МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета

Баркалов С.А.

«30» августа 2017 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Теоретические основы электротехники и электроники»

Направление подготовки <u>27.03.03</u> <u>СИСТЕМНЫЙ АНАЛИЗ И УПРАВЛЕНИЕ</u>

Профиль Системный анализ и управление

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки <u>2017</u>

Автор программы

Soy

Полуказаков А.В.

Заведующий кафедрой Систем управления и информационных технологий в строительстве

строительстве

Десятирикова Е.Н.

Руководитель ОПОП

Лихачева Т.Г.

Воронеж 2017

1.ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Целью преподавания дисциплины является изложение теоретических и практических положений, необходимых для расчета различных схем, устройств и систем, а так же анализ физических процессов, протекающих в этих устройствах и системах.

1.2. Задачи освоения дисциплины:

- приобретение знаний, необходимых для анализа электрических и электронных устройств;
 - использование современных математических методов анализа цепей.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теоретические основы электротехники и электроники» относится к базовой части учебного плана (Б1, Б16).

Изучение дисциплины «Теоретические основы электротехники и электроники» требует основных знаний, умений и компетенций студента по курсам: математика, физика математического и естественнонаучного цикла.

3.ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Теоретические основы электротехники и электроники» направлен на формирование следующих компетенций:

ОПК-3 способность представлять современную научную картину мира на основе знаний основных положений, законов и методов естественных наук и математики

Компетен-	Результаты обучения, характеризующие
ция	сформированность компетенции
ОПК-3	знать
	методы теоретических основ электротехники, модели и методы системного ана-
	лиза, оптимизации и синтеза электротехнических и электронных устройств.
	уметь
	- анализировать и синтезировать электронные устройства систем информатизации
	и управления
	владеть
	- навыками расчета электротехнических и электронных устройств

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Теоретические основы электротехники и электроники» составляет 8 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Βιστινης διού ποδοτι		Семе	стры
Виды учебной работы	часов	4	5
Аудиторные занятия (всего)	105	51	54
В том числе:			
Лекции	35	17	18
Практические занятия (ПЗ)	35	17	18
Лабораторные работы (ЛР)	35	17	18
Самостоятельная работа	147	57	90
Часы на контроль	36	-	36
Виды промежуточной аттестации – зачёт, экзамен	+	3	Э
Общая трудоемкость:	288	108	180
академические часы	8	3	5
зач.ед.		3	3

5.СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

		очная форма обучения					
№ п/ п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Теория линей-	Теория электромагнитного поля и тео-					
	ных цепей	рия цепей.					
		Законы Ома, Кирхгофа.					
		Топологические методы расчета элек-	4	6	8	22	40
		трических цепей.					
		Расчет установившихся процессов.					
		Расчет переходных процессов					
2	Теория нелиней-	Теория электромагнитного поля и тео-					
	ных цепей (НЦ)	рия цепей.					
		Законы Ома, Кирхгофа.					
		Топологические методы расчета элек-	6	6	2	30	44
		трических цепей.					
		Расчет установившихся процессов.					
		Расчет переходных процессов					
3	Цепи с распре-	Длинные линии, модель, уравнения.					
	деленными па-	Решение уравнения длинной линии.	4	4	4	25	37
	раметрами.	Режим работы линии.	"	_	7	23	37
		Стоячие и бегущие волны.					
4	Теория электро-	Уравнения ЭМП в свободном простран-					
	магнитного поля	стве и в веществе.					
	(ЭМП)	Статическое и стационарные поля.					
		Переменное ЭМП в диэлектрике и про-	6	6	2	25	39
		воднике.					
		Заземление, экранирование, шаговое					
		напряжение.					
5	Электронные и	Электронные приборы.	4	2	3	28	36

	полупроводни-	Полупроводниковые приборы.					
	ковые приборы	Диоды.					
		Биполярные транзисторы.					
		Полевые транзисторы.					
		Характеристики, схемы замещения.					
6	Усилители на	Усилители на биполярных транзисторах.					
	полупроводни-	Расчет.	6	6	4	9	26
	ковых приборах.	Характеристики.	0	0	4	9	20
		Обратная связь.					
7	Операционные	Операционные усилители.					
	усилители и их	Схемы включения.					
	применение.	Дифференциатор интегратор.	5	5	8	4	21
		Компараторы.	3)	0	4	21
		Активные фильтры.					
		Генераторы.					
8	Аналоговые и	Источники тока эталонного напряжения.					
	цифровые	Аналоговые и цифровые ключи.			4	4	9
	устройства.	Логические элементы.					
9	Контроль						36
		Итого					
		111010	35	35	35	147	288

5.2 Перечень практических работ 5.2.1 Очная форма обучения

Итого	часов:	35	
8	Практическое занятие № 8 Схемы включения ОУ.	8	Устный опрос, письменные задания, тестовые задания
7	Практическое занятие № 7 Усилитель с общим эмиттером	4	Устный опрос, письменные задания
6	Практическое занятие № 6 ВАХ полупроводниковых приборов.	4	Устный опрос Тестовые задания по теме
5	Практическое занятие № 5 Составление уравнений.	4	Устный опрос, письменные задания
4	Практическое занятие № 4 Расчет параметров нелинейных элементов.	4	Устный опрос, письменные задания
3	Практическое занятие №3 Расчет переходных процессов.	4	Устный опрос, письменные задания
2	Практическое занятие №2 Расчет установившихся процессов.	4	Устный опрос, письменные задания
1	Практическое занятие №1 Составление топологических матриц, уравнения цепей в матричной форме.	5	Устный опрос Тестовые задания по теме
№ п/п	Тема и содержание практического занятия	Объ- ем часов	Виды контроля

5.3 Перечень лабораторных работ

5.3.1 Очная форма обучения

№ п/п	Тема и содержание лабораторных работ	Объ- ем часов	Виды контроля
1	лабораторная работа № 1 Исследование выполнения законов Кирхгофа в линейных электрических цепях	3	Отчет по лабораторной работе, защита работы
2	Лабораторная работа № 2 Исследование электрических це- пей методом наложения	4	Отчет по лабораторной работе, защита работы
3	Лабораторная работа № 3 Исследование переходных процессов в цепях второго порядка	4	Отчет по лабораторной работе, защита работы
4	Лабораторная работа № 4 Исследование нелинейных цепей	4	Отчет по лабораторной работе, защита работы
5	Лабораторная работа № 5 ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ И МЕТОДИКА ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ	4	Отчет по лабораторной работе, защита работы
6	Лабораторная работа № 6 ИССЛЕДОВАНИЕ НЕРАЗВЕТВЛЕННОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА	4	Отчет по лабораторной работе, защита работы
7	Лабораторная работа № 7 ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЭЛЕКТРИЧЕ- СКОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ПОТРЕБИТЕЛЕЙ ЗВЕЗДОЙ,	4	Отчет по лабораторной работе, защита работы
8	Лабораторная работа № 8 ИССЛЕДОВАНИЕ РАБОТЫ ОДНОФАЗНОГО ТРАНСФОРМАТОРА	4	Отчет по лабораторной работе, защита работы
9	Лабораторная работа № 9 ИССЛЕДОВАНИЕ ГЕНЕРАТОРА ПОСТОЯН- НОГО ТОКА	4	Отчет по лабораторной работе, защита работы
Итого	часов:	35	

6.ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«неаттестован».

Компе- тенция	Результатыобуче- ния,характеризующие сформированность компе- тенции	Критерии оценивания	Аттестован	Неаттестован
ОПК-3	знать основные источники ЭДС и тока	Активная работа на практических занятиях, отвечает на теоретические вопросы при защите коллоквиума	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	знать порядок расчета типо-вых цепей и устройств	Активная работа на практических занятиях, отвеча-	Выполнение работ в срок, предусмот-	Невыполнение работ в срок, преду-

	ет на теоретические во-	ренный в рабочих	смотренный в ра-
	просы при защите колло-	программах	бочих программах
	квиума		
знать критерии и методы оп-	Активная работа на прак-	Выполнение работ в	Невыполнение ра-
тимизации электрических	тических занятиях, отвеча-	срок, предусмот-	бот в срок, преду-
схем	ет на теоретические во-	ренный в рабочих	смотренный в ра-
	просы при защите колло-	программах	бочих программах
	квиума		
уметь оценивать структуру и	Решение задач по оценке	Выполнение работ в	Невыполнение ра-
состав типовых устройств	стоимости капитала. Вы-	срок, предусмот-	бот в срок, преду-
	полнение лабораторной	ренный в рабочих	смотренный в ра-
	работы	программах	бочих программах
владеть навыками расчета	Выполнение самостоя-	Выполнение работ в	Невыполнение ра-
типовых устройств электро-	тельной работы. Выполне-	срок, предусмот-	бот в срок, преду-
ники	ние курсовой работы	ренный в рабочих	смотренный в ра-
		программах	бочих программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 5 семестре для очной формы обучения, 7 семестре для заочной формы обучения по четырех балльной системе:

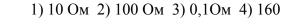
«отлично»;

«хорошо»;

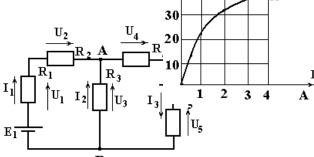
«удовлетворительно»;

«неудовлетворительно».

Компетенция ОПК-3	Результаты обучения, характеризующие сформированность компетенции знать основные источники ЭДС и тока	Критерии оценивания Ответы на теоретические вопросы	Отлично Владеет знаниями предмета в полном объеме	Хорошо Владеет знаниями дисциплины почти в полном объеме вопроса	Удовл. Владеет основным объемом знаний по вопросу	Неудовл. Не освоил обязательного минимума знаний по вопросу
	знать порядок расчета типовых цепей и устройств	Ответы на теоретиче- ские вопро- сы	Владеет знаниями предмета в полном объеме	Владеет зна- ниями дис- циплины по- чти в полном объеме во- проса	Владеет основным объемом знаний по вопросу	Не освоил обязательного минима знаний по вопросу
	знать критерии и методы оптимизации электрических схем	Ответы на теоретиче- ские вопро- сы	Владеет знаниями предмета в полном объеме	Владеет зна- ниями дис- циплины по- чти в полном объеме во- проса	Владеет основным объемом знаний по вопросу	Не освоил обязательного минимума знаний по вопросу
	уметь оценивать структуру и состав типовых устройств	Решение практиче- ских задач	Задачи ре- шены в полном объеме и получены верные от- веты	Продемон- стрирован верный ход решения всех, но не получен вер- ный ответ во всех задачах	Продемон- стрирован верный ход решения в большин- стве задач	Задачи не решены
	владеть навыками расчета типовых устройств электроники	Решение комплекс- ных задач в	Задачи ре- шены в полном	Продемон- стрирован верный ход	Продемон- стрирован верный ход	Задачи не решены

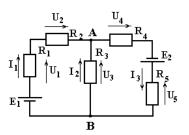

	конкретной предметной области		решения всех, но не получен вер- ный ответ во	решения в большин- стве задач	
		веты	всех задачах		

- 7.2Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - 7.2.1 Примерный перечень заданий для подготовки к тестированию
- 1. Электрическая цепь, у которой электрические напряжения и электрические токи связаны друг с другом линейными зависимостями называется...

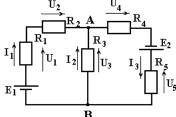

Линейной электрической цепью 2) Принципиальной схемой

Схемой замещения 3) нелинейной электрической цепью

- 2. Графическое изображение электрической цепи, содержащее условные обозначения ее элементов, показывающее соединения этих элементов называется
 - 1) Ветвью 2) Контуром) Схемой электрической цепи 4) Узлом
- 3. Если при неизменном напряжении ток на участке цепи уменьшился в 2 раза, то сопротивление участка
 - 1. Увеличилось в 2 раза
- 2) Уменьшилось в 2 раза
- 3) Не изменилось
- 4) Увеличилось в 4 раза
- 4. Первый закон Кирхгофа формулируется следующим образом
- 1) Алгебраическая сумма токов ветвей, сходящихся в узле, равна нулю
- 2) Алгебраическая сумма падений напряжений в контуре равна алгебраической сумме ЭДС в том же контуре
- 3) Сила тока в цепи пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению цепи
 - 4) .Алгебраическая сумма напряжений вдоль контура равна нулю
- 5. Если пять резисторов R_1 =100 Ом, R_2 = 10 Ом, R_3 =20 Ом, R_4 = 500 Ом, R_5 = 100 Ом соединены последовательно, то в них ток будет
 - 1) Один и тот же 2) Наибольшим в сопротивлении R_2
 - 3) Наибольшим в сопротивлении R_4 4) Наибольшим в сопротивлениях R_1 и R_5
 - 6. Из представленных значений величиной мощности является
 - 1) 20 Мвт 2) 1 А 3) 30 Дж 4) 100 кВт ч
- 7. При заданной вольтамперной характеристике статическое сопротивление нелинейного элемента в точке А составляет


Ом

8. В представленной на рисунке


электрической схеме число ветвей

- 9. В представленной на рисунке электрической схеме независимых контуров
 - 1) два 2) один 3) три 4) четыре

10. Сколько необходимо составить уравнений по первому закону Кирхгофа для схемы?

1) одно 2) два 3) ноль 4) три

- 11. По проводникам одинаковой длины и сечения, выполненных из меди, алюминия, стали и серебра, протекает одинаковый ток. На каком из них будет большее напряжение?
 - 1) На стальном 2) На серебряном 3) На медном 4) На алюминиевом

7.2.2 Примерный перечень заданий для решения стандартных задач

Задание № 1.

Прибор для измерения тока имеет предел измерения 5 А, на шкале прибора 100 делений, класс точности 1. Какой ток измеряет прибор, если стрелка показывает 75 делений? 57 делений? 23 деления? Определить абсолютную и относительную погрешностиь измерения прибора. При каком положении стрелки прибора измерения будут более точными? Что надо сделать, чтобы измерения были более точными?

Задание № 2.

Двухпредельный прибор для измерения напряжения (150 и 300 В) имеет класс точности 1,5 и 150 делений шкалы. Какое напряжение измерено прибором, если на пределе 300 В стрелка показывает 123 деления? 88 делений? 57 делений? Какова точность измерения прибора? В каком положении напряжение измеряется более точно? Можно ли повысить точность измерения? Как?

Задание № 3.

Прибор для измерения мощности имеет пределы измерения для тока 1 и 2 А, пределы измерения для напряжения 75, 150 и 300 В, шкала прибора содержит 150 делений. Какую мощность покажет прибор, если на пределе тока 2 А и напряжения 150 В стрелка показывает 145 делений? 99 делений? 65 делений? Какова точность измерения мощности? Можно ли повысить точность измерения? Как это сделать? Какие ограничения следует соблюдать?

Задание № 4.

Измерение сопротивления производится косвенным методом. Вольтметр имеет предел измерения 150 В, на шкале 150 делений, предел измерения амперметра 2 А и шкала имеет 100 делений. Определить величину сопротивления, если на вольтметре отсчитано 95 делений, а на амперметре 87.

Задание № 5.

В катушке индуктивности протекает ток **i=3sin**(**628t+45°**) А. Катушка имеет индукцию 2 Гн. Определить величину и форму напряжения в катушке, мощность энергии, запасаемой в катушке, построить временную и векторную диаграммы. Чему равно сопротивление катушки? Как меняется во времени мощность энергии в катушке?

Задание № 6.

К цепи, состоящей из конденсатора емкостью 10 мк Φ , приложено напряжение $\mathbf{u}(\mathbf{t}) = \mathbf{127}\sin(\mathbf{1000t} + \mathbf{90}^\circ)$ В. Определить величину и форму тока в конденсаторе, построить векторную диаграмму. Чему равен фазовый сдвиг между током и напряжением? Чему равно сопротивление конденсатора?

Задание № 7.

В цепи, состоящей из активного сопротивления \mathbf{R} =30 Ом и индуктивного сопротивления $\mathbf{X_L}$ = 40 Ом, протекает синусоидальный ток частотой 50 Гц и амплитудой 2 А. Определить напряжения на активном сопротивлении и индуктивности, полное напряжение и сопротивление цепи, построить векторную диаграмму. Чему равны активная и реактивная мощности цепи и коэффициент мощности? Как повысить коэффициент мощности?

Залание № 8.

В цепи с последовательным соединением индуктивности, емкости и активного сопротивления рассчитать токи и напряжения на каждом элементе и построить векторную диаграмму. $\mathbf{R} = 40$ Ом, $\mathbf{X_L} = 20$ Ом, $\mathbf{X_C} = 50$ Ом. Общее напряжение, приложенное к цепи, 100 В.

Задание № 9.

В цепи с последовательным соединением индуктивности, емкости и активного сопротивления рассчитать токи и напряжения на каждом элементе и построить векторную диаграмму. R = 40 Om, $X_L = 100 \text{ Om}$, $X_C = 70 \text{ Om}$. В цепи протекает ток 2 A.

Задание № 10.

В цепи с последовательным соединением индуктивности, емкости и активного сопротивления рассчитать токи и напряжения на каждом элементе и построить векторную диаграмму. R = 60 Om, $X_L = 20 \text{ Om}$, $X_C = 100 \text{ Om}$, Напряжение на активном сопротивлении 120 В.

7.2.3 Примерный перечень заданий для решения прикладных задач

Задание № 1.

В симметричной трехфазной цепи при соединении источников и потребителей звездой фазные напряжения равны 220 В, сопротивления нагрузки отдельных фаз 110 Ом. Определить фазные и линейные токи, ток нейтрального провода, построить векторную диаграмму.

Задание № 2.

В трехфазной цепи при соединении источников и потребителей звездой фазные напряжения равны 220 В, сопротивления нагрузки отдельных фаз $\mathbf{R}_{A} = \mathbf{R}_{B} = 110$ Ом, $\mathbf{R}_{C} = 55$ Ом. Определить фазные и линейные токи, ток нейтрального провода, построить векторную диаграмму.

Задание № 3.

В трехфазной цепи при соединении источников и потребителей звездой фазные напряжения равны 380 В, сопротивления нагрузки отдельных фаз ${\bf R}_{\rm A}$ =190 Ом, ${\bf R}_{\rm B}$ =380 Ом, ${\bf R}_{\rm C}$ =95 Ом. Определить фазные и линейные токи, ток нейтрального провода, построить векторную диаграмму.

Задание № 4.

В трехфазной цепи при соединении источников и потребителей звездой фазные напря-

жения равны 380 В, сопротивления нагрузки отдельных фаз $\mathbf{Z_A} = 190$ Ом, $\mathbf{Z_B} = 380$ Ом, $\mathbf{Z_C} = 95$ Ом. Нагрузки фаз А и В активные, а фазы С – индуктивная. Определить фазные и линейные токи, ток нейтрального провода, построить векторную диаграмму.

Задание № 5.

В трехфазной цепи при соединении источников и потребителей звездой без нейтрального провода фазные напряжения равны 380 В, сопротивления нагрузки отдельных фаз \mathbf{R}_{A} = 0 Ом, \mathbf{R}_{B} = 190 Ом, \mathbf{R}_{C} = 190 Ом. Определить фазные и линейные токи, построить векторную диаграмму. Что произойдет в цепи, если включить нейтральный провод?

Задание № 6.

В трехфазной цепи при соединении источников и потребителей звездой фазные напряжения равны 380 В, сопротивления нагрузки отдельных фаз $\mathbf{R_A} = 110$ Ом, $\mathbf{R_B} = 220$ Ом, $\mathbf{R_C} = 55$ Ом. Что произойдет в такой цепи, если нейтральный провод окажется оборван?

Задание № 7.

Для однофазного трансформатора провели опыты короткого замыкания и холостого хода и определили потребление энергии. Мощности соответственно равны $P_{xx} = 10$ Вт, $P_{\kappa 3} = 20$ Вт. В рабочем режиме во вторичную цепь включили сопротивление 10 Ом, напряжение на котором оказалось 50 В. Определить к.п.д. трансформатора для рабочего режима.

Задание № 8.

Для однофазного трансформатора провели опыты короткого замыкания и холостого хода и определили потребление энергии. Мощности соответственно равны $P_{xx} = 15$ Вт, $P_{\kappa 3} = 20$ Вт. Напряжение вторичной обмотки 220 В, номинальная мощность трансформатора 1200 Вт. Определить к.п.д. трансформатора для рабочего режима.

Задание № 9.

Для однофазного трансформатора провели опыты короткого замыкания и холостого хода и определили потребление энергии. Мощности соответственно равны $\mathbf{P}_{xx}=10~\mathrm{Bt},~\mathbf{P}_{\kappa 3}=20~\mathrm{Bt}.$ Число витков первичной и вторичной обмоток соответственно равны $\mathbf{W}_1=1000~\mathrm{But},~\mathbf{W}_2=750~\mathrm{But}.$ Напряжение первичной цепи 220 В. В рабочем режиме во вторичную цепь включили сопротивление 10 Ом. Определить напряжение и ток вторичной обмотки, ток первичной обмотки и к.п.д. трансформатора для рабочего режима.

Задание № 10.

Для однофазного трансформатора провели опыты короткого замыкания и холостого хода и определили потребление энергии. Мощности соответственно равны $\mathbf{P}_{xx} = 10~\mathrm{Bt}$, $\mathbf{P}_{\kappa 3} = 20~\mathrm{Bt}$. В режиме короткого замыкания ток первичной обмотки оказался равен 3 A, ток вторичной обмотки 6 A, трансформатор подключен к сети напряжением 380 B. Определить номинальные токи, напряжения и мощность трансформатора, его к.п.д. для рабочего режима.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1.0 Связь понятий теории электромагнитного поля и теории цепей.
- 1.1 Цепи с сосредоточенными параметрами.
- 1.2 Связи между токами и напряжениями на элементах цепей.
- 1.3 Топологические методы расчета сложных цепей.
- 1.4 Законы Ома, Кирхгофа в матричной форме.
- 1.5 Метод узловых напряжений.
- 1.6 Метод контурных токов.
- 1.7 Расчет установившихся режимов.
- 1.8 Расчет переходных процессов во временной области.
- 1.9 Расчет переходных процессов операторным методом.
- 2.0 Нелинейные элементы (НЭ).
- 2.1 Характеристики НЭ.
- 2.2 Параметры НЭ.
- 2.3 Нелинейные цепи (НЦ) постоянного тока.
- 2.4 НЦ переменного тока.

- 2.5 Формы токов и напряжений в НЦ.
- 2.6 Устойчивость режимов работы НЦ.
- 2.7 Анализ установившихся режимов в НЦ.
- 2.8 Переходные процессы в НЦ.
- 2.9 Численные методы расчета НЦ.
- 3.0 Цепи с распределенными параметрами.
- 3.1 Эквивалентная модель длинной линии.
- 3.2 Уравнение длинной линии.
- 3.3 Решение уравнения длинной линии.
- 3.4 Режим стоячих волн в линии.
- 3.5 Режим бегущих волн в линии.
- 3.6 Параметры линии.
- 3.7 Линии без потерь.
- 3.8 Прямая и обратная волны.
- 3.9 Линия без искажения.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1.0 Связь понятий теории электромагнитного поля и теории цепей.
- 1.1 Цепи с сосредоточенными параметрами.
- 1.2 Связи между токами и напряжениями на элементах цепей.
- 1.3 Топологические методы расчета сложных цепей.
- 1.4 Законы Ома, Кирхгофа в матричной форме.
- 1.5 Метод узловых напряжений.
- 1.6 Метод контурных токов.
- 1.7 Расчет установившихся режимов.
- 1.8 Расчет переходных процессов во временной области.
- 1.9 Расчет переходных процессов операторным методом.
- 2.0 Нелинейные элементы (НЭ).
- 2.1 Характеристики НЭ.
- 2.2 Параметры НЭ.
- 2.3 Нелинейные цепи (НЦ) постоянного тока.
- 2.4 НЦ переменного тока.
- 2.5 Формы токов и напряжений в НЦ.
- 2.6 Устойчивость режимов работы НЦ.
- 2.7 Анализ установившихся режимов в НЦ.
- 2.8 Переходные процессы в НЦ.
- 2.9 Численные методы расчета НЦ.
- 3.0 Цепи с распределенными параметрами.
- 3.1 Эквивалентная модель длинной линии.
- 3.2 Уравнение длинной линии.
- 3.3 Решение уравнения длинной линии.
- 3.4 Режим стоячих волн в линии.
- 3.5 Режим бегущих волн в линии.
- 3.6 Параметры линии.
- 3.7 Линии без потерь.
- 3.8 Прямая и обратная волны.
- 3.9 Линия без искажения.
- 4.1 Граничные условия.
- 4.2 Электростатическое поле.
- 4.3 Стационарные поля.
- 4.4 Переменное электромагнитное поле в пустоте и диэлектрике.
- 4.5 Переменное электромагнитное поле в проводящей среде.

- 4.6 Изучение электромагнитных волн.
- 4.7 Заземление.
- 4.8 Экранирование.
- 4.9 Шаговое напряжение.
- 5.0 Электронные приборы. Устройство.
- 5.1 Характеристики и параметры электронных приборов.
- 5.2 Полупроводниковые приборы. Устройство.
- 5.3 Диоды. Вольтамперные характеристики. Параметры.
- 5.4 Биполярный транзистор. Устройство.
- 5.5 Характеристики биполярного транзистора.
- 5.6 Определение параметров биполярного транзистора. Схема замещения.
- 5.7 Полевой транзистор. Устройство.
- 5.8 Характеристики полевого транзистора.
- 5.9 Схема замещения, параметры полевого транзистора.
- 6.0 Усилители постоянного и переменного тока.
- 6.1 Усилители с общим эмиттером.
- 6.2 Расчет режима по постоянному току.
- 6.3 Расчет параметров усилителя по переменному току.
- 6.4 Усилитель с общим коллектором.
- 6.5 Передаточная функция. Комплексная частотная характеристика.
- 6.6 Амплитудочастотная и фазочастотная характеристика.
- 6.7 Переходная характеристика.
- 6.8 Интеграл Дюамеля.
- 6.9 Обратные связи в усилителях.
- 7.0 Операционные усилители. Принципы построения.
- 7.1 Характеристики операционных усилителей.
- 7.2 Усилительные каскады на операционных усилителях.
- 7.3 Сумматоры, дифференциальные каскады.
- 7.4 Дифференциаторы, интеграторы.
- 7.5 Схемы активных фильтров.
- 7.6 Конверторы сопротивления.
- 7.7 Типы фильтров и их характеристики.
- 7.8 Компараторы без обратной связи и с обратной связью.
- 7.9 Генераторы колебаний на базе компараторов.
- 8.0 Источники тока.
- 8.1 Источники эталонного напряжения на стабилизаторе.
- 8.2 Аналоговые ключи.
- 8.3 Ключи на полевых транзисторах.
- 8.4 Ключи и коммутаторы в интегральном исполнении.
- 8.5 Цифровые ключи на биполярных транзисторах.
- 8.6 Цифровые ключи на КМСП-транзисторах.
- 8.7 Элементы булевой алгебры. Законы.
- 8.8 Логические функции.
- 8.9 Функционально полные системы.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по билетам, каждый из которых содержит 3 теоретических вопроса, 2 стандартные задачи, 2 прикладные задачи. Каждый правильный ответ на вопрос оценивается в 2 балла, стандартная задача в 2 балла, прикладная задача оценивается в 5 баллов.

Максимальное количество набранных баллов на экзамене –20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.

7.2.6. Паспорт оценочных материалов

	7.2.6. паспорт оценочн	ых материалов	
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролиру- емой компетен- ции (или её ча- сти)	Наименование оценочного средства
1.	Теория линейных цепей	ОПК-3	1. Базовые вопросы (СР) 2. Семинарское выступление (ПЗ) 3. Предварительные расчеты (ЛР)
2.	Теория нелинейных цепей	ОПК-3	1. Базовые вопросы (СР) 2. Семинарское выступление (ПЗ) 3. Предварительные расчеты (ЛР)
3.	Цепи с распределенными параметрами	ОПК-3	1. Базовые вопросы (СР) 2. Семинарское выступление (ПЗ) 3. Предварительные расчеты (ЛР)
4.	Теория электромагнитно- го поля	ОПК-3	1. Базовые вопросы (СР) 2. Семинарское выступление (ПЗ) 3. Предварительные расчеты (ЛР)
5.	Электронные и полупроводниковые приборы	ОПК-3	1. Базовые вопросы (СР) 2. Семинарское выступление (ПЗ) 3. Предварительные расчеты (ЛР) 4. Зачет с оценкой
6.	Усилители на полупроводниковых приборах	ОПК-3	1. Базовые вопросы (СР) 2. График выполнения КР 3. Предварительные расчеты (ЛР)
7.	Операционные усилители и их применение	ОПК-3	 Базовые вопросы (СР) График выполнения КР Предварительные расчеты (ЛР)
8.	Аналоговые и цифровые устройства	ОПК-3	 Базовые вопросы (СР) График выполнения КР Предварительные расчеты (ЛР)

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Ответы на вопросы осуществляются с использованием выданных вопросов на бумажном носителе. Решение задач и комплексных задач осуществляется с использованием выданных задач на бумажном носителе либо при помощи компьютерной системы тестирования.

Время ответа на вопросы и задачи билета 60 мин. Затем осуществляется проверка экзаменационного билета экзаменатором, потом выставляется оценка,

согласно методике выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20мин.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Бессонов Л.А. «Теоретические основы электротехники. Электрические цепи».- М.: Гардарики, 2006г.
- 2. Авдеев Ю.В. «Электротехника и электроника» [электронный ресурс]/ Авдеев Ю.В., Полуказаков А.В.- Электрон. текстовые данные.- Воронеж: Воронежский ГАСУ, 2014 г.
- 3. Забродин Ю.С. «Промышленная электроника». М.: ООО ИД «Альянс», 2008г.
- 4. Общая электротехника: метод. указания к выполнению лаб. раб. №1-8 по курсу «Общая электротехника и электроника» (Общая электротехника) для студ., обучающихся по спец. 220301/Воронеж. гос. арх.-строит. ун-т; сост.: Ю.В. Авдеев, А.В.Полуказаков. Воронеж, 2011г.-32с.
- 5. Общая электротехника: метод. указания к выполнению лаб. раб. №9-17 по курсу «Общая электротехника и электроника» (Общая электротехника) для студ., обучающихся по спец. 220301/Воронеж. гос. арх.-строит. ун-т; сост.: Ю.В. Авдеев, А.В.Полуказаков. Воронеж, 2011г.-32с.
- 6. Общая электротехника: метод. указания и задания к выполнению расч.-граф. работ №1-7 по курсу «Общая электротехника и электроника» для студ., обучающихся по спец. 220301/Воронеж. гос. арх.-строит. ун-т; сост.: Ю.В. Авдеев, А.В.Полуказаков. Воронеж, 2009г.-26с.
- 7. Расчет линейных электрических цепей [электронный ресурс] Методические указания к выполнению курсовых работ для студентов укрупненной группы спец. 27.00.00 «Управление в технических системах» / Воронеж. гос. арх.-строит. ун-т; сост.: Ю.В. Авдеев, А.В. Полуказаков. Воронеж, 2012.

Дополнительная литература:

- 1. Хоровиц П., Хилл У. «Искусство схемотехники» в 3-х томах.-М.: Мир, 1993г.
- 2. Сборник задач и упражнений по теоретическим основам электротехники. Под ред. П.А.Ионкина, М., Энергоиздат, 1982г.
- 3. Сборник задач по теоретическим основам электротехники. Под ред.
- Л.А.Бессонова, М., Высшая школа, 1980г., с. 472.
- 4. Нейман Л.Р., Демирчян К.М. «Теоретические основы электротехники» том 1, Л. Энергоиздат, 1981г.
- 5. Нейман Л.Р., Демирчян К.М. «Теоретические основы электротехники» том 2, Л. Энергоиздат, 1981 г.
- 6. Алехин В.А. Электротехника и электроника. Компьютерный лабораторный практикум в программной среде TINA-8 [Электронный ресурс]: учебное пособие для вузов/ Алехин В.А.— Электрон. текстовые данные.— М.: Горячая линия Телеком, 2014.— 208 с.— Режим доступа: http://www.iprbookshop.ru/25091.— ЭБС

«IPRbooks», по паролю

- 7. Трубникова В.Н. Электротехника и электроника. Часть 1. Электрические цепи [Электронный ресурс]: учебное пособие/ Трубникова В.Н.— Электрон. текстовые данные.— Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2014.— 137 с.— Режим доступа: http://www.iprbookshop.ru/33672.— ЭБС «IPRbooks», по паролю
- 8. Гордеев-Бургвиц М.А. Общая электротехника и электроника [Электронный ресурс]: учебное пособие/ Гордеев-Бургвиц М.А.— Электрон. текстовые данные.— М.: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2015.— 331 с.— Режим доступа: http://www.iprbookshop.ru/35441.— ЭБС «IPRbooks», по паролю
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационноттелекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Комплект лицензионного программного обеспечения:

- 1. 1. Операционная система Windows.
- 2. Текстовый редактор MS Word.
- 3. Средства компьютерных телекоммуникаций: Internet Explorer.
- 4. Могут использоваться программные средства для математичесеих вычислений (Matlab, MathCAD) и для моделирования исследования электрических цепей и устройств Labview.
- 5. Базы данных: информационно-справочные и поисковые и системы: Google, WWW. OTIS, WWW.KONE и другие по выбору кафедр.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- Министерство экономического развития http://www.economy.gov.ru/minec/main
- Агентство инноваций и развития экономических и социальных проектов Воронежской области https://www.innoros.ru
 - ИНИОН http://www.inion.ru/.
- Федеральная служба по интеллектуальной собственности (Роспатент) http://www.rupto.ru/.
- Официальный сайт Министерства образования и науки Российской Федерации http://www.mon.gov.ru

Информационно-справочные системы:

Справочная Правовая Система Консультант Плюс. Электронный периодический справочник «Система ГАРАНТ».

Современные профессиональные базы данных:

– Федеральный портал «Российское образование» – http://www.edu.ru

- Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru
- Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru
- Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru
 - Российский портал развития http://window.edu.ru/resource/154/49154

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Лекционная аудитория, оснащённая мультимедийным оборудованием (проектор, экран, звуковоспроизводящее оборудование), обеспечивающим демонстрацию (воспроизведение) мультимедиа-материалов

Аудитории для практических занятий, оснащенные:

- мультимедийным оборудованием (проектор, экран, звуковоспроизводящее оборудование), обеспечивающим демонстрацию (воспроизведение) мультимедиаматериалов
 - интерактивными информационными средствами;
 - компьютерной техникой с подключением к сети Интернет

Аудитории для лабораторных работ, оснащенные:

- компьютерной техникой с подключением к сети Интернет;
- прикладными программными продуктами для проведения лабораторных работ.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Теоретические основы электротехники и электроники» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета стоимости источников финансирования инновационной деятельности, оценки эффективности инвестиций в инновационные проекты, оценки рисков. Занятия проводятся путем решения конкретных задач в аудитории и разбором вопросов, отведенных на самостоятельное изучение.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсовой работы изложена в методических указаниях. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится путем проведения экзамена и защитой курсовой работы.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Решение задач по алгоритму, подготовка ответов на вопросы семинарского занятия
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная ра- бота	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.