МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета информационных технологий и компьютерной безопасности

Л.Ю. Гусев/ 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Оптимизация эффективности, качества и надежности при разработке ИС»

Направление подготовки 09.03.02 Информационные системы и технологии

Профиль Системы автоматизации проектирования и разработки информационных систем

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки <u>2021</u>

Автор программы

/Львович Я.Е./

Заведующий кафедрой Систем автоматизированного проектирования и информационных систем

Руководитель ОПОП

/Львович Я.Е. /

/Яскевич О.Г./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

изучение методов, моделей, алгоритмов и программных средств оптимизации для принятия оптимальных решений при проектировании ИС с точки зрения повышения качества, эффективности и надежности их функционирования.

1.2. Задачи освоения дисциплины

- изучение основных методов и алгоритмов оптимизации при проектировании ИС;
- изучение модели чувствительности для оценки качества функционирования ИС;
- изучение основных характеристик надежности функционирования сложных систем;
 - изучение математических моделей систем массового обслуживания.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Оптимизация эффективности, качества и надежности при разработке ИС» относится к дисциплинам из части формируемых участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Оптимизация эффективности, качества и надежности при разработке ИС» направлен на формирование следующих компетенций:

- ПК-6 Способен проводить оценку осуществимости функционирования и сопровождения информационной системы
- ПК-1 Способен выполнять синтез требований к программному продукту и декомпозицию программного средства на компоненты

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-6	Знать основные методы и алгоритмы оптимизации, применяемые при проектировании и оценке показателей функционирования ИС
	Уметь разрабатывать модели и алгоритмы решения оптимизационных задач на разных этапах проектирования ИС
	Владеть навыками работы с программными средствами, применяемыми для решения оптимизационных задач
ПК-1	Знать основные показатели качества, надежности и

эффективности сложных систем при их проекти-
ровании
Уметь рассчитывать показатели надежности ин-
формационных систем, анализировать чувстви-
тельность, рассчитывать параметры СМО
Владеть методами многокритериальной оптимиза-
ции для формирования оптимальных требований к
параметрам разрабатываемой системы

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Оптимизация эффективности, качества и надежности при разработке ИС» составляет 4 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

о шил форми обутения		
Duni i vivolivoji policiti i		Семестры
Виды учебной работы	часов	6
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	36	36
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	72	72
Виды промежуточной аттестации - зачет с		
оценкой	+	+
Общая трудоемкость:		
академические часы	144	144
зач.ед.	4	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	ο παν φορώα σου τεπιν						
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час	
1	Возможности и перспективы использования методов оптимизации при проектировании ИС	Понятие оптимизации. Оптимизационные модели. Структурная и параметрическая оптимизация. Особенности постановки задач при внешнем и внутреннем проектировании. Характер оптимизационных задач на различных этапах проектирования ИС. Трансформация технического задания на проектирование ИС в оптимизационные модели	2	4	12	18	
2	функционирования ИС как объ-	Модель чувствительности. Понятие чувствительности. Функции чувствительности. Структурная схема модели чувствительности. Вероятностный анализ с использованием модели чувствительности. Метод наихудшего случая. Метод статистических испытаний. Показатели технического задания на проектирование ИС, вычисляемые с использованием модели чувствительности.		4	12	20	

3	объекта оптимального проектирования с использованием модели надежности	характеристика отказов. Модель надежности. Качественные и количественные характеристики надежности. Математическая модель соединения элементов в смысле надежности.	6	4	12	22
4		Понятие системы массового обслуживания. Компоненты системы массового обслуживания: входной поток однородных событий, дисциплину очереди заявок, механизм обслуживания. Классификация систем массового обслуживания. Математические модели систем массового обслуживания.	4	4	12	20
5	Методы решения задач оптимизации	Методы одномерного унимодального поиска. Методы безусловной оптимизации. Построение эквивалентных задач математического программирования. Постановка и решение задач линейного программирования. Подходы к решению задач нелинейного программирования. Подходы к решению задач дискретного программирования. Подходы к решению задач многокритериальной оптимизации	20	20	24	64
		Итого	36	36	72	144

5.2 Перечень лабораторных работ

- Формализованная постановка задач оптимизации. Изучение возможностей пакетов прикладных программ при решении оптимизационных задач. Примеры оптимизационных задач.
- Решение задач линейной оптимизации средствами табличного редактора и пакета математических программ. Анализ чувствительности.
- Расчет параметров систем массового обслуживания с помощью табличного редактора.
 - Расчет показателей надежности сложных систем.
 - Решение задач одномерного поиска.
 - Решение задач нелинейного программирования.
 - Решение задач дискретной оптимизации.
 - Решение задач многокритериальной оптимизации.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-6	знать основные методы и алгоритмы оптимизации, применяемые при проектировании и оценке показателей функционирования ИС	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь разрабатывать модели и алгоритмы решения оптимизационных задач на разных этапах проектирования ИС	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками работы с программными сред- ствами, применяемыми для решения оптимиза- ционных задач	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-1	знать основные показатели качества, надежности и эффективности сложных систем при их проектировании	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь рассчитывать по- казатели надежности информационных систем, анализировать чувстви- тельность, рассчитывать параметры СМО	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
		Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 4 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-6	знать основные методы и алгоритмы оптимизации, применяемые	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных
	при проектировании и оценке показателей функционирования ИС					ответов

	уметь разрабатывать модели и алгоритмы решения оптимизационных задач на разных этапах проектирования ИС	Решение стандартных практических задач	Задачи ре- шены в полном объеме и получены верные от- веты	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	владеть навыками ра- боты с программными средствами, применяе- мыми для решения оп- тимизационных задач	Решение прикладных задач в кон- кретной предметной области	Задачи ре- шены в полном объеме и получены верные от- веты	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован вер- ный ход ре- шения в большинстве задач	Задачи не решены
ПК-1	знать основные показатели качества, надежности и эффективности сложных систем при их проектировании	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	уметь рассчитывать показатели надежности информационных систем, анализировать чувствительность, рассчитывать параметры СМО	Решение стандартных практических задач	Задачи ре- шены в полном объеме и получены верные от- веты	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован вер- ный ход ре- шения в большинстве задач	Задачи не решены
	владеть методами многокритериальной оптимизации для формирования оптимальных требований к параметрам разрабатываемой системы	прикладных задач в кон- кретной предметной	Задачи ре- шены в полном объеме и получены верные от- веты	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - 7.2.1 Примерный перечень заданий для подготовки к тестированию
- 1. Какой метод не является одним из основных методов анализа стабильности функционирования систем:
 - 1)вероятностный метод
 - 2)метод наихудшего случая
 - 3)метод наилучшего случая
 - 4)метод статистических испытаний
- 2. Если некоторый параметр зависит от достаточно большого числа случайных величин, подчиненных любым законам распределения, то какому закону распределения он приближенно подчиняется?
 - 1) закону распределения Пуассона
 - 2) равномерному закону распределения
 - 3) показательному закону распределения
 - 4) нормальному закону распределения

3. Надежность – это:

- 1) свойство сложной системы выполнять заданные функции с заданными характеристиками в определенных условиях для определенного промежутка времени.
- 2) свойство сложной системы выполнять заданные функции с заданными характеристиками в определенных условиях для неопределенного промежутка времени.
- 3) свойство сложной системы выполнять заданные функции с заданными характеристиками без указания определенных условий для определенного промежутка времени.
- 4) свойство сложной системы выполнять заданные функции с неопределенными характеристиками в определенных условиях для определенного промежутка времени.
- 4. Наука, изучающая закономерности возникновения отказов технических устройств
 - 1) Теория вероятности
 - 2) Теория надёжности
 - 3) Теория отказов
 - 4) Диагностирование
- 5. Математическое ожидание времени исправной работы элементов
 - 1) средняя наработка на отказ
 - 2) среднее время безотказной работы
 - 3) время надежной работы
 - 4) наработка

6. Компонентами СМО являются:

1)входной поток однородных событий; дисциплина очереди заявок; механизм обслуживания.

- 2) выходной поток однородных событий; дисциплина очереди заявок; механизм обслуживания
 - 3) входной поток однородных событий; механизм обслуживания
 - 4) входной поток однородных событий; дисциплина очереди заявок
 - 7. Безотказность это:
- 1) свойство объекта непрерывно сохранять работоспособное состояние в течение всего времени работы;
- 2) свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки;
- 3) свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта;
- 4) свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.
 - 8. Долговечность это:
- 1) свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта;

- 2) свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования;
- 3) свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта;
- 4) свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.
 - 9. Ремонтопригодность это:
- 1) свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования;
- 2) свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки;
- **3**) свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта;
- 4) свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта.
 - 10. Сохраняемость это:
- 1) свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта;
- 2) свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта;
- 3) свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки;
- **4**) свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования.
 - 11. Исправное состояние это:
- 1) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 2) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 3) состояние объекта, при котором он соответствует всем требованиям нормативнотехнической и (или) конструкторской (проектной) документации;
- 4) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации.
 - 12. Неисправное состояние это:
 - 1) состояние объекта, при котором значения хотя бы одного параметра,

характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;

- 2) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации;
- 3) состояние объекта, при котором он соответствует всем требованиям нормативнотехнической и (или) конструкторской (проектной) документации;
- 4) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации.
 - 13. Надежность трактуется как:
- 1) свойство объекта сохранять во времени в установленных пределах значения некоторых параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования;
- 2) свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования;
- 3) свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, без технического обслуживания и ремонта;
- 4) свойство объекта максимально возможно поддерживать во времени в установленных пределах значения всех параметров, характеризующих выполнение требуемых функций в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования.
 - 14. Работоспособное состояние это:
- 1) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 2) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации;
- 3) состояние объекта, при котором он соответствует всем требованиям нормативнотехнической и (или) конструкторской (проектной) документации;
- 4) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.
 - 15. Неработоспособное состояние это:
 - 1) состояние объекта, при котором он не соответствует хотя бы одному

из требований нормативно-технической и (или) конструкторской (проектной) документации;

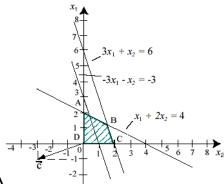
- 2) состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно;
- 3) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 4) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации.
 - 16. Предельное состояние это:
- 1) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 2) состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 3) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации;
- **4**) состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно
 - 17. Отказ это:
- 1) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации;
- 2) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации;
- 3) событие, заключающееся в нарушении работоспособного состояния объекта;
- 4) событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния.
 - 18. Повреждение это:
- 1) событие, заключающееся в нарушении работоспособного состояния объекта;
- 2) каждое отдельное несоответствие объекта установленным нормам или требованиям;

- 3) событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния;
- 4) состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.
 - 19. Дефектом называется:
- 1) событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния;
- 2) событие, заключающееся в нарушении работоспособного состояния объекта;
- 3) состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации;
- 4) каждое отдельное несоответствие объекта установленным требованиям или нормам.
 - 20. Оценка надежности это:
- 1) величина, отражающая измерение количественных показателей системы, связанных с ее помехоустойчивостью и стабильностью;
- 2) измерение количественных метрик атрибутов субхарактеристик в использовании: завершенности, устойчивости к дефектам, восстанавливаемости и доступности/готовности;
 - 3) показатель, характеризующий время безотказной работы системы;
- 4) измерение количественных метрик атрибутов субхарактеристик в использовании: стабильности, устойчивости к дефектам, помехоустойчивости и доступности/готовности.
 - 21. Критерий длительности наработки на отказ:
- 1) определяется временем работоспособного состояния системы между последовательными сбоями или началами нормального функционирования системы после них;
- 2) определяется временем простоя системы вследствие произошедших сбоев;
- 3) определяется временем восстановления системы после произошедших сбоев;
- 4) определяется временем работоспособного состояния системы между последовательными отказами или началами нормального функционирования системы после них.
 - 22. Интенсивность отказов это:
- 1) относительное количество отказов, приходящееся на каждую единицу времени;
 - 2) количество отказов, зарегистрированных в ходе испытания системы;
 - 3) частота произошедших сбоев;
- 4) относительное количество отказов, приходящихся на все время функционирования и простоя системы.
 - 23. Вероятность отказа это:

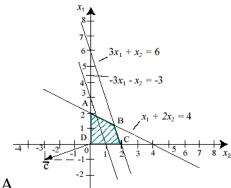
- 1) вероятность появления отказа по окончании заданного интервала;
- 2) вероятность появления отказа до конца заданного интервала;
- 3) вероятность того, что объект сохранит работоспособность, т.е. не будет отказов в течение заданного интервала;
- 4) вероятность того, что объект сохранит работоспособность, но при этом произойдет сбой в течение заданного интервала.
 - 24. Вероятность безотказной работы это:
 - 1) вероятность появления отказа по окончании заданного интервала;
 - 2) вероятность появления отказа до конца заданного интервала;
- 3) вероятность того, что объект сохранит работоспособность, т.е. не будет отказов в течение заданного интервала;
- 4) вероятность того, что объект сохранит работоспособность, но при этом произойдет сбой в течение заданного интервала.
 - 25. К объектам уязвимости ИС не относятся:
 - 1) непосредственно вычислительный процесс обработки данных;
 - 2) информационная база данных системы;
 - 3) входящая информационная база данных;
- 4) выдаваемая пользователю в результате программной обработки информация.
 - 26. К внутренним дестабилизирующим факторам относятся:
 - 1) ошибки при постановке целей и задач создания ИС;
- 2) ошибки оперативного и обслуживающего персонала в процессе эксплуатации системы;
 - 3) ошибки при тестировании системы;
 - 4) ошибки операционной системы.
 - 27. К внутренним дестабилизирующим факторам относятся:
 - 1) искажения в каналах телекоммуникации информации;
 - 2) ошибки, возникающие на стадии разработки системы;
 - 3) ошибки при тестировании системы;
 - 4) ошибки операционной системы.
 - 28. К внутренним дестабилизирующим факторам относятся:
 - 1) искажения в каналах телекоммуникации информации;
 - 2) ошибки, возникающие на стадии эксплуатации системы;
 - 3) ошибки в текстах программ и описаниях данных;
 - 4) ошибки операционной системы.
- 29. В задаче линейного программирования введением дополнительных переменных можно
 - 1) преобразовать линейную форму к нелинейной
 - 2) свести ограничения типа равенств к неравенствам
 - 3) свести ограничения типа неравенств к равенствам
 - 4) уменьшить число ограничений
- 30. Каноническая фора задачи при решении ее симплекс-методом должна содержать:
 - 1) только отрицательные переменные и ограничения типа неравенств
 - 2) только отрицательные переменные и ограничения типа равенств

- 3) только положительные переменные и ограничения типа неравенств
- 4) только положительные переменные и ограничения типа равенств
- 31. Метод поиска экстремума путем последовательного деления отрезка пополам называется
 - 1) методом дихотомии
 - 2) поиском однородными парами
 - 3) пассивным поиском
 - 4) параллельным поиском
- 32. Точки, в которых первые производные функции обращаются в ноль, называются
 - 1) стационарными
 - 2) оптимальным
 - 3) экстремальными
 - 4) перегиба
- 33. Задачи целочисленного программирования решаются
 - 1) методом Ньютона
 - 2) методом дихотомии
 - 3) методом Гомори
 - 4) методом искусственного базиса
- 34. Базисная переменная это...
 - 1) переменная, на которую не наложено условие неотрицательности
 - 2) переменная, на которую наложено условие целочисленности
- 3) переменная, которая входит только в одно ограничение с единичным коэффициентом
- 4) переменная, на которую наложено условие неотрицательности 35. Какие из ниже перечисленных методов относятся к методам одномерной оптимизации?
- 1) Методы Розенброка, Хука-Дживса, Нелдера-Мида, случайного по-иска.
- 2) Методы быстрого спуска, сопряженных градиентов, переменной метрики.
- 3) Методы быстрого спуска, Розенброка, Хука-Дживса, метод золотого сечения.
- 4) Метод дихотомического деления, метод золотого сечения, метод чисел Фибоначчи, метод полиномиальной аппроксимации.
- 36 . В зависимости от количества управляемых параметров методы оптимизации делятся на методы ...
 - 1) одномерной и многомерной оптимизации
 - 2) двумерной и многомерной оптимизации
 - 3) одномерной и n + к-мерной оптимизации
 - 4) одномерной, двумерной и трехмерной
- 37. Классификация оптимизационных моделей по критерию наличия или отсутствия ограничений...
 - 1) полной и безусловной оптимизации

- 2) полной и неполной оптимизации
- 3) условной и безусловной оптимизации
- 4) условной и частичной оптимизации.


7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Дана вероятность безотказной работы элемента за 500 часов p(500)=0,71 и вероятность безотказной работы элемента за 1000 часов p(1000)=0,56. Необходимо определить вероятность безотказной работы элемента, проработавшего 500 часов, за промежуток времени от 500 до 1000 часов.
 - 1) $p(t_1,t_2) = 0,790$
 - 2) $p(t_1,t_2) = 0,56$
 - $3)p(t_1,t_2)=0,788$
 - 4) $p(t_1, t_2) = 0,71$
- 2. Пусть имеется система, состоящая из 5 последовательно соединенных элементов с вероятностями безотказной работы за период времени 2000 часов соответственно 0,65; 0,78; 0,85; 0,8; 0,9. Необходимо определить вероятность безотказной работы системы за период времени 2000 часов.
 - 1) p(t) = 0.45
 - 2) p(t) = 0.65
 - 3) p(t) = 0.78
 - 4) p(t) = 0.9
- 3. В течение 500 часов испытывались 5 АРМов системы. Зафиксировано 2 отказа. Вероятность безотказной работы системы: P(500) равна:
 - 1) 0,6;
 - 2) 0,1;
 - 3) 0,5;
 - 4) 0,2.
- 4. В течение 100 часов испытывались 10 АРМов системы. Зафиксировано 2 отказа. Вероятность безотказной работы системы: P(100) равна:
 - 1) 0,4;
 - 2) 0,1;
 - 3) 0,8;
 - 4) 0,2.
- 5. В течение 500 часов испытывались 5 АРМов системы. Зафиксировано 2 отказа. Вероятность отказа системы: Q(500) равна:
 - 1) 0,6;
 - 2) 0,4;
 - 3) 0,5;
 - 4) 0,2.
- 6. В течение 100 часов испытывались 10 APMов системы. Зафиксировано 2 отказа. Вероятность отказа системы: Q (100) равна:
 - 1) 0,4;
 - 2) 0,1;


- 3) 0,8;
- **4)** 0,2.
- 7. Какой из наборов значений переменной является начальным опорным планом задачи:

$$\begin{cases} x_1 + 2x_2 = 1 \\ -x_2 + x_4 + x_5 = 4 \\ 3x_2 + x_3 - 2x_4 = 2 \end{cases}$$

- 1) (1,4,2,0,0)
- 2) (1,4,2)
- 3) (1,0,2,0,4)
- 4) у задачи нет начального опорного плана
- 8. В какой точке множества допустимых решений достигается минимум целевой функции $F = -3x_1 x_2$

- точка А
- 2) точка В
- 3) точка С
- 4) точка D
- 9. В какой точке множества допустимых решений достигается максимум целевой функции $F = -3x_1 x_2$

- 1) точка А
- 2) точка В
- 3) точка С
- 4) точка D
- 10. В какой форме записи находится данная задача:

$$F = \sum_{j=1}^{n} c_j x_j \rightarrow \min$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, i = \overline{1, m}$$
$$x_{i} \ge 0, i = \overline{1, n}$$

- 1) канонической
- 2) общей
- 3) стандатрной
- 4) нестандартной

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Выбрать каноническую форму записи исходной задачи

$$F = x_2 - 3x_3 + 2x_4 \rightarrow \min$$

$$\begin{cases} x_1 + 3x_2 - x_3 + 2x_4 = 7 \\ -2x_2 + 4x_3 \le 12 \\ 4x_2 - 3x_3 - 8x_4 \ge -10 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

$$-x_{2} + 3x_{3} - 2x_{4} \rightarrow \max$$

$$\begin{cases} x_{1} + 3x_{2} - x_{3} + 2x_{4} = 7 \\ -2x_{2} + 4x_{3} + x_{5} = 12 \\ -4x_{2} + 3x_{3} + 8x_{4} + x_{6} = 10 \end{cases}$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

$$x_{2} - 3x_{3} + 2x_{4} \rightarrow \min$$

$$2) \begin{cases} x_{1} + 3x_{2} - x_{3} + 2x_{4} = 7 \\ -2x_{2} + 4x_{3} + x_{5} = 12 \\ -4x_{2} + 3x_{3} + 8x_{4} + x_{6} = 10 \end{cases}$$

$$x_{2} - 3x_{3} + 2x_{4} \rightarrow \min$$

$$\begin{cases} x_{1} + 3x_{2} - x_{3} + 2x_{4} = 7 \\ -2x_{2} + 4x_{3} + x_{5} = 12 \\ -4x_{2} + 3x_{3} + 8x_{4} + x_{6} = 10 \end{cases}$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

$$x_{2} - 3x_{3} + 2x_{4} \rightarrow \min$$

$$\begin{cases} x_{1} + 3x_{2} - x_{3} + 2x_{4} = 7 \\ -2x_{2} + 4x_{3} + x_{5} \le 12 \\ -4x_{2} + 3x_{3} + 8x_{4} + x_{6} \ge 10 \end{cases}$$

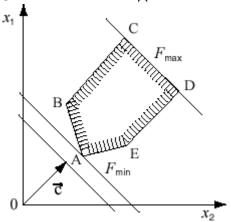
$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

2.Определить, какая из задач линейного программирования записана в канонической форме?

1)
$$z(x) = 2x_1 - 3x_2 + 7x_3 \rightarrow \max$$
 2) $z(x) = 2x_1 - 3x_2 + 7x_3 \rightarrow \min$


$$\begin{cases} 5x_1 + 2x_2 - x_3 \ge 1 \\ 4x_1 + x_2 + x_3 \ge 2 \\ -x_1 + 2x_2 - x_3 \le 3 \\ x \ge 0, j = 1,3 \end{cases}$$

$$\begin{cases} 5x_1 + 2x_2 - x_3 = 1 \\ 4x_1 + x_2 + x_3 = 2 \\ -x_1 + 2x_2 - x_3 = 3 \\ x \ge 0, j = 1, 3 \end{cases}$$

3)
$$z(x) = 2x_1 - 3x_2 + 7x_3 \rightarrow \max$$

$$\begin{cases} 5x_1 + 2x_2 - x_3 \le 1 \\ 4x_1 + x_2 + x_3 \le 2 \\ -x_1 + 2x_2 - x_3 \le 3 \\ x \ge 0, j = 1, 3 \end{cases}$$

3. В какой точке достигается максимум целевой функции

- 1) Точка С
- 2) Точка D
- 3) Любая точка отрезка СD
- 4) Функция не имеет максимума
- 4. Построить функцию Лагранжа $f = 4x_1 + x_1^2 + 8x_2 + x_2^2$ при условии $x_1 + x_2 = 180$.
- 1) $F(x_1, x_2, \lambda) = \lambda(180 x_1 x_2)$
- **2)** $F(x_1, x_2, \lambda) = 4x_1 + x_1^2 + 8x_2 + x_2^2 + \lambda(180 x_1 x_2)$
- 3) $F(x_1, x_2, \lambda) = 4x_1 + x_1^2 + 8x_2 + x_2^2 + \lambda$,
- 4) $F(x_1, x_2) = 4x_1 + x_1^2 + 8x_2 + x_2^2 + 180 x_1 x_2$

$$F(x) = x_1 - 3x_2 - x_3 - x_4 - x_5 + 128 \to \max$$

$$\begin{cases}
-2x_1 + x_2 + x_3 = 2 \\
-x_1 + 5x_2 + x_4 = 87
\end{cases}$$
5.
$$\begin{cases}
5x_1 + x_2 + x_5 = 49 \\
3x_1 - 4x_2 + x_6 = 11 \\
3x_1 + 4x_2 - x_7 = 19
\end{cases}$$

$$x_i \ge 0, i = \overline{1,7}$$

- 1) X=(8,9,9,0,0,0)
- 2) X=(8,9,9,0,23,41)
- 3) X=(18,9,10,0,23,41)
- 4) X=(5,9,4,0,23,13)

$$F(x) = x_1 - x_2 - 3x_3 \to \min$$
6.
$$\begin{cases} 2x_1 - x_2 + x_3 \le 3\\ 4x_1 - 2x_2 + x_3 \ge -6\\ 3x_1 + x_3 \le 15 \end{cases}$$

$$x_i \ge 0, i = \overline{1,3}$$

- 1) X=(1,0,3)
- 2) X=(1,11,12)
- 3) X=(1,10,12)
- 4) X=(6,11,12)

$$F(x) = 5x_1 + x_2 - 3x_3 + 2x_4 \rightarrow \min$$
7.
$$\begin{cases} 3x_1 + 2x_2 + x_3 + x_4 = 7 \\ 5x_1 + 3x_2 + x_3 + 2x_4 = 11 \end{cases}$$

$$x_i \ge 0, i = \overline{1,4}$$

- 1) X=(3,4,0,0)
- 2) X=(0,0,32,4)
- 3) X=(0,0,3,4)
- 4) X=(0,5,3,4)
- 8. Найти точки экстремума функции $\mathbf{f} = 4\mathbf{x}_1 + \mathbf{x}_1^2 + 8\mathbf{x}_2 + \mathbf{x}_2^2$ при условии $\mathbf{x}_1 + \mathbf{x}_2 = 180$
 - 1) (98; 89)
 - 2) (81; 99)
 - 3) (99; 81)
 - 4) (91; 89)
 - 9. Найти максимальное значение функции $F = \frac{2x_1 + x_2}{x_1 + x_2}$ при условиях

$$\begin{cases} x_1 + 2x_2 - x_3 = 11 \\ x_1 - x_2 + x_4 = 8 \\ -x_1 + 3x_2 + x_5 = 9 \end{cases}$$
$$x_1, x_2, \dots, x_5 \ge 0$$

1)
$$x_1^* = 9; x_2^* = 1; x_3^* = 0; x_4^* = 0; x_5^* = 15$$

2)
$$x_1^* = 10; x_2^* = 1; x_3^* = 0; x_4^* = 0; x_5^* = 15$$

3)
$$x_1^* = 9; x_2^* = 1; x_3^* = 0; x_4^* = 0; x_5^* = 1$$

4)
$$x_1^* = 9; x_2^* = 1; x_3^* = 10; x_4^* = 0; x_5^* = 15$$

$$-x_1-4x_2 \to \min$$

$$\begin{cases} -x_1+2x_2+x_3=2\\ 3x_1+2x_2+x_4=6\\ x_1,x_2,x_3,x_4 \ge 0\\ x_1,x_2,x_3,x_4 \text{ целые.} \end{cases}$$

1)
$$x_1^* = 1$$
; $x_2^* = 1$; $x_3^* = 1$; $x_4^* = 1$

2)
$$x_1^* = 1$$
; $x_2^* = 0$; $x_3^* = 1$; $x_4^* = 1$

3)
$$x_1^* = 1$$
; $x_2^* = 1$; $x_3^* = 0$; $x_4^* = 1$

4)
$$x_1^* = 1$$
; $x_2^* = 1$; $x_3^* = 1$; $x_4^* = 0$

F =
$$-x_1 - x_2 \rightarrow \min$$

11.
$$\begin{cases} 2x_1 + x_2 + x_3 = 4 \\ x_1 + 2x_2 + x_4 = 4 \end{cases}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$x_2 - \text{целое.}$$

1)
$$x_1^* = 3/2; x_2^* = 2; x_3^* = 0; x_4^* = 1/2$$

2)
$$x_1^* = 3/2; x_2^* = 3; x_3^* = 0; x_4^* = 1/2$$

3)
$$x_1^* = 3/2; x_2^* = 1; x_3^* = 0; x_4^* = 1/2$$

4)
$$x_1^* = 3/2; x_2^* = 0; x_3^* = 0; x_4^* = 1/2$$

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Определение математического ожидания и дисперсии выходного показателя с использованием модели чувствительности.
- 2. Процедура Клифера-Вольфовица.
- 3. Количественные показатели надежности.
- 4. Условие регулярности Свитте.
- 5. Понятие надежности и отказа.
- 6. Структура многоуровневого адаптивного алгоритма.
- 7. Структура систем массового обслуживания.
- 8. Векторно-матричная запись прямой и двойственной ЗЛП с однородными ограничениями.

- 9. Простейший поток однородных событий.
- 10. Структура задачи многокритериальной оптимизации.
- 11. Классификация и модификации симплексного метода.
- 12. Структура градиентного алгоритма.
- 13. Структура алгоритма Ньютона.
- 14. Теорема Куна-Таккера в дифференциальной форме.
- 15. Структура функции Лагранжа.
- 16. Определение задачи выпуклого программирования.
- 17. Понятие седловой точки.
- 18. Двойственный симплекс-метод.
- 19. Постановки задач линейного программирования.
- 20. Количественные показатели надежности.
- 21. Симплекс-метод решения ЗЛП.
- 22. Теорема Куна-Таккера в дифференциальной форме.
- 23. Задача выпуклого программирования.
- 24. Формы записи задач линейного программирования.

7.2.5 Примерный перечень заданий для решения прикладных задач Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Например: Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов -20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Возможности и перспективы использования методов оптимизации при проектировании ИС	•	Тест, защита лабора- торных работ
2	Подходы к определению качества функционирования ИС как объекта оптимального проектирования на основе модели чувствительности		Тест, защита лабора- торных работ
3	Математическое описание ИС как	ПК-6, ПК-1	Тест, защита лабора-

	объекта оптимального проектиро-		торных работ
	вания с использованием модели		
	надежности		
4	Оценка эффективности функционирования ИС как системы массового обслуживания	1	Тест, защита лабора- торных работ
5	Методы решения задач оптимизации	ПК-6, ПК-1	Тест, защита лабора- торных работ

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Львович Я.Е. Методы и алгоритмы решения задач оптимального проектирования [Электронный ресурс] : Учеб. пособие. Электрон. текстовые, граф. дан. (1,98 Мб). Воронеж : ФГБОУ ВО "Воронежский государственный технический университет", 2016. 1 файл. 30-00.
- 2. Львович Я.Е. Оптимизация в системах автоматизированного проектирования [Электронный ресурс]: Учеб. пособие. Электрон. текстовые, граф. дан. (24 Мб). Воронеж : ФГБОУ ВПО "Воронежский государственный технический университет", 2015. 1 файл. 30-00.
- 3. Минакова О.В. Надежность информационных систем [Электронный ресурс]: учебник/ Минакова О.В.— Электрон. текстовые данные.— Саратов: Вузовское образование, 2020.— 283 с.— Режим доступа: http://www.iprbookshop.ru/91117.html.— ЭБС «IPRbooks»
- 4. Надежность технических систем. Резервирование, восстановление [Электронный ресурс]: учебное пособие/ В.Д. Шашурин [и др.].— Электрон. текстовые данные.— Москва: Московский государственный технический университет имени Н.Э. Баумана, 2009.— 60 с.— Режим доступа:

http://www.iprbookshop.ru/31462.html.— ЭБС «IPRbooks»

- 5. Организация самостоятельной работы обучающихся: методические указания для студентов, осваивающих основные образовательные программы высшего образования бакалавриата, специалитета, магистратуры: методические указания / сост. В.Н. Почечихина, И.Н. Крючкова, Е.И. Головина, В.Р. Демидов; ФГБОУ ВО «Воронежский государственный технический университет». Воронеж, 2020. 14 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем: Ресурс информационно-телекоммуникационной сети «Интернет»

Программное обеспечение

Microsoft Office Word 2013/2007

Microsoft Office Excel 2013/2007

Microsoft Visual Studio Code

Пакет математического моделирования

SCILab (бесплатное ПО)

PTC Mathcad Express (бесплатное ПО)

Ресурс информационно-телекоммуникационной сети «Интернет»

http://www.edu.ru/

Образовательный портал ВГТУ

Информационная справочная система

http://window.edu.ru

https://wiki.cchgeu.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория. Дисплейный класс, оснащенный компьютерными программами для проведения лабораторного практикума

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Оптимизация эффективности, качества и надежности при разработке ИС» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных	Деятельность студента
-------------	-----------------------

занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последова-
	тельно фиксировать основные положения, выводы, формулиров-
	ки, обобщения; помечать важные мысли, выделять ключевые
	слова, термины. Проверка терминов, понятий с помощью энцик-
	лопедий, словарей, справочников с выписыванием толкований в
	тетрадь. Обозначение вопросов, терминов, материала, которые
	вызывают трудности, поиск ответов в рекомендуемой литературе.
	Если самостоятельно не удается разобраться в материале, необ-
	ходимо сформулировать вопрос и задать преподавателю на лек-
	ции или на практическом занятии.
Лабораторная работа	Лабораторные работы позволяют научиться применять теорети-
	ческие знания, полученные на лекции при решении конкретных
	задач. Чтобы наиболее рационально и полно использовать все
	возможности лабораторных для подготовки к ним необходимо:
	следует разобрать лекцию по соответствующей теме, ознакомится
	с соответствующим разделом учебника, проработать дополни-
	тельную литературу и источники, решить задачи и выполнить
	другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому
	усвоения учебного материала и развитию навыков самообразо-
	вания. Самостоятельная работа предполагает следующие состав-
	ляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- участие в расоте студенческих научных конференции, олимпиад, - подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически,
промежуточной	в течение всего семестра. Интенсивная подготовка должна
аттестации	начаться не позднее, чем за месяц-полтора до промежуточной
	аттестации. Данные перед зачетом с оценкой три дня эффективнее
	всего использовать для повторения и систематизации материала.
	1

Лист регистрации изменений

№ п/п	Перечень вносимых изменений	Дата вне- сения из- менений	Подпись заведую- щего кафедрой, от- ветственной за реа- лизацию ОПОП
1	Актуализирован раздел 8.1 Пе-	31.08.2019	
	речень учебной литературы,		
	необходимой для освоения		
	дисциплины		
2	Актуализирован раздел 8.2 в	31.08.2020	
	части состава используемого		

	лицензионного программного		
	обеспечения, современных		
	профессиональных баз данных		
	и справочных информационных		
	систем		
3	Актуализирован раздел 8.1 Пе-	31.08.2021	
	речень учебной литературы,		
	необходимой для освоения		
	дисциплины		