МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
Декан факультета информационных
технологий и комньютерной безопасности
/ П.Ю. Гусев
// И.О. Фамилия
«31» августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

«Программирование в графических системах» наименование дисциплины (модуля) в соответствии с учебным планом)

Направление подготовки 09.03.01 Информатика и вычислительная техника код и наименование направления подготовки/специальности Профиль (специализация) Вычислительные машины, комплексы, системы и сети_ название профиля/программы Квалификация выпускника бакалавр **Нормативный период обучения** <u>4 года / 4 года и 11 м.</u> Форма обучения Очная/Заочная Год начала подготовки 2019 г. А.М Нужный Автор(ы) программы Заведующий кафедрой Автоматизированных и В.Ф. Барабанов вычислительных систем наименование кафедры, реализующей дисциплину Руководитель ОПОП С.Л. Подвальный

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

- изучение и практическое освоение основных методов и средств разработки программ с использованием API современных графических систем.

1.2. Задачи освоения дисциплины

- ознакомление с основными графическими интерфейсами;
- изучение особенностей архитектуры и программирования графических процессоров;
- освоение основных средства и методов кастомизации графических систем:
- приобретение практических навыков проектирования и разработки проблемно-ориентированных приложений с использованием API систем автоматизированного проектирования.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Программирование в графических системах» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Программирование в графических системах» направлен на формирование следующих компетенций:

- ПК-2 Способен проектировать и разрабатывать компоненты программных комплексов и информационных систем, используя современные технологии программирования и инструментальные средства разработки
- ПК-7 Способен интегрировать, сопрягать, настраивать и эксплуатировать компоненты программных комплексов и вычислительных систем

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-2	знать: методы и средства проектирования программного обеспечения с использованием АРІ графических систем
	уметь: применять методы и средства проектирования и разработки программного обеспечения с использованием API графических систем
	владеть: методами и средствами проектирования и разработки программного обеспечения с использованием API графических систем
ПК-7	знать: технологии сопряжения, настройки и эксплуатации компонентов графических систем с использованием встроенных API
	уметь: решать типовые задачи сопряжения, настройки и эксплуатации компонентов графических систем с

исп	ользованием встроенных АРІ
вла	деть: методиками интеграции компонентов
гра	фических систем с использованием встроенных АРІ

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Программирование в графических системах» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Рини унобиой поботи	Всего	Семестры
Виды учебной работы	часов	6
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	36	36
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	36	36
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

заочная форма обучения

Виды учебной работы	Всего	Семестры
Виды учеоной работы	часов	7
Аудиторные занятия (всего)	16	16
В том числе:		
Лекции	4	4
Лабораторные работы (ЛР)	12	12
Самостоятельная работа	88	88
Контрольная работа	+	+
Часы на контроль	4	4
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Современные графические интерфейсы	Современные графические интерфейсы. Низкоуровневые 3D API. Direct3D. OpenGL. Высокоуровневые 3D API. Основы машинной графики. Основные направления и задачи компьютерной графики. Процесс	22	16	12	50

		использование библиотек OpenMP, MPI, OpenCL. Итого	36	36	36	108
		Назначение, организация, особенности				
		параллельных расчетах.	υ		12	10
	процессоров	NVIDIA CUDA. Разница между СРИ И GPU в	6		12	18
	графических	графических ускорителей. Использование GPU для параллельных вычислений.				
3	Программирование	Особенности архитектуры и программирования				
2	П.,	генерации программного кода.				
		Использование средств системы для автоматической				
		трехмерных моделей.				
		NX Open. Генерация двумерных примитивов и				
		Возможности. Объектная модель				
		API системы Siemens NX. Разновидности API.				
		приложениями.				
		Организация взаимодействия со сторонними				
		Анализ и редактирование чертежа средствами АРІ.				
		создания примитивов. Использование API AutoCAD для кастомизации интерфейса системы.	o	20	14	40
		AutoCAD. Использование API AutoCAD для	8	20	12	40
		Средства адаптации AutoCAD. Объектная модель				
		АРІ САD-систем. Назначение, возможности.				
		представления моделей сплошных тел.				
		Векторная полигональная модель. Методы				
		3D-моделей. Методы построения моделей.				
		Геометрическое моделирование. Основные типы				
		ядра.				
]	графических систем	Классификация. Архитектура геометрического				
2	Использование АРІ	Ядро геометрического моделирования.				
		OpenGL. Архитектура OpenGL. Синтаксис команд.				
		ОрепGL. Основные возможности. Интерфейс				
		изображений.				
		языка псы. Графический процессор в задачах обработки				
		Шейдеры. Использование шейдеров с помощью языка HLSL.				
		Затенение по Фонгу.				
		Простая модель освещения. Затенение по Гуро.				
		стандартных объектов. Реалистичные построения.				
		Освещенность и материалы. Построение				
		объектов. Буфер глубины				
		построения трехмерной сцены. Вывод трехмерных				
		Схема графического конвейера. Принципы				
		Трехмерная графика с использованием Direct3D.				
		ключ. Фильтрация. Буфер трафарета.				
		Текстурирование. Полупрозрачность. Цветовой				
		СОМ.				
		3D. Вывод простейших примитивов. Технология				
		двумерная графика с использованием Direct3D. Библиотека DirectX. Графическая библиотека Direct				
		Однородные координаты. Проецирование. Двумерная графика с использованием Direct3D.				
		Системы координат. Аффинные преобразования.				
		Математические основы компьютерной графики.				
		Геометрические операции с исходными данными.				
		сцены.				
1						

заочная форма обучения

		suo mun popmu ooy temm				
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Современные графические интерфейсы	Современные графические интерфейсы. Низкоуровневые 3D API. Direct3D. OpenGL. Высокоуровневые 3D API. Основы машинной графики. Основные направления и задачи компьютерной графики. Процесс формирования изображения. Элементы трехмерной сцены. Геометрические операции с исходными данными. Математические основы компьютерной графики. Системы координат. Аффинные преобразования. Однородные координаты. Проецирование.	2	4	30	36

		Двумерная графика с использованием Direct3D.				
		Библиотека DirectX. Графическая библиотека Direct				
		3D. Вывод простейших примитивов. Технология				
		СОМ.				
		Текстурирование. Полупрозрачность. Цветовой				
		ключ. Фильтрация. Буфер трафарета.				
		Трехмерная графика с использованием Direct3D.				
		Схема графического конвейера. Принципы				
		построения трехмерной сцены. Вывод трехмерных				
		объектов. Буфер глубины				
		Освещенность и материалы. Построение				
		стандартных объектов. Реалистичные построения.				
		Простая модель освещения. Затенение по Гуро.				
		Затенение по Фонгу.				
		Шейдеры. Использование шейдеров с помощью				
		языка HLSL.				
		Графический процессор в задачах обработки				
		изображений.				
		OpenGL. Основные возможности. Интерфейс				
		OpenGL. Архитектура OpenGL. Синтаксис команд.				
2	Использование API	Ядро геометрического моделирования.				
	графических систем	Классификация. Архитектура геометрического				
	-1-1	ядра.				
		Геометрическое моделирование. Основные типы				
		3D-моделей. Методы построения моделей.				
		Векторная полигональная модель. Методы				
		представления моделей сплошных тел.				
		API CAD-систем. Назначение, возможности.				
		Средства адаптации AutoCAD. Объектная модель				
		AutoCAD. Использование API AutoCAD для				
		создания примитивов. Использование API AutoCAD	2	8	26	36
		для кастомизации интерфейса системы.				
		Анализ и редактирование чертежа средствами АРІ.				
		Организация взаимодействия со сторонними				
		приложениями.				
		API системы Siemens NX. Разновидности API.				
		Возможности. Объектная модель				
		NX Open. Генерация двумерных примитивов и				
		трехмерных моделей.				
		Использование средств системы для автоматической				
		генерации программного кода.				
3	Программирование	Особенности архитектуры и программирования				
	графических	графических ускорителей.				
	процессоров	Использование GPU для параллельных вычислений.				
		NVIDIA CUDA. Разница между СРИ И GPU в	-	-	32	32
		параллельных расчетах.				
		Назначение, организация, особенности				
		использование библиотек OpenMP, MPI, OpenCL.				
		Итого	4	12	88	104

5.2 Перечень лабораторных работ

Лабораторная работа № 1. Основы работы с DirectX API на C++. Настройка компонентов для Visual Studio.

Лабораторная работа № 2. Создание Примитивов. Основы использования шейдеров.

Лабораторная работа № 3. Геометрические преобразования. Матрицы и 3D-трансформации.

Лабораторная работа № 4. Моделирование освещения.

Лабораторная работа № 5. Разработка программ-приложений на VBA для AutoCAD для создания двумерных параметрических моделей.

Лабораторная работа № 6. Использование API для анализа и корректировки графической базы данных чертежа AutoCAD.

Лабораторная работа № 7. Изучение API Siemens NX. Использование С#

для создания сложных моделей в NX

Лабораторная работа № 8. Изучение API Siemens NX. Использование С# для создания параметрических моделей в NX

Лабораторная работа № 9. Изучение API Siemens NX. Использование С# для создания сборок в NX

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение контрольной работы в 7 семестре для заочной формы обучения на тему «Разработка программного модуля на VBA для Autocad» (по вариантам).

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-2	знать: методы и средства проектирования программного обеспечения с использованием АРІ графических систем	Активное участие в интерактивном учебном процессе. Тестирование	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь: применять методы и средства проектирования и разработки программного обеспечения с использованием АРІ графических систем	Эффективность использования изученного теоретического материала при выполнении лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	методами и	Разработка эффективных программных решений в ходе выполнения лабораторных	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

	Iv manua Samur	работ		
	и разработки	paoor		
	программного			
	обеспечения с			
	использованием			
	АРІ графических			
	систем			
ПК-7	знать:	Активное участие в	Выполнение работ в	Невыполнение работ
	технологии	интерактивном учебном	срок,	в срок,
	сопряжения,	процессе. Тестирование	предусмотренный в	предусмотренный в
	настройки и		рабочих программах	рабочих программах
	эксплуатации			
	компонентов			
	графических			
	систем с			
	использованием			
	встроенных АРІ			
	уметь: решать	Эффективность использования	Выполнение работ в	Невыполнение работ
	типовые задачи	изученного теоретического	срок,	в срок,
	сопряжения,	материала при выполнении	предусмотренный в	предусмотренный в
	настройки и	лабораторных работ	рабочих программах	рабочих программах
	эксплуатации			
	компонентов			
	графических			
	систем с			
	использованием			
	встроенных АРІ			
	владеть:	Разработка эффективных	Выполнение работ в	Невыполнение работ
	методиками	программных решений в ходе	*	в срок,
	интеграции	выполнения лабораторных	предусмотренный в	предусмотренный в
	_	работ	рабочих программах	рабочих программах
	графических	F		
	систем с			
	использованием			
	встроенных АРІ			
	1 2 D	<u>I</u>	l	

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6 семестре для очной формы обучения, 7 семестре для заочной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ПК-2	знать: методы и средства проектирования программного обеспечения с использованием АРІ графических систем	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь: применять методы и средства	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

	проектирования и разработки программного обеспечения с использованием АРІ графических систем			
	владеть: методами и средствами проектирования и разработки программного обеспечения с использованием АРІ графических систем	Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ПК-7	знать: технологии сопряжения, настройки и эксплуатации компонентов графических систем с использованием встроенных АРІ	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь: решать типовые задачи сопряжения, настройки и эксплуатации компонентов графических систем с использованием встроенных АРІ	Решение стандартных практических задач	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	владеть: методиками интеграции компонентов графических систем с использованием встроенных АРІ	Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию РАЗДЕЛ 1. Общие вопросы компьютерной графики ТЗ №1-1

Дополните

... – это набор библиотек, представляющих собой готовый интерфейс для работы программы с 3D-акселераторами..

+ Графический АРІ

T3 №1-2

Microsoft DirectX и OpenGL это:

- специализированные графические API;
- + универсальные графические АРІ;
- АРІ графических систем.

T3 № 1-3

Glide API, Metal это:

- специализированные графические API;
- + универсальные графические АРІ;
- АРІ графических систем.

T3 № 1-4

DirectX Foundation предоставляет разработчикам:

- набор высокоуровневых программных интерфейсов для ПК с iOS;
- набор высокоуровневых программных интерфейсов для ПК с Windows;
- + набор низкоуровневых программных интерфейсов для ПК с Windows;

T3 № 1-5

Дополните:

- ... это совокупность методов и приемов для преобразования при помощи персонального компьютера данных в графическое представление или графическое представление в данные.
- + Машинная (компьютерная) графика;

T3 № 1-6

Система координат со взаимно перпендикулярными осями называется:

- графической;
- пользовательской;
- + ортогональной.

T3 № 1-7

Двумерное растровое изображение, которое накладывается (натягивается) на поверхность объекта называется:

- каркас;
- + текстура;
- сетка.

T3 № 1-8

Выберите правильный вариант

Целью перехода к однородной системе координат является:

- +Приведение аффинных преобразований к единому виду
- -Отказ от вещественных чисел

РАЗДЕЛ 2. Использование АРІ графических систем

T3 No 2-1

Выберите правильный вариант

Ядро геометрического моделирования это:

- + набор библиотек с программным интерфейсом;
- универсальный графический АРІ.

T3 № 2-2

Выберите правильный вариант

ACIS и Parasolid это

- + лицензируемые ядра геометрического моделирования;
- универсальные графические АРІ;
- геометрические ядра, доступные в исходном коде.

T3 № 2-3

Отметьте правильный ответ

Какая из моделей предъявляет большие требования к объему памяти:

- + Воксельное представление
- Октарные и бинарные деревья.

T3 № 2-4

Отметьте правильный ответ

Возможно ли хранение в воксельной модели информации о плотности в данной точке пространства?

- + Да
- Нет

T3 № 2-5

Отметьте правильный ответ

Сплошное тело определяется неявно путем описания ограничивающей его поверхности при использовуании:

- + Граничного представления
- Воксельного представления
- Октарных и бинарных деревьев

РАЗДЕЛ 3. Программирование графических процессоров

T3 № 3-1

Отметьте правильный ответ

CUDA — это архитектура параллельных вычислений, позволяющая существенно увеличить вычислительную производительность благодаря:

- использованию мультипроцессорных систем;
- + использованию GPU;
- использованию нескольких ядер CPU.

T3 № 3-2

Отметьте правильный ответ

CUDA это:

- графический процессор от NVIDIA;
- + программно-аппаратная архитектура параллельных вычислений.

T3 № 3-3

Отметьте правильный ответ

Технология CUDA позволяет:

- + производить на GPU универсальные вычисления;
- производить на CPU графические вычисления;
- производить на CPU универсальные вычисления.

T3 № 3-4

Отметьте правильный ответ

Использование GPU для параллельных вычислений обосновано тем, что ядра мультипроцессора GPU используют:

- + одиночный поток команд, множественный поток данных (SIMD);
- множественный поток команд, одиночный поток данных (MISD);
- множественный поток команд, множественный поток данных (MIMD).

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Разработать макрос на VBA AutoCAD для создания параметрически заданного примитива типа «Отрезок»;
- 3. Разработать макрос на VBA AutoCAD для создания параметрически заданного примитива типа «Окружность»;
- 4. Разработать макрос на VBA AutoCAD для создания параметрически заданного примитива типа «Полилиния»;
- 5. Разработать макрос на VBA AutoCAD для создания параметрически заданного примитива типа «Текст»;
- 6. Разработать программный модуль на С# с использованием OPEN NX для создания эскиза параллелелпипеда;
- 7. Разработать макрос на VBA AutoCAD для создания параметрически заданного примитива типа «Эллипс»;
- 8. 7. Разработать программный модуль на С# с использованием OPEN NX для создания эскиза, содержащего примитив «окружность»;
- 9. Разработать программный модуль на С# с использованием OPEN NX для создания эскиза, содержащего примитив «дуга»;
- 10. Разработать программный модуль на C# с использованием OPEN NX для создания эскиза, содержащего примитив «отрезок».

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Разработать макрос на VBA для AutoCAD для анализа чертежа и вывода в текстовый файл данных о примитивах типа «Линейный размер»;
- 2. Разработать макрос на VBA AutoCAD для анализа чертежа и вывода в текстовый файл данных о примитивах типа «Отрезок»;
- 3. Разработать макрос на VBA AutoCAD для анализа чертежа и вывода в текстовый файл данных о примитивах типа «Окружность»;
- 4. Разработать макрос на VBA AutoCAD для анализа чертежа и вывода в текстовый файл данных о примитивах типа «Полилиния»;
- 5. Разработать макрос на VBA AutoCAD для анализа чертежа и вывода в текстовый файл данных о примитивах типа «Текст»;
- 6. Разработать программный модуль на C# с использованием OPEN NX для создания геометрического примитива параллелограмм методом выдавливания;
- 7. Разработать программный модуль на С# с использованием OPEN NX для

создания геометрического примитива цилиндр методом выдавливания;

- 8. 7. Разработать программный модуль на С# с использованием OPEN NX для создания геометрического примитива цилиндр методом вращения;
- 9. Разработать программный модуль на С# с использованием OPEN NX для создания геометрического примитива конус методом выдавливания;
- 10. Разработать программный модуль на С# с использованием OPEN NX для создания геометрического примитива конус методом вращения.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. 3D API. Определение, назначение, классификация.
- 2. API Microsoft DirectX . Состав, назначение, организация.
- 3. Direct3D. Архитектура. Режимы работы.
- 4. API OpenGL. Назначение. Основные функции.
- 5. API OpenGL. Архитектура.
- 6. Предмет, задачи и применение машинной графики.
- 7. Основные сущности трехмерной сцены: Объекты, Наблюдатель (камера), источники света.
- 8. Основные сущности трехмерной сцены: источники света, свойства материалов объекта. Способы задания функциями API.
- 9. Схема формирования буфера кадра.
- 10. Представление объектов. Системы координат. Аффинные преобразования.
- 11. Однородные координаты. Матричные операции.
- 12. Проецирование и приведение к экранным координатам в матричном виде.
- 13. Технология СОМ в DirectX.
- 14. Direct3D. Подключение библиотек. Главный объекта. Создание устройства вывода.
- 15. Direct3D. Блок-схема инициализации процедуры рендеринга.
- 16. Direct3D. Вывод простейших примитивов.
- 17. Direct3D. Текстурирование. Фильтрация текстур.
- 18. Direct3D. Мультитекстурирование.
- 19. Direct3D. Полупрозрачность.
- 20. Direct3D. Цветовой ключ. Буфер трафарета.
- 21. Direct3D. Схема графического конвейера.
- 22. Direct3D. Принципы построения трехмерной сцены.
- 23. Direct3D. Шейдеры. Назначение. Разновидности. Использование шейдеров с по-мощью языка HLSL.
- 24. Графический процессор в задачах обработки изображений
- 25. Direct3D. Расчет освещенности с помощью шейдеров.
- 26. Direct3D. Файлы эффектов.
- 27. OpenGL. Вершины и примитивы. Рисование геометрических объектов.
- 28. Средства адаптации AutoCAD. Назначение, возможности.
- 29. API AutoCAD. Возможности доступа к объектной модели.
- 30. API Siemens NX. Разновидности. Возможности.
- 31. Современные инструменты NX Open.

- 32. Архитектура и особенности работы GPU. Использование GPU для параллельных вычислений
- 33. Использование GPU для параллельных вычислений. Разница между CPU и GPU в параллельных расчетах.
- 34. Программно-аппаратная архитектура параллельных вычислений CUDA.
- 35. Технология параллельного программирования CUDA. Основные особенности
- 36. Библиотеки OpenMP, MPI, OpenCL. Назначение, организация, особенности использования.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 10 вопросов, 1 стандартную задач и 1 прикладную задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, решение задачи -10 баллами. Максимальное количество набранных баллов – 30.

- 1. Оценка «не зачтено» ставится в случае, если студент набрал менее 16 баллов.
- 2. Оценка «зачтено» ставится в случае, если студент набрал от 16 до 30 баллов.

7.2.7 Паспорт оценочных материалов

	1 '		
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Современные графические интерфейсы	ПК-2, ПК-7	Тест, контрольная работа, защита лабораторных работ
2	Использование API графических систем	ПК-2, ПК-7	Тест, контрольная работа, защита лабораторных работ
3	Программирование графических процессоров	ПК-2, ПК-7	Тест

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, при помощи компьютерной системы тестирования. Количество тестовых вопросов -10. Время тестирования 15 мин. Оценивание производится компьютером автоматически с занесением результата тестирования в базу данных.

Защита лабораторных работ осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

Решение стандартных задач осуществляется, либо при помощи

компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
- 1. Нужный А. М., Гребенникова Н.И., Барабанов А. В. Компьютерная графика [Электронный ресурс] : Курс лекций : Учеб. пособие. Воронеж : ГОУВПО "Воронежский государственный технический университет", 2011.
- 2. Барабанов А.В., Нужный А. М., Подвальный С.Л., Сукачев А.И., Сафронов В.В. Разработка пространственных моделей в системе Autodesk Inventor: Учеб. пособие. Воронеж: ВГТУ, 2015.
- 3. Лихачев В.Н. Создание графических моделей с помощью Open Graphics Library [Электронный ресурс]/ Лихачев В.Н.— Электрон. текстовые данные.— М.: Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Эр Медиа, 2019.— 201 с.— Режим доступа: http://www.iprbookshop.ru/79721.html.— ЭБС «IPRbooks»
- 4. Барабанов В.Ф., Нужный А.М., Сафронов В.В., Гребенникова Н.И. Параметрическое моделирование с использованием NX API: учебно-метод. пособие [Электронный ресурс]. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2017
- 5. Методические рекомендации по выполнению контрольных работ для бакалавров направления 09.03.01 профиля «Вычислительные машины, комплексы, системы и сети», магистров профиля 09.04.01 Информатика и вычислительная техника, программа: Распределенные автоматизированные системы очной формы обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост. А.М. Нужный, Ю.С. Акинина, Н.И. Гребенникова. Воронеж: Изд-во ВГТУ, 2020. 8с.
 - 6. Организация самостоятельной работы обучающихся:

методические указания для студентов, осваивающих основные образовательные программы высшего образования — бакалавриата, специалитета, магистратуры: методические указания / сост. В.Н. Почечихина, И.Н. Крючкова, Е.И. Головина, В.Р. Демидов; ФГБОУ ВО «Воронежский государственный технический университет». — Воронеж, 2020. — 14 с.

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное ПО:

- Windows Professional 7 Single Upgrade MVL A Each Academic
- Microsoft Office Word 2007
- Microsoft Office Power Point 2007
- NX 7.5
- AutoCAD

Свободно распространяемое ПО:

- Microsoft Visual Studio Community Edition

Отечественное ПО:

- Яндекс. Браузер
- Архиватор 7z
- Astra Linux

Ресурс информационно-телекоммуникационной сети «Интернет»:

- Образовательный портал ВГТУ
- http://www.edu.ru/
- https://metanit.com/

Информационно-справочные системы:

- http://window.edu.ru
- https://wiki.cchgeu.ru/

Современные профессиональные базы данных:

- https://proglib.io
- https://msdn.microsoft.com/ru-ru/
- https://docs.microsoft.com/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.

Для проведения лабораторных работ необходима лаборатория с ПК, оснащенными программами для проведения лабораторного практикума и обеспечивающими возможность доступа к локальной сети кафедры и

Интернет, из следующего перечня:

- 307 (Лаборатория микропроцессорной техники)
- 309 (Лаборатория телекоммуникационных систем)
- 311 (Лаборатория разработки программных систем)
- 320 (Лаборатория общего назначения)
- 322 (Лаборатория распределённых вычислений)
- 324 (Специализированная лаборатория сетевых систем управления (научно-образовательный центр «АТОС»))
- 325 (Лаборатория автоматизации проектирования вычислительных комплексов и сетей)

Лаборатории расположены по адресу: 394066, г. Воронеж, Московский проспект, 179 (учебный корпус №3).

Набор 3D-манипуляторов «SpaceMouse Pro Professional 3D Mouse», 10 шт.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Программирование в графических системах» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.			
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.			
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; выполнение домашних заданий и расчетов;			

	- работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом три дня эффективнее всего использовать для повторения и систематизации материала.

Лист регистрации изменений

	•	Пото	Подпись заведующего
No	Перечень вносимых изменений	Дата внесения	кафедрой,
Π/Π	перечень вносимых изменении	изменений	ответственной за
			реализацию ОПОП
1	Актуализирован раздел 8.1 Перечень	31.08.2020	
	учебной литературы, необходимой для		
	освоения дисциплины.		N11 -
	Актуализирован раздел 8.2 в части состава		A Pre
	используемого лицензионного		146
	программного обеспечения, современных		,
	профессиональных баз данных и		
2	справочных информационных систем. Внесены изменения в части состава	31.08.2021	
	используемого лицензионного	31.06.2021	111
	программного обеспечения, современных		African I and the second
	профессиональных баз данных и		VYO.
	справочных информационных систем,		
	учебной литературы, необходимой для		
	освоения дисциплины.		
	, ,		