МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
Декан факультета информационных технологий и компьютерной безопасности
/ П.Ю. Гусев /

21 декабря 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля) «Инжиниринг блокчейн-технологий»

Направление подготовки 09.04.01 Информатика и вычислительная техника

Профиль Управление программным инжинирингом

Квалификация выпускника магистр

Нормативный период обучения <u>2 года</u>

Форма обучения Очная

Год начала подготовки 2022 г.

Автор программы

Заведующий кафедрой автоматизированных и вычислительных систем

Руководитель ОПОП

О.Я. Кравец

О.Я. Кравец

О.Я. Кравец

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Изучение теоретических основ технологии блокчейна и принципов организации современных блокчейнов, а также развитие умений и навыков использования в программном инжиниринге блокчейнов.

1.2. Задачи освоения дисциплины

- изучение основных понятий технологии блокчейна и особенностей организации облачных сервисов;
 - управление процессами создания и использования блокчейна;
- приобретение умений и навыков решения практических задач с использованием технологии блокчейна.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина (модуль) «Инжиниринг блокчейн-технологий» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИС-ЦИПЛИНЕ

Процесс изучения дисциплины «Инжиниринг блокчейн-технологий» направлен на формирование следующих компетенций:

- ПК-1 Способен осуществлять администрирование и управление информационно-коммуникационными системами и сетями
- ПК-4 Способен разрабатывать программные системы с применением современных технологий и инструментальных средств

Компетенция	Результаты обучения, характеризующие					
	сформированность компетенции					
ПК-1	знать современные методы создания блокчейна и управ-					
	ления им					
	уметь разрабатывать распределенные информационно-					
	коммуникационные системы, а также осуществлять ад-					
	министрирование и управление ими					
	владеть навыками системного администрирования для					
	разработки и сопровождения приложений, использую-					
	щих технологии блокчейна					
ПК-4	Знать алгоритмы функционирования блокчейна, методы					
	шифрования при использовании блокчейн-технологий,					
	способы достижения безопасности.					

уметь применять технологии блокчейна в различных об-
ластях
владеть методами разработки и управления алгоритми-
ческими и программными решениями при использова-
нии технологии блокчейна

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Инжиниринг блокчейн-технологий» составляет 3 зачетных единицы.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

	opma ooy ic	1111/1			
Вид учебной работы	Всего		Семес	тры	
	часов	2			
Аудиторные занятия (всего)	54	54			
В том числе:					
Лекции	18	18			
Практические занятия (ПЗ)					
Лабораторные работы (ЛР),	36	36			
в том числе в форме практической подго-					
товки (при наличии)					
Самостоятельная работа	54	54			
Курсовой проект (работа) (есть, нет)	нет	нет			
Контрольная работа (есть, нет)	нет	нет			
Вид промежуточной аттестации (зачет, за-	зачет	зачет			
чет с оценкой, экзамен)					
Общая трудоемкость час	108	108			
зач. ед	д. 3	3			

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Всего,
Π/Π				зан.	зан.		час
1	Системы искусственного интеллекта	венного интеллекта. Типовые архитектуры. Методы управления. Технологии принятия решений. Лекция №2. Современные инструментальные средства и ме-	4	зан.	8	12	24
		тоды проектирования и управ-					

2	Блокчейн-технологии	ления мультиагентными системами и системами искусственного интеллекта. Лекция №3. Основы блокчейнтехнологий. Алгоритмы функционирования. Лекция №4. Криптографический механизм блокчейнтехнологий. Способы достижения безопасности. Лекция №5. Достоинства и недостатки блокчейн-технологий Лекция №6. Проблемы блокчейн-технологий. Часть 1. Лекция №7. Проблемы блокчейн-технологий. Часть 2. Лекция №8. Криптовалюты. Виртуальные деньги. Механизмы работы. Транзакции Лекция №9. Применения блокчейн-технологий, за исключением криптовалют	14	28	42	84
		Итого	18	36	54	108

5.2 Перечень лабораторных работ

Лабораторная работа №1. Построение модели системы искусственного интеллекта при использовании одного из подходов: логического; структурного; эволюционного; имитационного (4 часа)

Лабораторная работа №2. Изучение возможностей инструментальных средств проектирования и управления МСАС (4 часа)

Лабораторная работа №3. Алгоритмы консенсуса для распределенных систем (4 часа)

Лабораторная работа №4. Методы шифрования, используемые при создании блокчейнов (4 часа)

Лабораторная работа №5. Создание базы данных по технологии блокчейна. (4 часа)

Лабораторная работа №6. Решение проблем блокчейна. (8 часов)

Лабораторная работа №7. Создание собственной криптовалюты. (4 часа)

Лабораторная работа №8. Создание проекта применения блокчейна в различных областях (согласно варианту) (4 часа)

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоения дисциплины не предусматривает выполнение курсового проекта (работы) в 2 семестре.

Учебным планом по дисциплине «Инжиниринг блокчейн-технологий» не предусмотрено выполнение контрольной работы (контрольных работ) в 2 семестре.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧ-НОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	знать современные методы создания блокчейна и управления им	Активная работа на ла- бораторных занятиях, отвечает на теоретиче- ские вопросы при защите лабораторных работ	Выполнение ра- бот в срок, преду- смотренный в ра- бочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь разрабатывать распределенные информационно-коммуникационные системы, а также осуществлять администрирование и управление ими	Решение стандартных практических задач, написание курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками системного администрирования для разработки и сопровождения приложений, использующих технологии блокчейна	Решение прикладных задач в конкретной предметной области, выполнение плана работ по разработке курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-4	Знать алгоритмы функционирования блокчейна, методы шифрования при использовании блокчейнтехнологий, способы достижения безопасности.	Активная работа на лабораторных занятиях, отвечает на теоретические вопросы при защите лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь применять технологии блокчейна в различных областях	Решение стандартных практических задач, написание курсового проекта	Выполнение ра- бот в срок, преду- смотренный в рабочих програм- мах	Невыполнение работ в срок, предусмотренный в рабочих программах

владеть методами	Решение прикладных	Выполнение ра-	Невыполнение
разработки и	задач в конкретной	бот в срок, преду-	работ в срок, пре-
управления алго-	предметной области,	смотренный в	дусмотренный в
	выполнение плана ра-	рабочих програм-	рабочих про-
ритмическими и	бот по разработке кур-	мах	граммах
программными ре-	сового проекта		
шениями при ис-			
пользовании техно-			
логии блокчейна			

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 2 семестре для очной формы обучения по системе:

«зачтено»;

«не зачтено».

Компетенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ПК-1	знать современные методы создания блокчейна и управления им	Тест	Выполнение теста на 70-100%	В тесте менее 70% правильных ответов
	уметь разрабатывать распределенные информационнокоммуникационные системы, а также осуществлять администрирование и управление ими	Тест	Выполнение теста на 70-100%	В тесте менее 70% правильных ответов
	владеть навыками системного админи- стрирования для раз- работки и сопровож- дения приложений, использующих техно- логии блокчейна	Тест	Выполнение теста на 70-100%	В тесте менее 70% правильных ответов
ПК-4	Знать алгоритмы функционирования блокчейна, методы шифрования при использовании блокчейн-технологий, способы достижения безопасности.	Тест	Выполнение теста на 70-100%	В тесте менее 70% правильных ответов
	уметь применять технологии блокчейна в различных областях	Тест	Выполнение теста на 70-100%	В тесте менее 70% правильных ответов
	владеть методами разработки и управ-ления алгоритмическими и программ-	Тест	Выполнение теста на 70-100%	В тесте менее 70% правильных ответов

ными решениями при		
использовании техно-		
логии блокчейна		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Существует три типа блокчейна. Один из приведенных является ошибочным.
 - А. публичный блокчейн
 - Б. блокчейн консорциумов
 - В. частный блокчейн
 - Г. лицензируемый блокчейн
- 2. Не является основным фактором для роста блокчейн
 - А. широкое распространение мобильных и банковских технологий
 - Б. проникновение Интернета
 - В. высокий уровень образования и информированности, дружелюбная юридическая среда
 - Г. развитая экономика
- 3. Дополните

..... это реализация защищённого от несанкционированного доступа распределённого электронного реестра общего пользования.

Блокчейн

- 4. Дополните
- это наука об обеспечении секретности и/или аутентичности (подлинности) передаваемых сообщений.

Криптография

- 5. Дополните
- система направление искусственного интеллекта, которое для решения сложной задачи или проблемы использует системы, состоящие из множества взаимодействующих агентов.

Мультиагентная

- 6. Защита информации достигается путем использования следующих элементов в системе хранения, обработки и обмена информацией. Один из пунктов является ошибочным. Какой?
 - А. Криптографические ключи
 - Б. Ссылочная целостность
 - В. Аутентификация
 - Г. Шифрование данных
 - Д. Конфиденциальность
- 7. Блокчейн это распределенная
 - А. децентрализованная защищенная шифром база данных
 - Б. централизованная защищенная шифром база данных
- 8. Набор определенных математических правил и функций, которые позволяют достичь соглашения между всеми участниками и обеспечить работоспособность сети

- А. алгоритм консенсуса
- Б. механизм шифрования
- В. является инструментом для формальной верификации контрактов
- 9. Что такое экспертная система (выберите все возможные определения)?
 - А. Прикладная диалоговая система, основанная на знаниях
 - Б. Прикладная вычислительная система
 - В. Система управления базами данных
 - Г. Система, основанная на знаниях
- 10. Что такое база знаний?
 - А. Формализованные знания о предметной области и о том, как решать задачу
 - Б. Формализованные данные о предметной области
 - В. База данных о предметной области
 - Г. Словарь предметной области

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Какой метод представления знаний наиболее распространен в экспертных системах?
 - А. Фреймы
 - Б. Семантические сети
 - В. Правила-продукции
 - Г. Лингвистические переменные
 - Д. Таблицы решений
- 2. Чем принципиально отличается функционирование нейронной сети как механизма хранения знаний от других методов представления (хранения) знаний, рассматриваемых в инженерии знаний?
 - А. Наличием параллелизма обработки знаний
 - Б. Тем, что знания не надо формализовать (описывать) при их запоминании
 - В. Тем, что хранимые знания трудно визуализировать
 - Г. Тем, что знания представляются на входе сети в виде чисел
- 3. Какой главный недостаток нейронных сетей?
 - А. Отсутствие логики в работе
 - Б. Отсутствие четкого алгоритма принятия решений
 - В. Отсутствие возможности объяснить принятие решений сетью
 - Г. Неоднозначность в принятии решений сетью
- 4. Какое главное достоинство применения нейронных сетей?
 - А. Не надо формализовывать процедуры принятия решений сетью
 - Б. Можно распараллелить процесс функционирования сети
 - В. Можно обрабатывать сигналы нейронной сетью
 - Г. Возможность решения задач в условиях помех
- 5. Почему функционирование нейронной сети является решением задачи оптимизации? Потому что в процессе функционирования сети:
 - А. минимизируется энергетическая функция
 - Б. минимизируюется количество активных нейронов
 - В. максимизируется вероятность правильного ответа сети
- 6. С помощью системы блокчейн может быть передана

- А. криптовалюта
- Б. информация
- В. интеллектуальная собственность
- Г. любой ресурс или права
- 7. Процесс поиска блоков в блокчейн-технологиях называется
 - A. майнингом (mining)
 - Б. финдингом (finding)
 - B. форжингом (forging)
- 8. Область применения искусственного интеллекта это решение:
 - А. сложных задач;
 - Б. слабоформализуемых задач;
 - В. формализуемых задач;
 - Г. многостадийных задач
- 9. Главной задачей криптографии является
 - А. защита данных от изменения и несанкционированного доступа
 - Б. сокрытие информации
 - В. сохранение подлинности
- 10. Достигается за счет использования специальных алгоритмов и методов шифрования, взаимной аутентификации абонентов, цифровых сертификатов и полписей
 - А. конфиденциальность
 - Б. целостность данных
 - В. подлинность данных

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Можно ли назвать экспертной систему без средств объяснений?
 - А. Да
 - Б. Нет
- 2. Можно ли назвать экспертной системой программу бухгалтерского учета (типа "1СБухгалтерия" или "БЭСТ")?
 - А. Да
 - Б Нет
- 3. Можно ли назвать экспертной системой программу диагностики сердечно-сосудистых заболеваний по результатам обследования больного?
 - А. Да
 - Б. Нет
- 4. Чем отличаются знания от данных?
 - А. Большей структурированностью
 - Б. Большей самоинтерпретируемостью
 - В. Большей непонятностью
 - Г. Большей применяемостью
 - Д. Большей связностью
 - Е. Субъективностью

- 5. Что из перечисленного можно назвать прикладной системой искусственного интеллекта?
 - А. экспертная диагностическая система
 - Б. система машинного перевода
 - В. система программирования на JAVA
 - Г. система RAD-программирования
 - Д. OCR-система
 - Е. система учета товаров на складе
 - Ж. графический редактор
 - 3. система расчета зарплаты

И. программа обнаружения на аэрофотоснимке искусственных объектов

- 6. Как называется свойство интеллектуальных систем, которое позволяет менять свое поведение в зависимости от внешних условий функционирования:
 - А. обучение
 - Б. самообучение
 - В. адаптация
 - Г. эволюция
- 7. Имеются следующие факты:

Тигр – полосатое плотоядное млекопитающее

Лев – неполосатое плотоядное млекопитающее

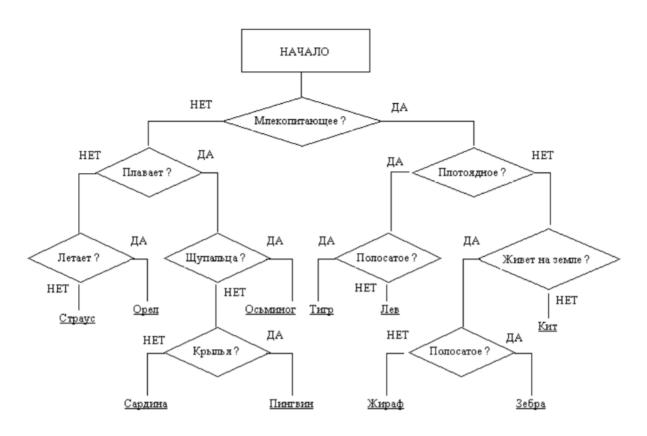
Жираф – полосатое неплотоядное млекопитающее, живущее на земле

Зебра - полосатое неплотоядное млекопитающее, живущее на земле

Кит - неплотоядное млекопитающее, не живущее на земле

Страус – не является млекопитающим, не плавает, не летает

Орел - не является млекопитающим, не плавает, летает


Осьминог - не является млекопитающим, плавает, имеет щупальца

Пингвин - не является млекопитающим, плавает, имеет крылья

Сардина - не является млекопитающим, плавает, не имеет крыльев

Сформировать по ним прямую цепочку для базы знаний интеллектуальной системы, позволяющей по фактам определить представителя животного мира.

Правильный ответ:

- 8. Рассматривается интеллектуальная система, позволяющая диагностировать те или иные неисправности в автомобиле. В ее базе знаний есть следующие правила:
- 1) Если двигатель не «заводится», то «автомобиль сломан»
- 2) Если «автомобиль сломан» И нет «Искра», То Не «исправна система зажигания»
- 3) Если Не «исправна система зажигания» И «функционирует цепь низкого напряжения», То Не «исправна катушка зажигания»
- 4) Если «автомобиль сломан» И «Искра», То Не «исправна система питания»
- 5) Если Не «исправна система питания» И Нет «бензин в баке», То «заправиться бензином»
- 6) Если Не «исправна система питания» И «бензин в баке» И Не «поступает в карбюратор бензин», То «Неполадки в бензонасосе»
- 7) Если Не «исправна система питания» И «бензин в баке» И «поступает в карбюратор бензин», То «Неполадки в карбюраторе»

Первичный осмотр дал следующие факты:

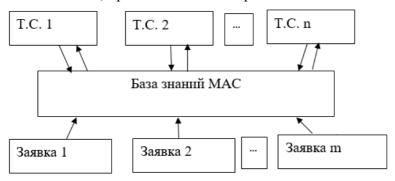
- 1) Двигатель Не «заводится»
- 2) «Искра»
- 3) «Бензин в баке»
- 4) «Поступает в карбюратор бензин»

С учетом имеющихся фактов и правил в базе знаний, определить возможную неисправность.

Правильный ответ: Неполадки в карбюраторе

- 9. Имеются следующие правила:
 - 1) Если двигатель не «заводится», то «автомобиль сломан»
 - 2) Если «автомобиль сломан» И нет «Искра», То Не «исправна система зажигания»
 - 3) Если Не «исправна система зажигания» И «функционирует цепь низкого напряжения», То Не «исправна катушка зажигания»
 - 4) Если «автомобиль сломан» И «Искра», То Не «исправна система питания»

- 5) Если Не «исправна система питания» И Нет «бензин в баке», То «заправиться бензином»
- 6) Если Не «исправна система питания» И «бензин в баке» И Не «поступает в карбюратор бензин», То «Неполадки в бензонасосе»
- 7) Если Не «исправна система питания» И «бензин в баке» И «поступает в карбюратор бензин», То «Неполадки в карбюраторе»


Первичный осмотр дал следующие факты:

- 1) Двигатель Не «заводится»
- 2) Нет «Искра»
- 3) «функционирует сеть низкого напряжения»

С учетом имеющихся фактов и правил в базе знаний, определить возможную неисправность.

Правильный ответ: Не «исправна катушка зажигания»

10. Мультиагентная система для логистической компании грузоперевозок имеет вид, представленный на рис.

Агенты-транспортное средство (на рис. Т.С.) характеризуются:

- грузоподъемностью;
- текущим положением;
- занятостью (в данный момент).

Система функционирует следующим образом. Заявка ищет ближайшее транспортное средство (Т.С.) и, если оно в данный момент может ее обслужить (с точки зрения свободности и грузоподъемности), то заявка предлагает данному Т.С. заказ. Если Т.С. в данный момент может выполнить данный заказ, то происходит его оформление и заявка переходит в пассивное состояние (и покидает МАС), если нет - заявка ищет следующее по близости Т.С.

Характеристики заявки:

- территориальное положение;
- объем, необходимый для перевозки;
- активна (если договор с Т.С. не заключен) и пассивна в противном случае.

Вспомогательные характеристики:

- множество транспортных средств M, среди которых заявка ищет себе возможность обслуживания (изначально оно составляет все Т.С.)

Методы заявки

Ближайшее Т.С. (агент k, M)

Ищет ближайшее Т.С. из множества М с точки зрения расстояний от территориального положения заявки до текущих кооридант Т.С. На выходе - номер Т.С. k Возможность обслуживания (k)

true, если Т.С. может обслужить заявку, и false в противном случае Определение ТС для заказа

Заключение заказа (агент k)

Зафиксировать заказ с T.C. k, перевести его в состояние занят и перевести заявку в состояние «пассивна»

Написать алгоритм метода Определение TC для заказа(), используя методы Ближайшее TC(k) и возможность обслуживания(k) и заключение

ОДИН из вариантов правильного ответа

```
Poisk = true

<u>Пока</u> poisk

<u>Начало цикла</u>
```

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Системы искусственного интеллекта
- 2. Подходы к построению систем ИИ
- 3. Типовые архитектуры систем ИИ.
- 4. Методы управления и технологии принятия решений
- 5. Искусственный интеллект
- 6. Мультиагентные системы
- 7. Методы проектирования и управления МАС
- 8. Инструментальные средства проектирования и управления МАС
- 9. Публичный блокчейн, блокчейн консорциумов и частный блокчейн
- 10. Особенность блокчейна
- 11. Алгоритмы консенсуса для распределенных систем
- 12. Механизмы шифрования (криптографии).
- 13. Криптография основа блокчейн-технологии
- 14. Процесс защиты информации внутри сети блокчейн.
- 15. Использование криптографического ключа в сети блокчейн
- 16. Пример применения технологии блокчейн.
- 17. Достоинства блокчейн-технологий.
- 18. Децентрализация блокчейн-технологии в криптовалюте.
- 19. Сохранность и прозрачность данных в блокчейн.

- 20. Недостатки блокчейн-технологии. Проблема консенсуса. Проблема консенсуса. Блокчейн как база данных с особыми свойствами.
- 21. Недостатки блокчейн-технологии. Анонимность и бесплатность блокчейна. Проблема доверия.
- 22. Проблемы блокчейн-технологии Ограниченная масштабируемость Ограниченная конфиденциальность. Отсутствие формальной верификации смарт-контрактов Ненадёжность механизмов достижения консенсуса
 - 23. Виртуальные деньги
 - 24. Криптовалюта
 - 25. Классификация криптовалют.
 - 26. Преимущества и недостатки использования криптовалют
- 27. Применение блокчейн-технологии (без криптовалюты) (в здравоохранении, в образовании, в здравоохранении)
- 28. Применение блокчейн-технологии (без криптовалюты) (в логистике, в реализации товаров, работ, услуг, в банковской сфере)

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Учебным планом не предусмотрено

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по билетам, включающим по два вопроса. Допуском к зачету является выполнение всех лабораторных работ и положительное текущее тестирование.

Зачет ставится, если студент выполнил все лабораторные работы, прошел тестирование по темам теоретического материала и ответил на один или два вопроса.

Зачет не ставится, если студент не выполнил лабораторные работы и не ответил ни на один вопрос на зачете.

7.2.7 Паспорт оценочных материалов

$N_{\underline{0}}$	Контролируемые разде-	Код контролируемой	Наименование оце-
п/п	лы (темы) дисциплины	компетенции (или ее	ночного средства
		части)	
1	Системы искусственного ин-	ПК-1, ПК-4	Тест, зачет, устный оп-
	теллекта		рос, защита лаборатор-
			ных работ
2	Блокчейн-технологии	ПК-1, ПК-4	Тест, зачет, устный оп-
			рос, защита лаборатор-
			ных работ

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Братченко Н.Ю. Распределенные базы данных: лабораторный практикум / Братченко Н.Ю.. Ставрополь : Северо-Кавказский федеральный университет, 2014. 180 с. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/63129.html
- 2. Букатов А.А. Методы и средства интеграции независимых баз данных в распределенных телекоммуникационных сетях : монография / Букатов А.А., Пыхалов А.В.. Ростов-на-Дону : Издательство Южного федерального университета, 2013. 160 с. ISBN 978-5-9275-1189-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/47007.html
- 3. Волкова Т.В. Разработка систем распределенной обработки данных: учебно-методическое пособие / Волкова Т.В., Насейкина Л.Ф.. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2012. 330 с. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/30127.html
- 4. Косяков М.С. Введение в распределенные вычисления / Косяков М.С. Санкт-Петербург: Университет ИТМО, 2014. 155 с. Текст: электрон-

- ный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/65816.html
- 5. Сергеева Т.И., Сергеев М.Ю. Распределенная обработка данных: учеб. пособие. Воронеж, ВГТУ, 2014
- 6. Сергеева Т.И., Сергеев М.Ю. Проектирование распределенных информационных систем: учебное пособие. Воронеж, ВГТУ, 2017
- 7. Вишневская Т.И. Практикум по разработке распределенных систем обработки информации: учебно-методическое пособие / Вишневская Т.И., Романова Т.Н.. Москва: Московский государственный технический университет имени Н.Э. Баумана, 2020. 68 с. ISBN 978-5-7038-5243-9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/111269.html
- 8. Назаркин О.А. Современные технологии разработки распределенных вычислительных систем: учебное пособие / Назаркин О.А., Алексеев В.А.. Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2017. 66 с. ISBN 978-5-88247-840-6. Текст : электронный // Электроннобиблиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/83172.html
- 9. Организация самостоятельной работы обучающихся: методические указания для студентов, осваивающих основные образовательные программы высшего образования бакалавриата, специалитета, магистратуры: методические указания / сост. В.Н. Почечихина, И.Н. Крючкова, Е.И. Головина, В.Р. Демидов; ФГБОУ ВО «Воронежский государственный технический университет». Воронеж, 2020. 14 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Липензионное ПО:

- Windows Professional 7 Single Upgrade MVL A Each Academic
- Microsoft Office Word 2007
- Microsoft Office Power Point 2007

Свободно распространяемое ПО:

- Microsoft Visual Studio Community Edition
- Microsoft SQL Server Express
- Microsoft SQL Server Managment Studio
- СУБД MS SQL Server 2012

Отечественное ПО:

- Яндекс.Браузер
- Архиватор 7z
- Astra Linux

Ресурс информационно-телекоммуникационной сети «Интернет»:

- Образовательный портал ВГТУ
- http://www.edu.ru/
- https://metanit.com/

Информационно-справочные системы:

- http://window.edu.ru
- https://wiki.cchgeu.ru/

Современные профессиональные базы данных:

- https://proglib.io
- https://msdn.microsoft.com/ru-ru/
- https://docs.microsoft.com/

Информационные технологии, используемые при осуществлении образовательного процесса по дисциплине:

- лекции с применением мультимедийных средств;
- обучение прикладным информационным технологиям, ориентированным на специальность, в рамках лабораторных работ с применением лицензионного программного обеспечения.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.

Для проведения лабораторных работ необходима лаборатория с ПК, оснащенными программами для проведения лабораторного практикума и обеспечивающими возможность доступа к локальной сети кафедры и Интернет, из следующего перечня:

- 311 (Лаборатория разработки программных систем)
- 320 (Лаборатория общего назначения)
- 322 (Лаборатория распределённых вычислений)
- 324 (Специализированная лаборатория сетевых систем управления (научно-образовательный центр «АТОС»))
- 325 (Лаборатория автоматизации проектирования вычислительных комплексов и сетей)

Лаборатории расположены по адресу: 394066, г. Воронеж, Московский проспект, 179 (учебный корпус №3).

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Инжиниринг блокчейн-технологий» читаются лекции, проводятся лабораторные занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию обо всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины производится проверкой и защитой лабораторных работ. Освоение дисциплины оценивается на зачете.

	_
Вид учебных	Деятельность студента
занятий	(особенности деятельности студента инвалида и лица с ОВЗ,
	при наличии таких обучающихся)
Лекция	Написание конспекта лекций: кратко, схематично, последова-
	тельно фиксировать основные положения, выводы, формули-
	ровки, обобщения; помечать важные мысли, выделять ключе-
	вые слова, термины. Проверка терминов, понятий с помощью
	энциклопедий, словарей, справочников с выписыванием тол-
	кований в тетрадь. Обозначение вопросов, терминов, материа-
	ла, которые вызывают трудности, поиск ответов в рекомен-
	дуемой литературе. Если самостоятельно не удается разо-
	браться в материале, необходимо сформулировать вопрос и за-
	дать преподавателю на лекции или на практическом занятии.
Лабораторные	Лабораторные работы позволяют научиться применять теоре-
занятия	тические знания, полученные на лекции при решении конкрет-
	ных задач. Чтобы наиболее рационально и полно использовать
	все возможности лабораторных занятий для подготовки к ним
	необходимо: разобрать лекцию по соответствующей теме, оз-
	накомится с соответствующим разделом учебного пособия,
	проработать дополнительную литературу и источники, изучить
	методическое обеспечение лабораторной работы.
Самостоятель-	Самостоятельная работа студентов способствует глубокому
ная работа	усвоения учебного материала и развитию навыков самообразо-
	вания. Самостоятельная работа предполагает следующие со-
	ставляющие:
	- работа с текстами: учебниками, справочниками, дополни-
	тельной литературой, а также проработка конспектов лекций;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олим-
	пиад;
	- подготовка к лабораторным занятиям;
	- оформление отчетов по лабораторным работам;
	- подготовка к промежуточной аттестации.
Подготовка	При подготовке к зачету необходимо ориентироваться на кон-
к зачету	спекты лекций, рекомендуемую литературу и решение инди-
	видуальных заданий на лабораторных занятиях.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата вне- сения из- менений	Подпись заведующе- го кафедрой, ответ- ственной за реализа- цию ОПОП