического привода?
- 17.В каких транспортных системах предпочтительно использовать гидравлические приводы?
- 18. Каков принцип работы пневматического привода?
- 19.В чем преимущества и недостатки пневматических приводов?
- 20. Каковы методы управления гидравлическими приводами?
- 21. Как осуществляется регулирование давления в гидравлических системах?
- 22. Какие устройства используются для преобразования энергии жидкости в механическую работу?
- 23. Как можно повысить надежность гидравлического привода?
- 24. Какие жидкости используются в гидравлических приводах и почему?
- 25. Какие методы диагностики применяются для гидравлических приводов?
- 26. Что представляет собой гибридный привод?
- 27. Какие преимущества дает использование гибридного привода в транспортных средствах?
- 28. Как работает система рекуперации энергии в гибридных приводах?
- 29. Какие элементы входят в состав гибридных приводных систем?
- 30.В чем отличие последовательных и параллельных гибридных приводов?
- 31. Какие схемы компоновки применяются в современных гибридных приводах?
- 32. Какие факторы определяют выбор конфигурации гибридного привода?
- 33. Каковы перспективные направления развития гибридных приводных систем?
- 34. Как гибридные приводы помогают снижать выбросы СО2?
- 35. Какие ограничения накладывает использование гибридных приводов на конструкцию транспортных средств?
- 36. Каковы основные элементы автоматизированных систем управления приводами?
- 37. Что такое программируемый логический контроллер (ПЛК) и как он используется в приводных системах?
- 38. Какие датчики используются в системах цифрового управления приводами?
- 39. Как работают системы адаптивного управления приводами?

- 40. Как применяется искусственный интеллект в управлении приводами?
- 41. Какие алгоритмы используются для оптимизации работы приводов?
- 42.В чем преимущества цифровых систем управления перед аналоговыми?
- 43. Как осуществляется диагностика неисправностей с помощью цифровых систем мониторинга?
- 44. Каковы перспективы развития цифровых технологий в приводных системах?
- 45. Как связаны интернет вещей (ІоТ) и управление приводами?
- 46. Какие методы диагностики используются для оценки состояния приводов?
- 47.В чем заключается профилактическое обслуживание приводных систем?
- 48. Какие методы прогнозирования отказов применяются в современных приводах?
- 49. Как цифровые технологии помогают в диагностике приводных систем?
- 50. Какие перспективные технологии могут заменить традиционные приводы в будущем?

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по билетам, каждый из которых содержит 2 вопроса.

- 1. Оценка «Неудовлетворительно» ставится в случае, если:
- Студент демонстрирует небольшое понимание экзаменационных вопросов и заданий. Многие требования, предъявляемые к ним не выполнены.
- Студент демонстрирует непонимание экзаменационных вопросов и заданий.
- У студента нет ответа на экзаменационные вопросы и задания. Не было попытки их выполнить.
 - 2. Оценка «Удовлетворительно» ставится в случае, если:
- В основном правильные и конкретные, без грубых ошибок ответы на экзаменационные вопросы при неточностях и несущественных ошибках в освещении отдельных положений.
 - 3. Оценка «Хорошо» ставится в случае, если:
- У студента последовательные, правильные, конкретные ответы на вопросы экзаменационного билета; при отдельных несущественных неточностях.
 - 4. Оценка «Отлично» ставится, если:
- У студента логически последовательные, содержательные, полные, правильные и конкретные ответы на все вопросы экзаменационного билета и дополнительные вопросы; использование в необходимой мере в ответах на вопросы материалов всей рекомендованной литературы.

При проведении экзамена допускается замена одного из теоретических вопросов практическими заданиями в виде тест-вопросов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Общие принципы построения и классификация современных приводов	ОПК-1	Тест, защита лабораторных работ, решение практических задач, экзамен
2	Электромеханические приводы и их особенности	ОПК-1	Тест, защита лабораторных работ, решение практических задач, экзамен
3	Гидравлические и пневматические приводы	ОПК-1	Тест, защита лабораторных работ, решение практических задач, экзамен
4	Комбинированные и гибридные приводные системы	ОПК-1	Тест, защита лабораторных работ, решение практических задач, экзамен
5	Автоматизация и цифровое управление приводами	ОПК-1	Тест, защита лабораторных работ, решение практических задач, экзамен
6	Диагностика, техническое обслуживание и перспективы развития приводов	ОПК-1	Тест, защита лабораторных работ, решение практических задач, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Галдин Н. С. Основы гидравлики и гидропривода [Текст] : учебное пособие для вузов : допущено УМО РФ / Сиб. гос. автомоб.-дор. акад. Омск : Изд-во СибАДИ, 2006. 144 с. : ил. Библиогр.: с. 114 (20 назв.). ISBN 5-93204-305-9 : 25-00.
- 5. Гроховский Д. В. Основы гидравлики и гидропривод : Учебное пособие / Гроховский Д. В. Санкт-Петербург : Политехника, 2012. 236 с. ISBN 978-5-7325-0962-5.

URL: http://www.iprbookshop.ru/15902

- 6. Жулай В.А.Строительные машины [Текст] : сборник расчетных работ : учебное пособие / Воронеж. гос. архитектур.-строит. ун-т. 2-е изд., перераб. и доп. Воронеж : [б. и.], 2009 (Воронеж : Отдел оперативной полиграфии изд-ва учеб. лит. и учеб.-метод. пособий ВГАСУ, 2009). 97 с. : ил. ISBN 978-5-89040-225-7 : 22-78.
- 7. Лозовецкий В.В. Гидро- и пневмосистемы транспортно-технологических машин [Текст] : учебное пособие : допущено УМО. Санкт-Петербург [и др.] : Лань, 2012 (Киров : "Дом печати Вятка", 2012). 554 с. : ил. Библиогр.: с. 548-549 (37 назв.). ISBN 978-5-8114-1280-8 : 1299-98.
- 8. Цупров, А. Н. Практикум по гидравлике и гидроприводу: Учебное пособие / Цупров А. Н. Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2013. 66 с. ISBN 978-5-88247-620-4.

URL: http://www.iprbookshop.ru/22908

9. Смоляницкий Э. А. Гидропривод мобильных машин-орудий [Текст] // Строительные и дорожные машины. - 2006. - N 6. - С. 15-22.

ГИДРОПРИВОДЫ, МОБИЛЬНЫЕ МАШИНЫ Строительные и дорожные машины 2006 N 6. - C. 15-22

10. Чмиль, Владимир Павлович.

Гидропневмопривод строительной техники. Конструкция, принцип действия, расчет [Текст]: учеб. пособие. - СПб.; М.; Краснодар: Лань, 2011 (Архангельск: ОАО "ИПП "Правда Севера", 2011). - 310 с.: ил. - Библиогр.: с. 306-308 (39 назв.). - ISBN 978-5-8114-1129-0: 580-00

8.2 Перечень информационных технологий, используемых при

осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное ПО

- 1. Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic
- 2. Microsoft Office Word 2013/2007
- 3. Microsoft Office Excel 2013/2007
- 4. Microsoft Office Power Point 2013/2007
- 5. ПО "Программная система для обнаружения текстовых заимствований в учебных и научных работах "Антиплагиат.ВУЗ" версии 3.3"
- 6. APM WinMachine v. 9.4

Бесплатное программное обеспечение

- 1. 7zip
- 2. Adobe Acrobat Reader
- 3. Adobe Flash Player NPAPI
- 4. Google Chrome
- 5. Mozilla Firefox
- 6. Paint.NET
- 7. PDF24 Creator
- 8. Компас-3D Viewer
- 9. Skype
- 10. Moodle
- 11. Trello

Ресурс информационно-телекоммуникационной сети «Интернет»

http://www.edu.ru/

Образовательный портал ВГТУ

Информационная справочная система

http://window.edu.ru

https://wiki.cchgeu.ru/

http://standard.gost.ru_(Росстандарт);

http://encycl.yandex.ru (Энциклопедии и словари);

Современные профессиональные базы данных

Агентство автомобильного транспорта

Адрес pecypca: https://rosavtotransport.ru/ru/

Федеральный портал «Инженерное образование»

Адрес pecypca: http://window.edu.ru/resource/278/45278

Министерство транспорта Российской Федерации

Адрес pecypca: https://www.mintrans.ru/

NormaCS

Адрес pecypca: http://www.normacs.ru/

База данных zbMath

Адрес pecypca: https://zbmath.org/

Открытые архивы журналов издательства «Машиностроение»

Aдрес pecypca: http://www.mashin.ru/eshop/journals/

Грузовой и общественный транспорт Российской Федерации

Адрес pecypca: http://transport.ru/

Журнал Наука и техника транспорта

http://ntt.rgotups.ru/

Министерство транспорта РФ

https://mintrans.gov.ru/

Библиотека Российской открытой академии транспорта

http://transport.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для обеспечения лекционных занятий мультимедийной техникой используются ноутбук ASUS, компьютерный проектор, переносной проекционный экран.

Аудитория	Оборудование
№1306a	1. Стенд СДТА-1 (дизель)
	2. Прибор КП-1609А
	3. Прибор КИ-1086
	 Стенд СИ-968 (электрика)
	5. Стенд КИ -1774 (гидравлика)
№ 1223	1. Плоттер HP Deging Let
	2. Компьютер в сборе 9 шт
№3114	1.Компрессор
	2. Стенд СДМ М106Э ДД92115
	3. Комплект демонстрационный.
	4. Стенд «Задний мост» (в разрезе)
	5. Стенд «Коробка передач» (в разрезе).
	6. Стенд ДД – 2115
	7. Плакаты - Механические передачи;
	8. Плакаты - Устройство автомобиля КАМАЗ 4310, ЗИЛ – 131, Урал –
	4320.
	9. Плакаты по передачам, подшипникам, муфтам.
	10. Модели различных устройств автомобилей и СДМ (мосты, коробки
	передач, карданные валы, блоки двигателей, системы сцепления,
	карбюраторы, пусковой двигатель и др.)
	11. Редукторы различных типов – 10 шт.
№ 1013	1. Доска магнитная настенная
	2. Проектор BenQ MX 501 DLP, в составе кронштейн.
	3.Экран Limient на штативе LMB – 100103 Master Vier 180 x 180.
	4. Двигатель ВАЗ в сборе с навесным оборудованием.
	5. Мост задний в сборе.
Учебный	Трактор Т-4АПС-2
полигон ВГТУ	Скрепер ДЗ-111 А
	Трактор колесный Т-40М
	Трактор колесный Т-150
	Трактор Т-130
	Стенд для испытания колес – (макет)

Двигатель Д-243 (макет)
Двигатель СМД-14 (макет)
Прицеп-ёмкость специальная ПСЕ-20

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Современные приводы наземных транспортно-технологических средств» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета приводов HTTC. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

соответствии с метод	иками, приведенными в указаниях к выполнению раоот.
Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично,
	последовательно фиксировать основные положения, выводы,
	формулировки, обобщения; помечать важные мысли, выделять
	ключевые слова, термины. Проверка терминов, понятий с
	помощью энциклопедий, словарей, справочников с
	выписыванием толкований в тетрадь. Обозначение вопросов,
	терминов, материала, которые вызывают трудности, поиск
	ответов в рекомендуемой литературе. Если самостоятельно не
	удается разобраться в материале, необходимо сформулировать
	вопрос и задать преподавателю на лекции или на практическом
	занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с
занятие	конспектом лекций, подготовка ответов к контрольным
	вопросам, просмотр рекомендуемой литературы. Прослушивание
	аудио- и видеозаписей по заданной теме, выполнение
	расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять
	теоретические знания, полученные на лекции при решении
	конкретных задач. Чтобы наиболее рационально и полно
	использовать все возможности лабораторных для подготовки к
	ним необходимо: следует разобрать лекцию по соответствующей
	теме, ознакомится с соответствующим разделом учебника,
	проработать дополнительную литературу и источники, решить
C	задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому
	усвоения учебного материала и развитию навыков
	самообразования. Самостоятельная работа предполагает
	следующие составляющие:
	- работа с текстами: учебниками, справочниками,
	дополнительной литературой, а также проработка конспектов
	лекций;

	 выполнение домашних заданий и расчетов; работа над темами для самостоятельного изучения; участие в работе студенческих научных конференций, олимпиад; подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует
промежуточной	систематически, в течение всего семестра. Интенсивная
аттестации	подготовка должна начаться не позднее, чем за месяц-полтора до
	промежуточной аттестации. Данные перед экзаменом три дня
	эффективнее всего использовать для повторения и
	систематизации материала.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись
			кафедрой,
			ответственной за
			реализацию ОПОП