МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

«30 » abrition

Декан факультета РТЭ

В.А. Небольсин

2017 г. Факультет радиотехники и электроники

РАБОЧАЯ ПРОГРАММА

дисциплины

«Физические основы СВЧ-электроники»

Направление подготовки 16.03.01 ТЕХНИЧЕСКАЯ ФИЗИКА

Профиль Физическая электроника

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2017

Автор программы

/ Бормонтов А.Е./

Заведующий кафедрой Физики твердого тела

Руководитель ОПОП

/ Калинин Ю.Е./

/ Калинин Ю.Е. /

Воронеж 2017

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины: формирование представлений о принципах и основах работы приборов СВЧ диапазона, получение навыков практического применения приборов и устройств этого диапазона частот.

1.2. Задачи освоения дисциплины:

- получение представлений о физических идеях и принципах современной СВЧ электроники;
- формирование знаний по вопросам теории и практики использования приборов и устройств СВЧ диапазона;
- изучение физических процессов в приборах и устройствах СВЧ диапазона;
- приобретение навыков владения методами и средствами анализа процессов в приборах СВЧ электроники;
- -изучение конструктивных особенностей, параметров, характеристик и режимов работы приборов и устройств СВЧ диапазона.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Физические основы СВЧ-электроники» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Физические основы СВЧэлектроники» направлен на формирование следующих компетенций:

ДПК-5 - способностью строить простейшие физические и математические модели приборов, схем, устройств и установок физической электроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования

ОПК-2 - способностью применять методы математического анализа, моделирования, оптимизации и статистики для решения задач, возникающих в ходе профессиональной деятельности

Компетенция	Результаты обучения, характеризующие сформированность компетенции	
ДПК-5	знать основные технические параметры и характеристики микроволновых приборов; принципы работы устройств, использующих приборы микроволнового (СВЧ) диапазона	
	уметь использовать методы и средства анализа процессов в микроволновых приборах, строить простейшие физические и математические модели этих приборов	
	владеть стандартными программными средствами компьютерного моделирования приборов СВЧ	

	электроники, навыками обработки и оценки результатов компьютерного моделирования и эксперимента
ОПК-2 знать методы моделирования приборов и устройст электроники	
	уметь применять методы математического анализа для расчета микроволновых приборов и устройств на их основе.
	владеть навыками расчета параметров и характеристик микроволновых приборов и устройств на их основе.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Физические основы СВЧэлектроники» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Programme Programme	Всего	Семестры
Виды учебной работы	часов	8
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	18	18
Самостоятельная работа	54	54
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	очная форма обучения					
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1		Особенности СВЧ диапазона и классификация СВЧ приборов. Параметры микроволновых приборов. Основные теоретические соотношения, определяющие физические процессы и характеристики этих приборов. Физические и математические модели.	4	2	8	14
2	Свойства р-п перехода и барьера Шоттки в СВЧ диапазоне	Диод на переменном токе. Барьерная и диффузионная емкости. Эффект накопления заряда. Диоды с накоплением заряда. Принцип действия, параметры и характеристики полупроводниковых диодов с p-n переходом и барьером Шоттки. Переходные процессы в диодах. Эквивалентные схемы. Технологические и конструктивные особенности диодов СВЧ диапазона.	6	4	8	18
3	Полупроводниковые СВЧ диоды	Детекторы. Смесители. Р-i-n диоды. Принцип действия, параметры и характеристики. Варакторные диоды. Основные параметры и характеристики. Применение диодов с нелинейной	12	6	14	32

		Итого	36	18	54	108
	температурах	приборы на карбиде кремния и нитриде галлия.				
	эстремальных	высокотемпературной электроники. Твердотельные	2	0	4	6
6	СВЧ приборы при	Полупроводниковые материалы для				
		ПТ с управляющим p-n переходом и барьером Шоттки. ПТ с изолированным затвором (МОП транзистор). Устройство, принцип действия, частотные и шумовые свойства. Гетероструктурный ПТ (НЕМТ). Мощные и высоковольтные МОП транзисторы.	8	4	14	26
5	Биполярные и полевые СВЧ транзисторы	Биполярные транзисторы (БТ) СВЧ. Устройство и принцип действия. Параметры и характеристики. Гетероструктурный БТ. Полевые транзисторы (ПТ).				
4	Гетероструктурные СВЧ приборы	Эффект резонансного туннелирования в двухбарьерной гетероструктуре и в многобарьерных структурах. ВАХ двух-и многобарьерных структур. Приборы на основе резонансного туннелирования.	4	2	6	12
		емкостью. Туннельные диоды. Вольт-амперная характеристика (ВАХ) туннельного диода. Избыточный ток. Выбор материалов для туннельных диодов. Обращенные диоды. Диоды Ганна. Требования к зонной структуре полупроводников. Статическая ВАХ. Зарядовые неустойчивости в приборах с отрицательным дифференциальным сопротивлением (ОДС). Генерация СВЧ колебаний в диодах Ганна. Основные режимы работы. Лавинно-пролетные диоды (ЛПД). Лавинное умножение носителей. Устройство и зонная диаграмма ЛПД. Малосигнальные характеристики. Применение для генерации СВЧ колебаний. Инжекционно-пролетные диоды. Принцип действия, параметры и характеристики.				

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ДПК-5	знать основные	Активная работа на	Выполнение работ в	Невыполнение работ
	технические	практических занятиях	срок,	в срок,
	параметры и		предусмотренный в	предусмотренный в
	характеристики		рабочих программах	рабочих программах

	микроволновых приборов; принципы работы			
	устройств, использующих			
	приборы микроволнового диапазона			
	уметь	Решение стандартных задач на	Выполнение работ в	Невыполнение работ
	использовать	практических занятиях	срок,	в срок,
	методы и средства	Умение обрабатывать	предусмотренный в	предусмотренный в
	анализа процессов	экспериментальные данные в	рабочих программах	рабочих программах
	в микроволновых	рамках существующих		
	приборах, строить простейшие	моделей прибора		
	физические и			
	математические			
	модели этих			
	приборов			
	владеть	Решение прикладных задач на	Выполнение работ в	Невыполнение работ
	стандартными	практических занятиях	срок,	в срок,
	программными		предусмотренный в	предусмотренный в
	средствами		рабочих программах	рабочих программах
	компьютерного			
	моделирования приборов СВЧ			
	электроники,			
	навыками			
	обработки и			
	оценки			
	результатов			
	компьютерного			
	моделирования и			
0774.0	эксперимента		D	
ОПК-2	знать методы	Активная работа на	_	Невыполнение работ
	моделирования приборов и	практических занятиях	срок, предусмотренный в	в срок, предусмотренный в
	устройств СВЧ		рабочих программах	
	электроники		F	r
	уметь применять	Решение стандартных задач на	Выполнение работ в	Невыполнение работ
	методы	практических занятиях	срок,	в срок,
	математического	Умение обрабатывать	предусмотренный в	предусмотренный в
	анализа для	экспериментальные данные в	рабочих программах	рабочих программах
	расчета	рамках существующих		
	микроволновых приборов и	моделей прибора		
	устройств на их			
	основе.			
	владеть навыками	Решение прикладных задач на	Выполнение работ в	Невыполнение работ
	расчета	практических занятиях	срок,	в срок,
	параметров и		предусмотренный в	предусмотренный в
	характеристик		рабочих программах	рабочих программах
	микроволновых			
	приборов и			
	устройств на их основе.			
	2 Этон пром			<u> </u>

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 8 семестре для очной формы обучения по двухбалльной системе:

«не зачтено»

((11)	C 3a41CHO»	T	<u> </u>	1
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ДПК-5	знать основные технические параметры и характеристики микроволновых приборов; принципы работы устройств, использующих приборы микроволнового	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	диапазона уметь использовать методы и средства анализа процессов в микроволновых приборах, строить простейшие физические и математические модели этих приборов	Решение стандартных практических задач	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	владеть стандартными программными средствами компьютерного моделирования приборов СВЧ электроники, навыками обработки и оценки результатов компьютерного моделирования и эксперимента	Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ОПК-2	знать методы моделирования приборов и устройств СВЧ электроники	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь применять методы математического анализа для расчета микроволновых приборов и устройств на их основе.	Решение стандартных практических задач	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	владеть навыками расчета параметров и характеристик микроволновых приборов и	Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены

устройств на их		
основе.		

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
- 7.2.1 Примерный перечень заданий для подготовки к тестированию
- 1. Рабочие точки в лавинно-пролетном диоде определяются движением...
 - а) основных носителей заряда;
 - б) неосновных носителей заряда;
 - в) основных и неосновных носителей заряда;
 - г) ионами примесей.
- 2. Для изготовления структур лавинно-пролетных диодов используют, в основном, полупроводниковые материалы...
 - a) GaAs;
 - б) AlGaAs / GaAs;
 - в) InGaAs / InP;
 - г) Si.
- 3. Отрицательная динамическая проводимость лавинно-пролетного диода возникает (наблюдается) в ...
 - а) статическом режиме;
 - б) квазистатическом режиме;
 - в) электростатическом режиме;
 - г) динамическом режиме.
- 4. Эффект Ганна наблюдается в полупроводниках GaAs, InP с электропроводностью...
 - а) собственной;
 - б) донорной;
 - в) акцепторной;
 - г) компенсированной.
- 5. Возможность использования низкочастотных транзисторов в СВЧ диапазоне ограничена следующими физическими факторами...
 - а) временем переноса носителей заряда;
 - б) углом вылета носителей заряда из области базы;
 - в) скоростью изменения накопленного заряда;
- г) схемой включения и соответствующих ей паразитных емкостей и индуктивностей.
 - 6. Сверхтонкая база биполярного СВЧ транзистора обеспечивает...
 - а) увеличение выходной мощности;
 - б) уменьшение времени переноса носителей заряда;
 - в) увеличение обратного напряжения коллекторного перехода;
 - г) увеличение коэффициента усиления.
- 7. Эффект вытеснения тока эмиттера в биполярных СВЧ транзисторах вызван...

- а) наличием сосредоточенного сопротивления в цепи эмиттера;
- б) отсутствием нагрузочного сопротивления в цепи коллектора;
- в) увеличением емкости эмиттерного перехода;
- г) наличием распределенного поперечного сопротивления базовой области.
- 8. Для уменьшения времени пролета электронов под выводом затвора следует...
 - а) увеличивать толщину подложки транзистора;
 - б) уменьшать длину затвора;
 - в) повышать подвижность электронов в активном слое;
 - г) снижать концентрацию электронов под выводом затвора.
- 9. Особенностью гетероструктурного биполярного СВЧ транзистора является...
- а) использование полупроводника с узкой запрещенной зоной для области базы;
- б) использование широкозонного полупроводника для области эмиттера;
- в) использование узкозонных полупроводников для областей эмиттера и базы;
- г) использование широкозонных полупроводников для областей базы и коллектора.
- 10. Максимальная частота работы МОП-транзистора от длины канала L зависит...
 - а) пропорционально L;
 - б) обратно пропорционально L;
 - в) обратно пропорционально L^2 ;
 - г) не зависит от L.
- 11. Особенностью гетероструктурного полевого СВЧ транзистора (HEMT) является...
- а) использование полупроводника с высокой подвижностью электронов;
 - б) использование модуляционного легирования;
 - в) использование двумерного электронного газа в канале транзистора;
 - г) использование двухбарьерной структуры с квантовой ямой.

7.2.2 Примерный перечень заданий для решения стандартных задач

1. В слаболегированном образце кремния n-типа с удельным сопротивлением 4,5 Ом·см делается p-n переход с примесной концентрацией N_a , в 1000 раз превышающей концентрацию примеси n-типа. Рассчитать встроенный потенциал и объемный потенциал n-области такого перехода.

Ответ: 0,75 В; 0,29 В.

2. Резкий симметричный кремниевый p-n переход имеет примесные концентрации $N_d = N_a = 4 \cdot 10^{15} \; \text{cm}^{-3}$ и находится при комнатной температуре в равновесном состоянии. Рассчитать ширину обедненного слоя и максимальное электрическое поле.

Ответ: 0.66 мкм; $2 \cdot 10^4 \text{ B/см}$.

3. Кремниевый диод формируется путем диффузии высокой концентрации бора в легированную фосфором пластину толщиной 350 мкм, имеющую удельное сопротивление 4,5 Ом·см. Глубина p-n перехода равна 0,5 мкм, а площадь поперечного сечения 10^{-4} см². Переход можно рассматривать как односторонний и резкий. Найти ток насыщения диода, если время жизни неосновных носителей в подложке равно 1 мкс.

Ответ: 1,2·10⁻¹⁴ А.

4. Найти высоту потенциального барьера (падение напряжения на области объемного заряда) в диоде Шоттки, сформированном нанесением золота на германий п-типа с удельным сопротивлением 1 Ом·см.

Ответ: 0,78 В.

5. Рассчитать величину тока в кремниевом p-n переходе при внешних смещениях V=+0.5~B и V=-0.5~B. Площадь перехода $S=1~\text{mm}^2$, уровни легирования $N_d=10^{14}~\text{cm}^{-3},~N_a=10^{16}~\text{cm}^{-3}$.

Otbet: $j_s = 5.3 \cdot 10^{-13} \text{ A} \cdot \text{cm}^{-2}$; I(V = +0.5 B) = 0.13 MA, $I(V = -0.5 \text{ B}) = 5.3 \cdot 10^{-13} \text{ A}$

6. Схематически изобразить и пояснить диаграмму энергетических зон p^+ -i- n^+ структуры в состоянии равновесия, при прямом и обратном смещениях. Чему равна контактная разность потенциалов такой структуры на кремнии? Где применяются p-i-n диоды?

Ответ: 1,1 В.

7. Для биполярного p-n-p транзистора задано: I_{p3} = 1 мA; I_{n3} = 0,01 мA; I_{pK} = 0,98 мA; I_{nK} = 0,001 мA. Вычислите: статический коэффициент передачи тока базы; эффективность эмиттера (коэффициент инжекции); ток базы и коэффициент передачи тока в схемах с ОБ и ОЭ.

Ответ: 0,98; 0,99; 30 мкА; 0,97; 33.

8. Кремниевый диффузионный n-p-n транзистор имеет ширину базы без ОПЗ 0,23 мкм. Вычислить время пролета базы и граничную частоту.

Ответ: $9,2 \cdot 10^{-12}$ c; 17,3 ГГц.

9. Найти величину напряжения плоских зон в идеальных МОП структурах с алюминиевым затвором, изготовленных на кремнии n- и p-типа с удельным сопротивлением 1 Ом·см. Дать схематическое изображение зонных диаграмм этих структур в состоянии теплового равновесия и в режиме плоских зон.

Ответ: -0.17 B; -0.90 B.

10. Рассчитать пороговое напряжение в МОП структурах с алюминиевым затвором, изготовленных на кремнии n- и p-типа с удельным сопротивлением $1~\rm Om\cdot cm$. Толщина окисла $100~\rm hm$, плотность эффективного поверхностного заряда $8\cdot 10^{-9}~\rm Kn/cm^2$.

Ответ: 1,18 В; – 2,02 В.

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Имеется резкий симметричный кремниевый p-n переход при температуре $T=300~{\rm K}$ с площадью $S=10^{-3}~{\rm cm}^2$ и концентрацией легирующих

примесей $N_d = N_a = 10^{18}$ см⁻³. Вычислить время за которое обратное смещение возрастет от 0 до -10 B, если ток через диод равен 1 мA.

Ответ: 3,26·10⁻⁷ с.

2. Оценить положение уровней Ферми относительно краев разрешенных зон в туннельном диоде из Ge при $T=300~\rm K$ с типичными для туннельного перехода уровнями легирования $N_d=2\cdot 10^{19}~\rm cm^{-3},\, N_a=4\cdot 10^{15}~\rm cm^{-3}.$ Рассчитать величину контактной разности потенциалов и толщину обедненного слоя в этом диоде.

Ответ: Δ_n =34 мэВ; Δ_p =124 мэВ; $eU_K = 0.818$ эВ; W=10 нм.

3. Кремниевый лавинно-пролетный диод Рида со структурой р⁺-n-i-n⁺ работает в пролетном режиме. Оценить оптимальную длину области дрейфа этого диода для возбуждения колебаний с частотой 10 ГГц.

Ответ: 5 мкм.

4. Для выполнения условий, необходимых для работы диода Ганна в режиме пролета домена, оценить минимальную длину образца арсенида галлия с равновесной концентрацией электронов $n_0=10^{15}~\text{см}^{-3}$ и частоту осцилляций в таком образце. Для оценки воспользоваться критерием Кремера и считать, что скорость движения домена $v_d=1,5\cdot 10^7~\text{см/c}$, дифференциальная подвижность $\mu_{\text{диф}}=-2200~\text{см}^2/~\text{B·c}$.

Ответ: 1 мкм; 150 ГГц.

5. Показать, что при экспоненциальном распределении примеси в базе n-p-n биполярного транзистора напряженность электрического поля E постоянна. Найти в этом случае концентрацию неосновных носителей вблизи коллектора, если уровень легирования около эмиттера $N_a = 10^{17} \ \text{cm}^{-3}$, толщина базы транзистора 0,3 мкм, а $E = 4000 \ \text{B/cm}$.

Ответ: 10^{15} см⁻³.

6. На подложке из кремния марки КДБ-12 сформирована МОП структура с алюминиевым затвором. Между металлом и кремнием действует разность потенциалов, обусловленная разностью их работ выхода, остальные требования идеальности МОП структуры выполняются. Нарисовать зонную диаграмму этой структуры в равновесных условиях, полагая, что падение потенциала окисле V_i равно величине поверхностного на электростатического потенциала Ψ_{s} В полупроводнике. Пользуясь приближением обедненного слоя определить толщину слоя двуокиси кремния при которой $V_i = \psi_s$.

Ответ: 114 нм.

7. МОП структура находится в режиме глубокого неравновесного обеднения. Рассчитать плотность поверхностных состояний, при которой скорость поверхностной генерации вдвое превышает скорость генерации в обедненной области полупроводника. Считать, что сечения захвата носителей заряда равны $\sigma_t = 10^{-15} \text{ см}^2$, тепловая скорость $v_t = 10^7 \text{ см/c}$, постоянная времени $\tau = 1$ мкс, ширина ОПЗ $W = 1 \cdot 10^{-6} \text{ см}$.

Ответ: $2 \cdot 10^{10}$ см⁻².

8. МОП транзистор с отношением ширины к длине канала W/L = 5, толщиной затворного окисла 80 нм и подвижностью электронов в канале 600

 ${\rm cm}^2/{\rm B\cdot c}$ предполагается использовать как управляемый резистор. Рассчитать превышение затворного напряжения над пороговым напряжением, при котором сопротивление транзистора при малых напряжениях на стоке будет равно 2,5 кОм.

Ответ: 3,1 В.

9. Изготовителю нужно сделать n-канальный обедненный МОП транзистор без применения ионного легирования. Заранее отработанный технологический процесс обеспечивает получение плотности эффективного поверхностного заряда величиной $10^{11}~{\rm cm}^{-2}$. Толщина окисла равна 50 нм, затворы делаются из алюминия. Провести расчет и показать, пригоден ли указанный технологический процесс для изготовления обедненных МОП транзисторов на кремниевых пластинах марки КДБ-12.

Ответ: $V_T = -0.34 B$; пригоден.

10. Построить зонную диаграмму гетероперехода n-Ge –p-GaAs с концентрациями легирующих примесей N_d = N_a = 10^{16} см⁻³. Рассчитать величину контактной разности потенциалов, ширину областей обеднения и величины разрывов энергетических зон.

Ответ: eU_k =1,15 \ni B; W_{Ge} = W_{GaAs} =0,28 мкм; ΔE_c = 0,07 \ni B; ΔE_v = 0,84 \ni B.

7.2.4 Примерный перечень вопросов для подготовки к зачету

В соответствии с учебным планом освоение дисциплины не предусматривает проведения зачета.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Особенности СВЧ диапазона и классификация СВЧ приборов.
- 2. Свойства р-п перехода в СВЧ диапазоне.
- 3. Вольт-амперная характеристика р-п перехода.
- 4. Барьерная и диффузионная емкости p-n перехода. Эквивалентная схема p-n перехода.
- 5. Технологические особенности изготовления диодов СВЧ диапазона.
- 6. Полупроводниковые диоды в качестве детекторов слабых сигналов.
- 7. Детекторный СВЧ диод с переходом металл-полупроводник. Параметры и характеристики.
- 8. Детекторный СВЧ диод с р-п переходом. Параметры и характеристики.
- 9. Смесительный СВЧ диод. Параметры и характеристики.
- 10. Гетеродинный метод приема слабых сигналов. Чувствительность гетеродинной схемы.
- 11. Основные типы нелинейной полупроводниковой емкости. Вольтфарадная характеристика.
- 12. Диоды с накоплением заряда. Параметры и характеристики.
- 13. Варакторный диод. Основные параметры и характеристики.
- 14. Применение диодов с нелинейной емкостью.
- 15. Туннельный диод. Вольт-амперная характеристика.
- 16. Туннельный диод. Параметры, применение.
- 17. Принцип действия, параметры и характеристики диода Шоттки.

- 18.Вольт-амперная характеристика диода Шоттки.
- 19. Принцип действия, параметры и характеристики р-і-п диода.
- 20. Лавинно-пролетный диод. Параметры и характеристики.
- 21. Инжекционно-пролетный диод. Параметры и характеристики.
- 22. Диод Ганна. Требования к зонной структуре полупроводника. ВАХ. Зарядовая неустойчивость в приборах с ОДС. Генерация СВЧ колебаний.
- 23. Диод Ганна. Режимы работы. Характеристики и параметры.
- 24. Резонансное туннелирование в двухбарьерной структуре и сверхрешетке. ВАХ.
- 25. Резонансно-тунельные диоды и транзисторы. Устройство и принцип действия.
- 26. Биполярный транзистор СВЧ. Устройство и принцип действия.
- 27. Биполярный транзистор СВЧ. Параметры и характеристики.
- 28. Гетероструктурный БТ. Устройство и принцип действия.
- 29. Полевой транзистор с барьером Шоттки. Устройство и принцип действия.
- 30.Полевой транзистор с барьером Шоттки. Частотные и шумовые свойства.
- 31. Гетероструктурный ПТ. Устройство и принцип действия.
- 32. Приборы высокотемпературной электроники на SiC и GaN. Применение биполярных и полевых СВЧ транзисторов.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация осуществляется по нескольким критериям:

- 1. Тестирование по темам курса с помощью тест-заданий.
- 1. Оценка «неудовлетворительно» ставится в случае, если студент ответил правильно на 40% вопросов и меньше.
- 2. Оценка «удовлетворительно» ставится в случае, если студент ответил правильно на 40-60% вопросов.
- 3. Оценка «хорошо» ставится в случае, если студент ответил правильно на 60-80% вопросов.
- 4. Оценка «отлично» ставится в случае, если студент ответил правильно на 80% вопросов и больше.
 - 2. Ответы на практических (семинарских) занятиях по темам курса.
 - 3. Экзамен.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Основы физических процессов в СВЧ приборах		Тест, контрольная работа, защита реферата, требования к курсовому проекту

2	Свойства p-n перехода и барьера Шоттки в СВЧ диапазоне	ДПК-5, ОПК-2	Тест, контрольная работа, защита реферата, требования к курсовому проекту
3	Полупроводниковые СВЧ диоды	ДПК-5, ОПК-2	Тест, контрольная работа, защита реферата, требования к курсовому проекту
4	Гетероструктурные СВЧ приборы	ДПК-5, ОПК-2	Тест, контрольная работа, защита реферата, требования к курсовому проекту
5	Биполярные и полевые СВЧ транзисторы	ДПК-5, ОПК-2	Тест, контрольная работа, защита реферата, требования к курсовому проекту
6	СВЧ приборы при эстремальных температурах	ДПК-5, ОПК-2	Тест, контрольная работа, защита реферата, требования к курсовому проекту

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Основная литература

1. Лебедев А. И. Физика полупроводниковых приборов : учебное пособие / А.И. Лебедев. - Москва : Физматлит, 2008. - 488 с. - ISBN 978-5-9221-0995-6.

URL: http://biblioclub.ru/index.php?page=book&id=68403.

- 2. Гуртов В. А. Твердотельная электроника : учеб. пособие. 2-е изд., доп. М. : Техносфера, 2005. 408 с. (Мир электроники). ISBN 5-94836-060-1 : 300-00.
- 3. Зи С.Физика полупроводниковых приборов. В 2-х книгах, Кн 1, Кн. 2. Пер с англ.-2-е перераб. и доп. изд.-М.: Мир, 1984.-Кн.1.-456 с., Кн.2.-456 с.
- 4. Пасынков В. В. Полупроводниковые приборы [Электронный ресурс] / Пасынков В. В., Чиркин Л. К.,. 9-е изд. : Лань, 2009. 480 с. ISBN 978-5-8114-0368-4.

URL: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=300 Дополнительная литература

- 1. Усанов Д.А., Скрипаль А.В. Физика работы полупроводниковых приборах в схемах СВЧ. Саратов: Изд-во Саратов. Ун-та, 1999. -376 с.
- 2. Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ.-М.: Мир, 1989.- 630с.
- 3. Полупроводниковые приборы: Учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лобунцова.-М.:Энергоатомиздат, 1990.-576 с.
- 4. Березин В.М., Буряк В.С., Гутцайт Э.М., Марин В.П. Электронные приборы СВЧ: Учебное пособие для вузов по спец. «Электронные приборы» М.: Высш. шк., 1985. 296 с.
- 5. Нойкин Ю.М. Полупроводниковые приборы СВЧ: учебное пособие / Нойкин Ю.М., Нойкина Т.К., Усаев А.А. Ростов-на-Дону, 2014 117 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Microsoft Word, Microsoft Excel, Internet Explorer, Origin

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Научно-учебная лаборатория кафедры ФТТ, компьютерный класс(аудитории 221, 226а первого корпуса ВГТУ).

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Физические основы СВЧ-электроники» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета параметров, процессов и характеристик твердотельных

приборов СВЧ диапазона. Занятия проводятся путем решения конкретных

задач в аудитории.

Вид учебных			
занятий	Деятельность студента		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.		
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.		
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.		
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом три дня эффективнее всего использовать для повторения и систематизации материала.		