МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

РОССИЙСКОЙ ФЕДЕРАЦИИ

Утверждено

В составе образовательной программы Учебно-методическим советом ВГТУ 21.02.2024г. Протокол № 6

РАБОЧАЯ ПРОГРАММА

дисциплины

ОП.08 «Электротехника и электроника»

Специальность: 15.02.19 Сварочное производство

Квалификация выпускника: техник

Нормативный срок обучения: <u>3 год 10 месяцев</u> на базе основного общего образования

Форма обучения: очная
Год начала подготовки: <u>2024</u>

Программа обсуждена и актуализирована на заседании методического совета СПК

14.02.2024 года Протокол № 6

Председатель методического совета СПК

подпись

Сергеева С.И подпись

Программа одобрена на заседании педагогического совета СПК

16.02.2024 года Протокол № 5

Председатель педагогического совета СПК

Лонцова Н.А подпись

2024г.

Программа дисциплины разработана на основе Федерального государственного образовательного стандарта (далее – ФГОС) по специальности среднего профессионального образования (далее - СПО) 15.02.19 «Сварочное производство», утвержденным приказом Министерства образования и науки РФ от 30.11.2023г. №907

Организация-разработчик: ВГТУ

Разработчик:

Солощенко Людмила Олеговна, преподаватель высшей категории

СОДЕРЖАНИЕ

1 ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ ДИСЦИПЛИНЫ 1.1 Место дисциплины в структуре основной профессиональной образовательной программы 1.2 Требования к результатам освоения дисциплины 4 1.3 Количество часов на освоение программы дисциплины 4 2 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 5 5 2.1 Объем дисциплины и виды учебной работы 2.2 Тематический план и содержание дисциплины 6 3 УСЛОВИЯ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ 14 3.1 Требования к материально-техническому обеспечению 14 3.2. Перечень нормативных правовых документов, основной и дополнительной учебной литературы, необходимой для освоения дисциплины 14 3.3. Перечень программного обеспечения, профессиональных баз данных, информационных справочных систем ресурсов информационно-телекоммуникационной сети «Интернет»,

3.4. Особенности реализации дисциплины для обучающихся из числа инвалидов и лиц с

4 КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

15

16

необходимых для освоения дисциплины

ограниченными возможностями здоровья

1 ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ

ОП. .08 Электротехника и электроника

1.1 Место в структуре ППССЗ:

Учебная дисциплина электротехника и электроника является дисциплиной обязательной предметной области.

В учебном плане ППССЗ учебный учебная дисциплина входит в состав общеобразовательных учебных дисциплин, формируемых из обязательных предметных областей ФГОС среднего общего образования. При этом изучение дисциплины предусмотрено на базовом уровне и направлено на достижение личностных и метапредметных результатов обучения, выполнение требований к предметным результатам обучения.

1.2 Общая характеристика учебного предмета/учебной дисциплины

Дисциплина входит в общепрофессиональный цикл. Программа учебной дисциплины относится к профессиональной подготовке и предусматривает изучение особенностей физических явлений в электрорадиоматериалах, параметров и характеристик типовых радиокомпонентов.

Цели и задачи дисциплины Основы электротехники и электронной техники.

В результате освоения дисциплины обучающийся должен уметь:

- У1 анализировать основные параметры электронных схем;
- У2 производить подбор элементов электронной аппаратуры по заданным параметрам;
- **У3** по заданным параметрам рассчитывать и измерять параметры типовых электронных устройств.

В результате освоения дисциплины обучающийся должен знать:

- **31** сущность физических процессов, протекающих в электронных приборах и устройствах;
- **32** принципы включения электронных приборов и построения электронных схем.

В результате освоения учебной дисциплины обучающийся должен иметь практический опыт:

- - **П1** технического обслуживания электронных приборов и устройств в соответствии с регламентом и правилами эксплуатации в сарочном производстве.

Изучение дисциплины направлено на формирование у обучающихся следующих общих и профессиональных компетенций:

Код	Наименование результата обучения	
OK 01	Выбирать способы решения задач профессиональной деятельности	
	применительно к различным контекстам.	
ПК 2.2	Выбирать вид и параметры режимов обработки материала с учетом	

2 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Объем дисциплины и виды учебной работы

Вид учебной работы	Объем
	часов ¹
Объем работы обучающихся в академических часах (всего)	187
Объем работы обучающихся во взаимодействии с	144
преподавателем (всего)	
в том числе:	
лекции	72
лабораторное занятие	52
практическая работа	20
Самостоятельная работа обучающегося (всего) с	22
обоснованием расчета времени, затрачиваемого на ее	
выполнение	
в том числе:	
изучение учебного/теоретического материала (по конспектам	2
лекций), изучение основной и дополнительной литературы	
подготовка к практическим и лабораторным занятиям	10
выполнение индивидуального или группового задания	10
Консультации	1
Промежуточная аттестация в форме	
4 семестр – экзамен, в том числе:	9
подготовка к экзамену,	
предэкзаменационная консультация,	
процедура сдачи экзамена	

1

2.2 Тематический план и содержание дисциплины электротехника и электроника

Наименование разделов и тем			Уровень освоения
Тема1 Электростатическое поле. Электрическая емкость. Электростатические	Содержание учебного материала Электрическое поле – составляющая электромагнитного поля. Электростатическое поле, напряженность, напряжение, потенциал точки электрического поля. Графическое изображение электрического поля. Закон Кулона. Взаимодействие электрических зарядов. Проводник и	2	
цепи.	диэлектрик в электростатическом поле. Электрическая емкость. Конденсатор. Эквивалентная емкость при последовательном, параллельном и смешанном соединениях конденсаторов. Самостоятельная работа обучающихся	0,5	
Тема 2. Физические	Содержание учебного материала		
процессы в электрических цепях	Электрический ток, плотность тока. Электрическое сопротивление и проводимость. Закон Ома для участка электрической цепи.	2	
постоянного тока	Режимы электрической цепи: номинальный, рабочий, холостого хода, короткого замыкания. Баланс мощностей, как проявление закона сохранения энергии. Режим согласованной нагрузки.	2	
	Лабораторные занятия Исследование сопротивлений, токов, напряжений и мощности в цепи постоянного тока	1	
	Исследование режимов работы цепи постоянного тока	4	
	Самостоятельная работа обучающихся	0,5	
Тема 3 Расчет простых	Содержание учебного материала		
электрических цепей постоянного тока	Схема электрической цепи. Основные элементы: ветвь, узел, контур. Законы Кирхгофа. Определение эквивалентного сопротивления и особенности последовательного, параллельного и смешанного соединений.	2	
	Лабораторные занятия		
	Исследование последовательного соединение резисторов Исследование параллельного соединение резисторов	4	

Тема 4 Расчет сложных	Содержание учебного материала		
электрических цепей	Метод уравнений Кирхгофа. Составление уравнений по законам Кирхгофа.	2	
постоянного тока	Метод 2-ух узлов. Принцип суперпозиции.	2	
	Метод контурных токов. Метод эквивалентного генератора.		
	Самостоятельная работа обучающихся	0,5	
Тема 5 Магнитное поле	Содержание учебного материала		
в неферромагнитной среде. Магнитные цепи	Магнитная индукция, поток, проницаемость, магнитодвижущая сила, напряженность магнитного поля, магнитное напряжение, магнитная цепь; взаимодействие проводов с током. Электромагнитная сила. Работа электромагнитных сил. Потокосцепление, индуктивность, взаимная индуктивность.	2	
Тема 6	Содержание учебного материала		
Электромагнитная индукция	Явление электромагнитной индукции. Условия возникновения электромагнитной индукции. ЭДС самоиндукции контура и катушки. Индукционный ток. Законы Ленца. ЭДС самоиндукции контура и катушки. Взаимное преобразование механической и электрической энергии. Вихревые токи, их использование и способы ограничения.	2	
	Лабораторная работа Исследование явления электромагнитной индукции	4	
Тема 7 Начальные	Содержание учебного материала		
сведения о переменном токе	Получение синусоидальной ЭДС. Мгновенное значение, амплитуда, период, частота. Фаза, начальная фаза, сдвиг фаз, среднее и действующее значения. Векторные диаграммы.	2	
Тема 8 Элементы и	Содержание учебного материала		
параметры — Содержание учеоного материала — Цепь с активным сопротивлением, активная мощность. Цепь с индуктивностью. Индуктивн		2	
электрических цепей сопротивление.		2	
переменного тока	Цепь с емкостью. Емкостное сопротивление. Реактивная мощность.	2	
1	Общий случай неразветвленной цепи переменного тока. Резонанс напряжений и токов.	2	
	Самостоятельная работа обучающихся	0,5	
	Самостоятельная работа обучающихся	0,3	

	Самостоятельная работа обучающихся		
	Подготовка к итоговой контрольной работе	1	
Тема 9 Трехфазные	Содержание учебного материала	<u> </u>	
симметричные и несимметричные цепи	Трехфазные системы. Получение трехфазной ЭДС. Соединение обмоток генератора звездой и треугольником. Симметричная нагрузка.	2	
•	Соединение приемников энергии звездой и треугольником. Соотношения между фазными и линейными величинами. Несимметричная нагрузка при соединении фаз звездой и треугольником.	2	
	Четырехпроводная линия, смещение нейтрали, роль нулевого провода. Режимы холостого хода и короткого замыкания в трехфазных цепях.	2	
	Самостоятельная работа обучающи	I	
	Нелинейные элементы, их ВАХ. Статическое и динамическое сопротивления нелинейных элементов. Графический расчет цепей постоянного тока.		
	Нелинейные цепи переменного тока. Выпрямление. Катушка с ферромагнитным сердечником. Векторная диаграмма катушки с потерями.		
Тема 10Трансформаторы	Содержание учебного материала Устройство и принцип действия трансформатора. Коэффициент трансформации. Повышающий и понижающий трансформаторы, их применение.	2	
	Лабораторная работа	4	
	Исследование работы различных видов трансформаторов	4	
	Алгоритм расчета цепей в переходном режиме. Переходной процесс в RC цепи, графики изменения тока и напряжений.	4	
	Самостоятельная работа обучающихся Подготовка к практическому занятию	1	

Тема 11	Тема 11 Содержание учебного материала				
Физические основы,	1.Полупроводниковые материалы, используемые для изготовления современных				
законы и структура полупроводниковой техники.	полупроводниковых приборов и ИМС.2 Собственный полупроводник (полупроводник і-типа), примесные полупроводники п- и р-типов.	2			
		2			

	Практическая работа		
	Физические процессы, происходящие в собственном и примесном полупроводниках.	2	
	Концентрация носителей заряда.	2	
	Удельная электрическая проводимость собственного и примесного полупроводников и ее	2	
	зависимость от температуры и других внешних факторов.	2	
	Влияние физических процессов, происходящих в полупроводниковых материалах, на параметры		
	приборов, изготавливаемых на их основе.		
Тема 12	Содержание учебного материала		
Электронно-дырочный	1. Основное свойство р-п- переходов: преобладающая односторонняя проводимость. Влияние	2	
переход.	температуры, реактивных сопротивлений (емкостных и индуктивных) и инерционных свойств р-	2 2 2 2	
	п - перехода на его проводимость. Пробой р-п - перехода, механизмы пробоя.	$\frac{2}{2}$	
	3. Фотоэффект в р-п - переходе. Оптические явления в полупроводниках и р-п - переходе.	2	
	4. Туннельный эффект. Переход Шоттки.		
	Самостоятельная работа обучающихся	2	
T 12	Подготовка доклада по теме «Нано технологии в производстве полупроводниковых приборов»		
Тема 13 Разновидности диодов и	Содержание учебного материала		
их применение	Определение полупроводникового диода. Классификация полупроводниковых диодов.	2	
их применение	Диоды выпрямительные, импульсные, высокочастотные.	2	
	Специальные типы полупроводниковых диодов: полупроводниковый стабилитрон, варикап,	2	
	диод Шоттки. Их параметры, характеристики, маркировка, УГО и область применения.	2	
	Практические работы	2	
	Диоды с отрицательным дифференциальным сопротивлением: туннельный диод, вольтамперная	$\frac{1}{2}$	
	характеристика этих диодов, параметры и область применения.	$\frac{1}{2}$	
	Определение, классификация тиристоров по устройству и принципу работы.		
	Характеристики и параметры тиристоров.		
	характеристики и параметры тиристоров.		
	Лабораторные работы		
	1. Исследование низкочастотного выпрямительного диода.	.4	
	2. Исследование светодиода	4	
	3. Исследование полупроводникового кремневого стабилитрона	4	
	4.Определение характеристик и параметров полупроводниковых диодов с использованием	4	
	справочной литературы		
	empano mon mireparyph		

	Самостоятельная работа обучающихся	2	
	Работа с конспектом, учебной и справочной литературой. Подготовка к лабораторным работам	-	
	«Исследование низкочастотного выпрямительного диода», «Исследование светодиода и		
	полупроводникового кремневого стабилитрона»; Подготовка доклада по теме «Диоды Ганна и		
	лавинопролетные», «Современные типы диодов специального назначения», «Оптоэлектронные		
TD 4.4	приборы», «Неуправляемые и управляемые тиристоры»		
Тема 14	Содержание учебного материала		
Биполярные транзисторы.	1. Определение и классификация биполярных транзисторов (БТ), типы, структура, УГО р-п-р - и		
	п-р-п – транзистора, режимы работы, схемы включения с ОБ, ОЭ, ОК.	2	
	2. Принцип действия БТ и токи во внешних цепях. Дифференциальный коэффициент передачи	$\frac{2}{2}$	
	по току. Статические характеристики транзистора.	2	
	3. Транзистор как активный четырехполюсник, системы Н параметров. Импульсные и частотные	2	
	свойства транзистора.	2	
	Лабораторная работа	4	
	Исследование биполярного транзистора		
Тема 15	Содержание учебного материала		
Полевые транзисторы	1. Определение и классификация полевых транзисторов.	2	
	2. Полевые транзисторы управляющие с р-п - переходом и МДП (МОП) – структуры.		
	3. Работа МДП (МОП) – транзистора в режимах обеднения и обогащения, их статические	_	
	характеристики и параметры.	$\frac{2}{2}$	
	Практическая работа	$\frac{2}{2}$	
	Правила эксплуатации полевых транзисторов, сравнительная характеристика полевых и	2	
	биполярных транзисторов.		
	Самостоятельная работа обучающихся	0,5	
	Работа с конспектом, учебной и справочной литературой.	0,5	
Тема16	Содержание учебного материала		
Микроэлектроника.	1.Общие сведения о микроминитюризации, определения: микроэлектроника, модуль,		
Интегральные схемы	микромодуль, микросхема (МС). Понятие об ИМС. Классификация ИМС по различным	2	
	признакам.		
	2.Пленочные, полупроводниковые и гибридные ИМС.	_	
	Практическая работа	2	
	<u>Практическая работа</u> Цифровые и аналоговые ИМС. Маркировка ИМС.		
	Конструктивное оформление, корпуса ИМС.	2	
	конструктивное оформление, корпуса итис.	$\frac{2}{2}$	
Тема 17	Содержание учебного материала	_	

Цифровые ИМС их характеристики и параметры.	 Представление информации в цифровой вычислительной технике. Основные логические операции, таблица истинности для логических операций «И», «ИЛИ», «НЕ», «И-НЕ», «ИЛИ-НЕ». Схемотехническая реализация логических операций на полупроводниковых диодах и транзисторах в интегральном исполнении. Характеристики и параметры логических элементов. УГО и маркировка ИМС. Классификация логических ИМС по схемотехнической реализации базового элемента. ИМС типа ДТЛ, ТТЛ, ТТЛШ, ЭСЛ, МДП (МОП) ТЛ; их базовый элемент, достоинства и недостатки. Электронный ключ – основа построения цифровых ИМС. 	2 2	
	Самостоятельная работа обучающихся Работа с конспектом, учебной и справочной литературой. Подготовка к экзамену.	2	

3 УСЛОВИЯ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ

3.1 Требования к материально-техническому обеспечению

Реализация программы дисциплины требует наличия лаборатории «Электротехники и электроники».

Технические средства обучения: макеты, набор электронных приборов. Оборудование лаборатории и рабочих мест лаборатории: Лабораторный стенд, лабораторная панель, необходимая элементная база (полупроводниковые диоды, биполярные и полевые транзисторы, ИМС, резисторы, подстроечные резисторы).

Комплект учебной мебели:

- рабочее место преподавателя (стол, стул);
- рабочие места обучающихся (столы, стулья)
- -лабораторные стенды «Уралочка»;
- -мультиметры М92А;
- -автотрансформаторы (однофазные);
- -вольтметры 75÷600 В; 7,5÷60 В;
- -амперметры 0,25÷1A; 2,5÷5A;
- -фазометры;
- -ваттметры;
- -катушки индуктивности;
- -световые вольтметры;

3.2. Перечень нормативных правовых документов, основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Червяков, Георгий Георгиевич. Электронная техника: Учебное пособие. Для СПО / Червяков Г. Г., Прохоров С. Г., Шиндор О. В. 2-е изд.; пер. и доп. Москва: Издательство Юрайт, 2019. 250. (Профессиональное образование). ISBN 978-5-534-11052-4: 629.00. URL: https://www.biblio-online.ru/bcode/444380
- 2. Гальперин М.В. Электронная техника: Учебник / М.В. Гальперин М.: ФОРУМ ИНФА М, 2015. -303 с.
- 3. Гальперин М.В. Электронная техника: Учеб. пособие / М.В. Гальперин. -2-е изд., испр. и доп. М.: ИД ФОРУМ ИНФА М, 2017. -352 с.
- Акимова Г.Н. Электронная техника: Учеб. пособие / Г.Н. Акимова. М.: Маршрут, 2014. 290 с. 5. Нефедов, В. И. Радиотехнические цепи и сигналы: учебник для среднего профессионального образования / В. И. Нефедов, А. С. Сигов; под редакцией В. И. Нефедова. Москва: Юрайт, 2020. 266 с. (Профессиональное образование). ISBN 978-

- 5-534-03409-7. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/451175
- 5. Прошин В.М. Электротехника / учеб.для нач.проф.образ— М. Академия, 2018.-308 стр.

Дополнительная литература:

- 1. Петров К.С. Радиоматериалы, радиокомпоненты и электроника: Учеб. пособие / К.С. Петров СПб.: «ПИТЕР», 2003. 511 с.
- 2. Миловзоров О.В. Электроника: Учебник / О.В. Миловзоров, И.Г. Панков. М.: «Высшая школа», 2004. 288 с. 13
- 3. Горшков Б.И. Электронная техника: Учеб. пособие / Б.И. Горшков, А.Б. Горшков. М.: Academia, 2012. 320 с.
- 4. Агеев, И. М. Физика электронных приборов: учебное пособие / И. М. Агеев. Санкт-Петербург: Лань, 2020. 324 с. ISBN 978-5-8114-5779-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/146831. Режим доступа: для авториз. пользователей.
- 6. Бессонов Л.А. Задачник по электротехнике: учебн. пособие для
- 7. начин. проф. образования. Издат. центр. «Академия», 2024. 218 с.
- 8. Винокурова И.Ю. Методические указания по дисциплине
- 9. «Электротехника» для самостоятельной работы и промежуточного контроля студентов ЕТК специальностей 11.02.01 «Радиоаппаратостроение», 12.02.06 «Биотехнические и медицинские аппараты и системы» и 09.02.01 «Компьютерные системы и комплексы»/ И.Ю. Винокурова, Л.Н. Мельникова, Н.В. Овсянникова. Воронеж: ВГТУ (в электронной версии), 2013. 32 с.
- 10.Винокурова И.Ю. Методические указания по решению типовых задач
- 11.и самостоятельной работе/ И.Ю. Винокурова, Н.В. Овсянникова. Воронеж: ВГТУ, 2011. 23 с.
- 12. Винокурова И.Ю. Методические указания по решению типовых задач
- 13.и самостоятельной работе/ И.Ю. Винокурова, Н.В. Овсянникова. Воронеж: ВГТУ, 2010. 25 с.
- 14. Винокурова И.Ю. Методические указания по решению типовых задач
- 15.и самостоятельной работе/ И.Ю. Винокурова, Н.В. Овсянникова. Воронеж: ВГТУ, ВГТУ, 2008. 21 с.
- 16.Овсянникова Н.В. Методические указания к выполнению
- 17. лабораторных работ по электротехнике для технических специальностей, часть 1/ H.B. Овсянникова. Воронеж: ВГТУ (в электронной версии), 26 с.
- 18. Овсянникова Н.В. Методические указания к выполнению
- 19. лабораторных работ по электротехнике для технических специальностей, часть 2/ H.B. Овсянникова. Воронеж: ВГТУ (в электронной версии), 26 с.

Методическая литература:

1. 21-2014 Методические указания по выполнению лабораторных и практических работ по дисциплине «Электронная техника» (для студентов специальности 210413 «Радиоаппаратостроение»), дисциплине «Электротехника и электронная техника» (для студентов специальности 201001 «Биотехнические и медицинские аппараты и системы»), по дисциплине «Прикладная электроника» (для студентов специальности 230113 «Компьютерные системы и комплексы») / Естественно-технический колледж; Составитель: препод. Д.А. Денисов, ВПО «Воронежский Солошенко Воронеж: ФГБОУ государственный технический университет», 2014-55с.

Справочная литература:

- 1. Турута Е.Ф. Транзисторы: Справочник / Е.Ф. Турута том 1.- СПб.: Наука и техника, 2006-532с. 2. Зарубежные микросхемы, транзисторы, тиристоры, диоды + SMD. А...Z, справочник / изд. 2-е перераб. и доп. , том 1.- СПб.: Наука и техника, 2005-649с.
 - 3.3 Перечень программного обеспечения, профессиональных баз данных, Информационных информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины

При осуществлении образовательного процесса студентами и преподавательским составом используются следующее программное обеспечение:

OC Windows 7 Pro; MS Office 2007; Kaspersky Endpoint Security; 7-Zip; Google Chrome; PDF24 Creator;

При осуществлении образовательного процесса студентами и преподавательским составом используются следующие информационно справочные системы: электронная библиотечная система «Юрайт», Электронный каталог Научной библиотеки ВГТУ, Виртуальные справочные службы, Библиотеки, Англоязычные ресурсы и порталы, иные ИСС.

14 - https://www.biblio-online.ru/viewer/osnovy-elektroniki-433509 http://electrolib/narod.ru/electronics.htm - http://scsiexplorer.com.ua/http://www.isuct.ru/e-lib/node/178 - http://www.stf.mrsu.ru/toe/demo_versia/

3.4Особенности реализации дисциплины для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья

При обучении лиц с ограниченными возможностями здоровья, предусматривается индивидуальный график обучения.

Инвалиды и лица с ограниченными возможностями здоровья обеспечены печатными и электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации обучающихся, создаются фонды оценочных средств, адаптированные для инвалидов и лиц с ограниченными возможностями здоровья и позволяющие оценить достижение ими запланированных в основной образовательной программе результатов обучения и уровень сформированности всех компетенций, заявленных в образовательной программе.

4 КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Результаты обучения (освоенные	Формы и методы контроля и
умения, усвоенные знания)	оценки результатов обучения
В результате освоения дисциплины обуча	ающийся должен уметь:
- У1 анализировать основные	- оценка за работу на
параметры электронных схем;	контрольно-учетном
	занятии;
- У2 производить подбор элементов	- оценка за выполнение
электронной аппаратуры по заданным	лабораторных занятий;
параметрам;	
- УЗ по заданным параметрам	- оценка за выполнение
рассчитывать и измерять параметры	группового задания,
типовых электронных устройств.	работа в малых группах);
В результате освоения дисциплины обуча	ающийся должен знать:
- 31 сущность физических процессов,	- оценка за работу на
протекающих в электронных приборах	контрольно-учетном
и устройствах;	занятии;
- 32 принципы включения электронных	- оценка за выполнение
приборов и построения электронных	лабораторных занятий;
схем.	

В результате освоения учебной дисцип.	лины обучающийся должен иметь
практический опыт:	
П1 технического обслуживания	- оценка за работу на
электронных приборов и устройств в	практическом занятии;
соответствии с регламентом и	
правилами эксплуатации в сарочном	
производстве	

Разработчики:

ФГБОУ ВО «ВГТУ»,

преподаватель высшей квалификационной категории

Л.О. Солощенко

Руководитель образовательной программы

ФГБОУ ВО «ВГТУ»,

преподаватель высшей квалификационной категории МЛ

И.В. Полухина

Эксперт

Главный технолог ОАО «Тяжмехпресс»

Д.В. Белопотапов

