МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВВРЖДАЮ
Ряжских В.И.

« 30» 2017 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Спецглавы математики»

Направление подготовки 27.03.01 СТАНДАРТИЗАЦИЯ И МЕТРОЛОГИЯ

Профиль Стандартизация и сертификация

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 5 лет

Форма обучения очная / заочная

Год начала подготовки 2016

Автор программы

Шунин Г.Е.

Заведующий кафедрой Высшей математики и физико-математического моделирования

/Батаронов И.А./

Руководитель ОПОП

/Юрьев В.А./

Воронеж 2017

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Формирование у обучающихся знаний о фундаментальных математических законах и методах, используемых для анализа, моделирования и решения прикладных инженерных задач. Развитие практических навыков решения вычислительных задач с использованием систем компьютерной математики.

1.2. Задачи освоения дисциплины

- 1.2.1 получить представление о математическом моделировании как особом способе исследования и описания физических явлений и процессов, общности ее понятий и представлений; об основных математических моделях и математических методах, используемых при их исследовании.
- 1.2.2 научиться использовать основные понятия и методы векторного анализа и теории поля, дифференциальных уравнений в частных производных, гармонического анализа и операционного исчисления для исследования основных физико-математических моделей.
- 1.2.3 научиться применять системы компьютерной математики при решении вычислительных физико-технических задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Спецглавы математики» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Спецглавы математики» направлен на формирование следующих компетенций:

ОК-7- способностью к самоорганизации и самообразованию.

ОПК-2 - способностью и готовностью участвовать в организации работы

по повышению научно-технических знаний, в развитии творческой инициативы, рационализаторской и изобретательской деятельности, во внедрении достижений отечественной и зарубежной науки, техники, в использовании передового опыта, обеспечивающих эффективную работу учреждения, предприятия.

ПК-20-способностью проводить эксперименты по заданным методикам с обработкой и анализом результатов, составлять описания проводимых исследований и подготавливать данные для составления научных обзоров и публикаций.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОК-2	знать основные этапы математического моделирования,
	понятия и методы векторного анализа и теории поля,
	основные уравнения математической физики и
	постановку краевых задач, элементы гармонического
	анализа и операционного исчисления, основные

	аналитические и приближённые методы решения краевых задач.
ОПК-3	уметь находить геометрические, дифференциальные и интегральные характеристики скалярных и векторных полей, определять виды векторных полей; исследовать сходимость рядов, выполнять преобразования Фурье и Лапласа; решать простейшие дифференциальные уравнения в частных производных и краевые задачи для основных уравнений математической физики аналитическими и приближёнными методами с использованием систем компьютерной математики.
ПК-20	владеть методологией математического моделирования позволяющей выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Спецглавы математики» составляет 8 з.е.

Распределение трудоемкости дисциплины по видам занятий очная форма обучения

Ριστι γυρδικού ποδοπι	Всего	Семестры
Виды учебной работы		4
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	36	36
Самостоятельная работа	36	36
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

заочная форма обучения

Sub Hun woping ooy lening				
Ριστινικοδικού ποδοπι	Всего	Семестры		
Виды учебной работы		4		
Аудиторные занятия (всего)	20	20		
В том числе:				
Лекции	10	10		
Практические занятия (ПЗ)	10	10		
Самостоятельная работа	84	84		

Контрольная работа	+	+
Часы на контроль	4	4
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№	Наименование	о шал форма обутения		Прак	Лаб.		Всего,
п/п	темы	Содержание раздела	Лекц	зан.	зан.	CPC	час
11/11	TOMBI	2 aawaam		Juii.	Juii.		140
1	D	3 семестр	10	10		10	20
1	Векторный анализ и	±	10	10	-	10	30
	основы теории поля	математического моделирования					
		объектов. Вычислительный					
		эксперимент. Возможности					
		систем компьютерной					
		математики. Скалярное поле.					
		Поверхности и линии уровня					
		скалярного поля. Производная по					
		направлению и градиент.					
		Векторное поле. Векторные					
		линии. Поверхностные интегралы					
		первого и второго родов. Поток					
		векторного поля через					
		поверхность. Дивергенция и					
		ротор векторного поля. Их					
		физический смысл. Циркуляция					
		векторного поля. Формулы					
		Остроградского-Гаусса и Стокса.					
		Формулы Грина.					
		Дифференциальные операции					
		второго порядка. Специальные					
		виды скалярных и векторных					
		полей. Основная теорема					
		векторного анализа.					
		Криволинейные координаты в					
		векторном анализе.					
		Дифференциальные операции в					
		цилиндрических и сферических					
<u> </u>		координатах.					
2	Уравнения	Пространственно-временной	8	8	-	8	24
	математической	континуум. Основные					
	физики	динамические уравнения. Законы					
		сохранения. Задача Коши.					
		Уравнения непрерывности и					
		теплопроводности. Уравнения					
		электромагнитного поля					

		h.c. =	1		1	1	
		Максвелла. Граничные условия.					
		Электростатические и					
		магнитостатические поля.					
		Скалярные и векторные					
		уравнения Лапласа и Пуассона.					
		Электромагнитные волны.					
		Векторные и скалярные					
		уравнения Даламбера и					
		Гельмгольца. Квазистационарные					
		электромагнитные поля.					
		Векторные и скалярные					
		уравнения диффузии. Понятие о					
		дифференциальных уравнениях в					
		частных производных.					
		Классификация квазилинейных					
		уравнений в частных					
		производных второго порядка.					
		Задача Коши для уравнений					
		гиперболического и					
		параболического типов. Краевая					
		задача для эллиптических					
		уравнений. Смешанная краевая					
		задача. Корректность постановки					
		краевых задач.					
3	Элементы	Понятие о функциях	10	10		10	30
	гармонического	комплексного переменного.	10	10		10	50
		Комплексного переменного. Комплексная форма ряда Фурье.					
	операционного	Спектральные характеристики.					
	исчисления	Интеграл Фурье. Преобразование					
	не теления	Фурье и его свойства.					
		Преобразование Лапласа, его					
		свойства. Применение					
		операционного исчисления к					
		решению дифференциальных					
		уравнений.					
4	Аналитические и	Линейные уравнения. Принцип	8	8		8	24
4	приближённые	суперпозиции. Уравнения с	O	O	_	O	∠ 4
	1	разделяющимися переменными.					
	краевых задач	Метод разделения переменных					
	красовіх задач	Фурье. Собственные функции и					
		собственные значения линейных					
		операторов. Задача Штурма-					
		Лиувиля. Понятие о специальных					
		функциях. Общая схема метода					
		разложения по собственным					
		функциям. Понятие о					
		функционале и его вариации.					
		Экстремум функционала. Методы					
		Ритца, Галёркина и конечных					
	<u> </u>	элементов	26	26		26	100
		Итого	36	36	-	36	108

No	Наименование	Содержание раздела	Лекц	Прак	Лаб.	СРС	Всего,
п/п	темы		,	зан.	зан.		час
		3 семестр		_			
1	Векторный анализ и основы теории поля	Основные этапы физико- математического моделирования объектов. Вычислительный эксперимент. Возможности систем компьютерной математики. Скалярное поле. Поверхности и линии уровня скалярного поля. Производная по направлению и градиент. Векторное поле. Векторные линии. Поверхностные интегралы первого и второго родов. Поток векторного поля через поверхность. Дивергенция и ротор векторного поля. Их физический смысл. Циркуляция векторного поля. Формулы Остроградского-Гаусса и Стокса. Формулы Грина. Дифференциальные операции второго порядка. Специальные виды скалярных и векторных полей. Основная теорема векторного анализа. Криволинейные координаты в векторном анализе. Дифференциальные операции в цилиндрических и сферических координатах.		3		22	28
2	Уравнения	Пространственно-временной	3	3	_	22	28
	математической физики	континуум. Основные динамические уравнения. Законы сохранения. Задача Коши. Уравнения непрерывности и теплопроводности. Уравнения электромагнитного поля Максвелла. Граничные условия. Электростатические и магнитостатические поля. Скалярные и векторные уравнения Лапласа и Пуассона. Электромагнитные волны. Векторные и скалярные уравнения Даламбера и Гельмгольца. Квазистационарные электромагнитные поля. Векторные и скалярные уравнения диффузии. Понятие о дифференциальных уравнениях в		7			20

		Итого	10	10	-	84	108
	Контроль		,				4
	приближённые	суперпозиции. Уравнения с разделяющимися переменными. Метод разделения переменных Фурье. Собственные функции и собственные значения линейных операторов. Задача Штурма-Лиувиля. Понятие о специальных функциях. Общая схема метода разложения по собственным функциям. Понятие о функционале и его вариации. Экстремум функционала. Методы Ритца, Галёркина и конечных элементов		2		20	4
3	операционного исчисления	краевых задач. Понятие о функциях комплексного переменного. Комплексная форма ряда Фурье. Спектральные характеристики. Интеграл Фурье. Преобразование Фурье и его свойства. Преобразование Лапласа, его свойства. Применение операционного исчисления к решению дифференциальных уравнений. Линейные уравнения. Принцип	2	2	-	20	24
		частных производных. Классификация квазилинейных уравнений в частных производных второго порядка. Задача Коши для уравнений гиперболического и параболического типов. Краевая задача для эллиптических уравнений. Смешанная краевая задача. Корректность постановки					

5.2 Перечень лабораторных работ

Не предусмотрены

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Предусматривается в 4 семестре коллоквиум по разделам «Векторный анализ и основы теории поля» и «Уравнения математической физики», контрольная работа по разделам «Элементы гармонического анализа и операционного исчисления» и «Аналитические и приближённые методы решения краевых задач».

На коллоквиумах осуществляется рубежное тестирование знаний студентов, а на контрольных работах проверяется умение решать стандартные и прикладные задачи.

Задание на контрольные работы для заочной формы обучения выдаются преподавателем на консультациях.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
OK-7	знать понятия и методы векторного анализа и теории поля, основные уравнения математической физики и постановку краевых задач, элементы теории рядов и гармонического анализа и операционного исчисления, основные аналитические и приближённые методы решения краевых задач.	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ОПК-2	уметь находить геометрические, дифференциальные и интегральные характеристики скалярных и векторных полей, определять виды векторных полей; выполнять интегральные преобразования Фурье и Лапласа, решать простейшие дифференциальные уравнения в частных производных и краевые задачи для основных уравнений математической физики аналитическими и приближёнными методами с использованием систем компьютерной математики.	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-20	владеть методологией математического моделирования позволяющей выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности.	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 4 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ОК-7	знать понятия и методы векторного анализа и теории поля, основные уравнения математической физики и постановку краевых задач, элементы гармонического анализа и операционного	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	исчисления, основные аналитические и приближённые методы решения краевых задач.			
ОПК-2	уметь находить геометрические, дифференциальные и интегральные характеристики скалярных и векторных полей, определять виды векторных полей; выполнять интегральные преобразования Фурье и Лапласа; решать простейшие дифференциальные уравнения в частных производных и краевые задачи для основных уравнений математической физики аналитическими и приближёнными методами с использованием систем компьютерной математики.	Решение стандартных практических задач	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ПК-20	владеть методологией математического моделирования позволяющей выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности.	Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Какое из уравнений Максвелла является дифференциальной формой закона электромагнитной индукции Фарадея?
 - a) $div \mathbf{E} = \rho$, δ) $div \mathbf{E} = 0$, δ) $rot \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$, δ) $rot \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{B}}{\partial t}$.
 - 2. При выводе уравнения колебаний струны используется:
- а) закон сохранения энергии, б) закон сохранения заряда, в) второй закон Ньютона, г) закон сохранения массы.
- 3. Стационарная теплопередача при наличии внутренних источников тепла описывается уравнением

a)
$$\frac{\partial T}{\partial t} = a^2 \Delta T$$
, 6) $\frac{\partial^2 T}{\partial t^2} = a^2 \Delta T$, B) $\Delta T = -f$, Γ) $\Delta T = 0$.

- 4. Дифференциальное уравнение $a(x,y)\frac{\partial u}{\partial x} + b(x,y)\frac{\partial u}{\partial y} + c(x,y,u)u = f(x,y)$ является:
 - а) линейным обыкновенным дифференциальным уравнением первого порядка,

- б) линейным дифференциальным уравнением в частных производных первого
- в) квазилинейным дифференциальным уравнением в частных производных первого порядка,
- г) нелинейным дифференциальным уравнением в частных производных первого порядка.
 - 5. Определите тип уравнения $a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial x^2} = f(x, y, u)$, если b^2 -ac > 0.
 - а) смешанный, б) эллиптический, в) параболический, г) гиперболический.
 - Определить тип линейного дифференциального уравнения в частных производных

$$x\frac{\partial^2 U}{\partial x^2} - 2\sqrt{xy}\frac{\partial^2 U}{\partial x \partial y} + y\frac{\partial^2 U}{\partial y^2} + \frac{1}{2}\frac{\partial U}{\partial y} = 0.$$

- а) смешанный, б) эллиптический, в) параболический, г) гиперболический.
 - 7. Определить тип уравнения и тип краевой задачи

$$\begin{cases} u_{tt} = a^{2}u_{xx}, \\ u(x,0) = \mu(x), u_{t}(x,0) = v(x), \\ u_{x}(0,t) = u_{x}(l,t) = 0 \end{cases}$$

- а) эллиптический, краевая задача второго рода, б) параболический, смешанная краевая задача, в) гиперболический, задача Коши, г) гиперболический, смешанная краевая задача.
- 8. Решением задачи Коши для волнового уравнения $u_{tt} = 4u_{xx}$ с начальными условиями

$$u(x,0) = 2\sin(x), u_t(x,0) = 0$$
 будет

a)
$$u(x,t) = (\sin(x-2t) + \sin(x+2t))$$
, $\delta u(x,t) = (\sin(x-2t) - \sin(x+2t))$,

B)
$$u(x,t) = (\cos(x-2t) + \cos(x+2t)), \Gamma$$
 $u(x,t) = (\cos(x-2t) - \sin(x+2t)),$

- 9. Решение краевой задачи для уравнения у"+v=0 с граничными условиями $y(0)=y(\pi)=0$ будет
 - a) $\sin(3x)$, δ) $\cos(3x)$, β) $\sin(x)$, γ) $\cos(x)$.
- 10. Собственными значениями и собственными функциями задачи Штурма-Лиувилля

$$y''+\lambda y=0$$
, $y(0)=y(\pi)=0$ являются

- 11. Решение смешанной краевой задачи для волнового уравнения $u_{tt} = u_{xx}$ с граничными условиями u(0,t)=u(1,t)=0 и начальными условиями u(x,0)=x(1-x), $u_t(x,0)=0$ имеет вид
 - a) $\sum_{n=1}^{\infty} a_n \sin(\pi n x) \cos(\pi n t)$, $\int \sum_{n=1}^{\infty} a_n \sin(\pi n x) \sin(\pi n t)$, B) $\sum_{n=1}^{\infty} a_n \cos(\pi n x) \cos(\pi n t)$, $\int \sum_{n=1}^{\infty} a_n \cos(\pi n x) \sin(\pi n t)$.
- 7.2.2 Примерный перечень заданий для решения стандартных задач 1. Найти эквипотенциальные поверхности и семейство линий наибыстрейшего возрастания скалярного поля

$$u = x^2 + y^2 - z^2$$
.

- 2. Найти производную скалярного поля $u(x,y,z) = x^2 \arctan(y+z)$ в точке M(2,1,1)по направлению вектора l=3j-4k.
- 3. Найти поток векторного поля a = (2y-5x)i + (x-1)j + (2xy+2z)k через замкнутую поверхность S: 2x+2y-z=4, x=0, y=0, z=0 (нормаль внешняя), используя формулу Остроградского-Гаусса.
 - 4. Найти потенциал векторного поля $a=2xyi+(x^2-2yz)j-y^2k$.

- 5. Определить вид векторного поля $a = (yz-xy)i + (xz-x^2/2+yz^2)j + (xy+yz)^2k$.
- 6. Найти общее решение дифференциального уравнения в частных производных:

$$3\frac{\partial^2 u(x,y)}{\partial x^2} - 2\frac{\partial^2 u(x,y)}{\partial y^2} = 0.$$

7. Найти фундаментальное решение уравнения Лапласа:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

8. Найти общее решение уравнения Пуассона:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2.$$

9. Решить методом Даламбера задачу Коши для волнового уравнения

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, -\infty < x < \infty, t > 0,$$

с начальными условиями

$$u(0)=\sin(x), u_t(0)=0.$$

10. Определить тип и привести к каноническому виду дифференциальное уравнение в частных производных второго порядка

$$\frac{\partial^2 u(x,y)}{\partial x^2} + 4 \frac{\partial^2 u(x,y)}{\partial y \partial x} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0$$

11. Найти собственные значения и собственные функции краевой задачи с периодическими граничными условиями

$$y'' + \lambda y = 0$$
, $y(0) = y(1)$, $y'(0) = y'(1)$, $x \in [0,1]$.

12. Решить краевую задачу методом Галёркина. Сравнить с точным решением. Провести анализ сходимости аппроксимации

$$e^{x} \frac{d^{2} \varphi}{dx^{2}} + e^{x} \frac{d \varphi}{dx} = -2x;$$
 $\frac{d \varphi}{dx}(0) = 0, \varphi(1) = 4.$

- 7.2.3 Примерный перечень заданий для решения прикладных задач
- 1. Магнитное поле, создаваемое электрическим током силы I, текущим по бесконечному проводу, определяется формулой $\mathbf{H}(P) = 2I \frac{-y\mathbf{i} + x\mathbf{j}}{x^2 + y^2}$. Вычислить $\mathrm{div}\,\mathbf{H}(P)$ и $\mathrm{rot}\mathbf{H}(P)$.

Определить вид этого поля.

- 2. Определить суммарный электрический заряд, распределенный по поверхности пластины $|x| \le a$, $|y| \le b$, $|z| \le c$ если поверхностная плотность заряда в точке P(x,y,z) равна $k\sqrt[3]{|xyz|}$, где k > 0 коэффициент пропорциональности.
- 3. Бесконечная плоская пластина толщиной h равномерно заряжена по объёму с плотностью r. Пользуясь формулой Остроградского-Гаусса найти напряжённость $\mathbf E$ электрического поля вне пластины.
- 4. Пользуясь формулой Стокса найти напряжённость **H** магнитного поля создаваемого бесконечно длинным тонким проводником с током I.
- 5. Найти траекторию движения частицы с зарядом ${\bf q}$ и начальной скоростью ${\bf v}_0$ в однородном постоянном электрическом поле с напряжённостью ${\bf E}$.
 - 6. Вывести из уравнений Максвелла закон сохранения заряда.
- 7. Сформулировать краевую задачу о проникновении переменного магнитного поля в правое полупространство с проводимостью σ , если начиная с момента времени t=0 на поверхности x=0 поддерживается напряжённость H= $H_0 sin(\omega t)$, ω -частота поля.

- 8. Один конец стержня x=0 теплоизолирован, а другой x=1 поддерживается при температуре равной нулю. В начальный момент времени t=0 температура во всех точках стержня равна T_0 . Найти распределение температуры при t>0.
- 9. Решите одномерную задачу стационарной теплопроводности в полом цилиндре с внутренним и внешним радиусами, равными соответственно 0.5 и 2. Температуру на внутренней и внешней поверхностях задайте равными 100 и 200 соответственно. Покажите, что полученное решение одномерно. Сравните численное решение с точным решением.
- 10. Найти стационарное распределение температуры u в прямоугольной пластине $0 \le x \le 1$, $0 \le y \le 2$ которая нагревается от источников тепла с мощностью Q(x, y), если

.
$$u(0,y) = u(1,y) = 0$$
, $\partial u/\partial n|_{y=0} = -1$, $[\partial u/\partial n]_{y=2} = 1$; $Q(x,y) = 3$.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Скалярные поле, векторные и тензорные поля. Геометрические характеристики скалярных и векторных полей.
- 2. Градиент и производная по направлению от скалярного поля.
- 3. Векторные поля и его геометрические характеристики.
- 4. Дивергенция и ротор векторного поля.
- 5. Векторные дифференциальные операции второго порядка.
- 6. Виды векторных полей. Теорема Гельмгольца.
- 7. Криволинейные интегралы от скалярных и векторных полей.
- 8. Поверхностные интегралы от скалярных и векторных полей.
- 9. Объёмные интегралы от скалярных и векторных полей.
- 10. Формулы Остроградского-Гаусса, Грина и Стокса.
- 11. Основные динамические уравнения. Задача Коши. Законы сохранения.
- 12. Уравнения непрерывности и теплопроводности.
- 13. Дифференциальная и интегральная формы уравнений Максвелла.
- 14. Стационарные уравнения Максвелла. Скалярные и векторные уравнения Лапласа, Пуассона.
- 15. Электромагнитные волны. Скалярные и векторные волновые уравнения.
- 16. Гармонические электромагнитные поля. Скалярные и векторные уравнения Гельмгольца.
- 17. Квазистационарные уравнения Максвелла. Скалярные и векторные уравнения диффузии.
- 18. Основные уравнения математической физики: Лапласа, Пуассона, волновое и теплопроводности.
- 19. Классификация квазилинейных уравнений в частных производных второго порядка.
- 20. Задача Коши для уравнений гиперболического и параболического типов.
- 21. Краевая задача для эллиптических уравнений.
- 22. Смешанная краевая задача. Корректность постановки краевых задач.
- 23. Решение уравнения колебаний бесконечной струны методом Даламбера.
- 24. Понятие о функциях комплексного переменного.
- 25. Комплексная форма ряда Фурье.
- 26. Интеграл Фурье в комплексной форме.
- 27. Прямое и обратное преобразование Фурье.

- 28. Прямые и обратные преобразования Лапласа. Их свойства.
- 29. Общий вид линейного дифференциального оператора второго порядка. Линейные неоднородные и однородные уравнения. Принцип суперпозиции.
- 30. Метод разделения переменных Фурье.
- 31. Задача об охлаждении пластины.
- 32. Задача Дирихле для уравнения Лапласа в круге.
- 33. Колебания закреплённой струны.
- 34. Собственные функции и собственные значения линейных операторов.
- 35. Задача Штурма-Лиувилля. Понятие о специальных функциях.
- 36. Общая схема метода собственных функций.
- 37. Понятие функционала и его вариации. Экстремум функционала.
- 38. Сущность метода Ритца.
- 39. Сущность метода Галёркина.
- 40. Сущность метода конечных элементов.

7.2.6 Паспорт оценочных материалов

	1 '		
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Векторный анализ и основы теории поля	ПК-3, ПК-1	Тест-билет, зачёт, коллоквиум, отчёт, опрос.
2	Уравнения математической физики	ПК-3, ПК-1	Тест-билет, зачёт, контрольная работа, защита лабораторных работ, отчёт, опрос.
3	Элементы теории рядов и гармонического анализа	ПК-3, ПК-1	Тест-билет, экзамен, коллоквиум, отчёт, опрос.
4	Аналитические и численные методы решения краевых задач.	ПК-3, ПК-1	Тест-билет, экзамен, контрольная работа, требования к курсовой работе, отчёт, опрос.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется

проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Пискунов Н.С. Ч. 2. Дифференциальное и интегральное исчисления. учебное пособие. Т. 2. Изд. стер. М.: Интеграл-Пресс, 2001. 544 с..
- 2. Сборник задач по математике для втузов : В 4 т.: Учеб. пособие. Т. 3 / Под ред А.В.Ефимова, А.С.Поспелова. 4-е изд., перераб. и доп. М. : Физматиздат, 2002. 576 с.
- 3. Чудесенко В.Ф. Сборник заданий по специальным курсам высшей математики: Типовые расчеты: Учеб. пособие. 5-е изд., стереотип. СПб. ; М.; Краснодар: Лань, 2010. 192 с.
- 4. Шунин Г.Е., Кострюков С.А., Пешков В.В. Введение в конечно-элементный анализ: учебное пособие /ФГБОУ ВО "Воронеж. гос. техн. ун-т". -Воронеж : Воронежский государственный технический университет, 2017. 204 с.
- 5. Кострюков С.А., Пешков В.В., Шунин Г.Е. Основы вариационного исчисления: Учеб. пособие. Воронеж: ФГБОУ ВПО "Воронежский государственный технический университет", 2011. 165 с.
- 6. Нечаев В.Н., Шуба А.В. Методы математической физики: Учеб. пособие. Ч.1. Воронеж: ГОУВПО "Воронежский государственный технический университет", 2009. 177 с.
- 7. Кострюков С.А., Пешков В.В., Шунин Г.Е., Шунина В.А. Практикум по численным методам [Электронный ресурс] : учебное пособие / ФГБОУ ВО "Воронеж. гос. техн. ун-т", каф. высш. математики и физ.-мат. моделирования. Воронеж : Воронежский государственный технический университет, 2017. 256 с.
- 8. Черненко В. Д. Высшая математика в примерах и задачах. Том 2: учебное пособие для вузов [Электронный ресурс]. СПб, Политехника, 2016. –572 с. –978-5-7325-1105-5. Режим доступа: http://www.iprbookshop.ru/59560.html
- 9. Киреев И. В., Кнауб Л. В., Левчук Д. В., Нужин Я. Н. Тензорный анализ и дифференциальная геометрия: учеб. пособие. Красноярск: Сибирский федеральный университет, 2017. –102 с. 978-5-7638-3622-6. Режим доступа: http://www.iprbookshop.ru/84148.html
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

=		* · · · · · · · · · · · · · · · · · · ·	
	1	Операционные системы,	Лицензионные: Windows XP и выше;
		средства просмотра Web,	свободно распространяемые: Internet Explorer 7 и выше,
		поисковые системы,	Chrome, Google, Yandex, Open Office, Acrobat Reader
		средства работы с	

	текстовой, графической и	
	видео информацией	
	Системы компьютерной	Лицензионные: Maple 14;
2	математики	свободно распространяемые: демонстрационная версия
		Maple 5.4, Maxima, Scilab, MathStudio
	Конечно-элементные	Свободно распространяемые: Fempdesolver, Femm,
	комплексы программ	студенческие версии Flexpde, Elcut
	Сайт библиотеки ВГТУ и	http://catalog.vorstu.ru
3	ИОС ВГТУ	http://eios.vorstu.ru
	Электронные	http://www.elabory.ru
4	библиотеки,	http://www.iprbookshop.ru
	профессиональные	http://eqworld.ipmnet.ru
	базы данных и	http://dic.academic.ru
	информационные	http://m.mathnet.ru
	справочные системы	

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

9.1	<i>Пекции:</i> специализированное помещение для проведения лекций, оборудованное компьютером с видеопроектором.		
9.2	Практические занятия: специализированное помещение для проведения практических, оборудованное компьютерами с выходом в Интернет.		
	практических, оборудованное компьютерами с выходом в интернет.		

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Спецглавы математики» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков применения математического аппарата для решения стандартных и прикладных задач. Занятия проводятся путем решения конкретных задач в аудитории.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.

Практическое	Конспектирование рекомендуемых источников. Работа с
занятие	конспектом лекций, подготовка ответов к контрольным вопросам,
	просмотр рекомендуемой литературы. Прослушивание аудио- и
	видеозаписей по заданной теме, выполнение расчетно-графических
	заданий, решение задач по алгоритму.
Самостоятельная	Самостоятельная работа студентов способствует глубокому
работа	усвоения учебного материала и развитию навыков
	самообразования. Самостоятельная работа предполагает
	следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов, курсовой работы;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться
аттестации	не позднее, чем за месяц-полтора до промежуточной аттестации.
·	Данные перед зачетом два-три дня эффективнее всего использовать
	для повторения и систематизации материала.