МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

> УТВЕРЖДАЮ Декан факультета энерретики и систем управления Бурковский А.В. 202 юбстем RNHORBAGIN

РАБОЧАЯ ПРОГРАММА

дисциплины

«Основы конструирования электрических машин»

Направление подготовки 13.03.02 Электроэнергетика и электротехника

Профиль Электромеханика

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2021

Автор программы

/к.т.н., доцент Писаревский А.Ю./

И.о. заведующего кафедрой Электромеханических систем и электроснабжения

_ / к.т.н., доцент Шелякин В.П./

Руководитель ОПОП

/ к.т.н., доцент Тикунов А.В./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Формирование области знаний В конструирования электромеханических преобразователей на основе современных требований к эксплуатационным и технологическим характеристикам изделия, на основе современных технологических возможностей производства с применением высокоэффективных конструкционных активных материалов И комплектующих изделий, использования компьютерных технологий И средств автоматизированного проектирования.

1.2. Задачи освоения дисциплины

Получение навыков выбора эффективных технических решений методологически грамотного осмысления проблем конструирования новой техники с применением компьютерных технологий;

Способствовать формированию творческого мировоззрения в области электромеханики;

Способствовать формированию умений и навыков конструирования электромеханических преобразователей на уровне лучших мировых аналогов

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Основы конструирования электрических машин» относится к дисциплинам части, формируемой участниками образовательных отношений (дисциплина по выбору) блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Основы конструирования электрических машин» направлен на формирование следующих компетенций:

ПК-1 - Способен выполнять научно-исследовательские и опытно-конструкторские разработки по отдельным разделам темы

Компетенция	Результаты обучения, характеризующие сформированность компетенции	
ПК-1	Знать	
	-нормативы и требования к конструкторской	
	документации;	
	 тенденции и перспективы развития 	
	материаловедения и технологии производства	
	электромеханических преобразователей;	
	 – способа разработки конструкторской 	
	документации, отвечающей современным	
	требованиям электротехнического производства	
	Уметь	
	 разрабатывать чертежи и другие конструкторские 	
	документы, обеспечивающие безусловное	

выполнение требований поставленных задач,
конкурентоспособность, технологичность и
патентную чистоту сконструированных изделий
– квалифицированно использовать вариантные
подходы к решению поставленных задач, на
основании их сравнения выбирать оптимальное
решение;
Владеть
-современными приемами и средствами
компьютерного конструирования электрических
Маниин обеспечения требуемого уровня точности

-современными приемами и средствами компьютерного конструирования электрических машин, обеспечения требуемого уровня точности, надежности, устойчивости к внешним неблагоприятным воздействиям;

— оформлением и графическим представлением результатов проделанной работы.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Основы конструирования электрических машин» составляет 4 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Виды учебной работы	Всего	Семестры
Виды учеоной расоты	часов	6
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	36	36
Самостоятельная работа	72	72
Виды промежуточной аттестации - зачет с оценкой	+	+
Общая трудоемкость:		
академические часы	144	144
зач.ед.	4	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	o man dopina ooy remin							
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час		
1	Принципы и методика конструирования	Принципы конструирования; Методика конструирования.	4	4	8	16		
2	Механические показатели совершенства конструкции машины	Масса и компактность конструкции; Жёсткость и прочность конструкции	4	4	8	16		
3	Конструирование деталей и сборочных единиц	Правила конструирования. Типовые конструктивные решения. Конструирование	4	4	8	16		

		литых и механически обрабатываемых деталей				
4	Уплотнения	Уплотнение подвижных соединений; Уплотнение неподвижных соединений	4	4	8	16
5	Сборка	Условия качественной сборки; Осевая и радиальная сборка		4	8	16
6	Разборные и неразборные соединения, удобство обслуживания	Разборные соединения; Неразборные соединения; Обеспечение удобной сборки и регулирования щёточно – коллекторных узлов машин постоянного тока; Обеспечение удобной сборки и регулирования датчиков положения ротора.	8	8	8	24
7	Подшипники	Опоры скольжения; Опоры качения.	4	4	8	16
8	Магнитопроводы электрических машин	Магнитопроводы	2	2	8	12
9	Обмотки электрических машин	Обмотки электрических машин	2	2	8	12
		Итого	36	36	72	144

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	-нормативы и требования к конструкторской документации; - тенденции и перспективы развития материаловедения и технологии производства электромеханических преобразователей; - способа разработки конструкторской документации, отвечающей современным требованиям электротехнического производства		Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	 разрабатывать чертежи и другие конструкторские документы, обеспечивающие безусловное выполнение требований поставленных задач, конкурентоспособность, 	Решение стандартных практических задач,	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

технологичность и патентную чистоту сконструированных изделий — квалифицированно использовать вариантные подходы к решению поставленных задач, на основании их сравнения выбирать оптимальное решение; —современными приемами и средствами компьютерного конструирования электрических машин, обеспечения требуемого уровня точности, надежности, устойчивости к внешним неблагоприятным воздействиям; — оформлением и графическим представлением результатов проделанной работы.		Выполнение работ в срок, предусмотренный в рабочих программах	работ в срок,
--	--	---	---------------

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-1	–нормативы и	Тест	Выполнение	Выполнение	Выполнение	В тесте
	требования к		теста на 90-	теста на 80-	теста на 70-	менее 70%
	конструкторской		100%	90%	80%	правильных
	документации;					ответов
	– тенденции и					
	перспективы развития					
	материаловедения и					
	технологии					
	производства					
	электромеханических					
	преобразователей;					
	 способа разработки 					
	конструкторской					
	документации,					
	отвечающей					
	современным					
	требованиям					
	электротехнического					
	производства					
	– разрабатывать	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	чертежи и другие	стандартных	решены в	ирован	ирован верный	решены
	конструкторские	практических	полном	верный ход	ход решения в	
	документы,	задач	объеме и	решения	большинстве	
	обеспечивающие		получены	всех, но не	задач	
	безусловное		верные	получен		
	выполнение требований		ответы	верный ответ		
	поставленных задач,			во всех		
	конкурентоспособность,			задачах		

компьютерного конструирования электрических машин, обеспечения требуемого уровня точности, надежности, устойчивости к внешним неблагоприятным воздействиям; — оформлением и	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
графическим представлением результатов проделанной работы.					

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. называют соединения, которые невозможно разобрать без разрушения или повреждения деталей.
- 2. называют соединения, которые можно разбирать и вновь собирать без повреждения деталей.
 - 3. К неразъёмным соединениям относятся:
 - а) Сварные и паянные.
 - б) Шпоночные.
 - в) Шлицевые.
 - г) Резьбовые.
 - 4. К разъёмным соединениям относятся:
 - а) Заклёпочные.
 - б) Посадка с натягом.
 - в) Клеевые.
 - г) Шпоночные
- 5. соединения образуются постановкой металлических стержней в специально просверленные или пробитые отверстия в соединяемых деталях.
 - 6. К первой группе резьбовых соединений не относятся:
 - а) Соединения на болтах.
 - б) Соединения на винтах.

- в) Соединения на шпильках.
- г) Соединения на шурупах.
- 7. Под действием осевой силы в стержне болта возникает напряжение:
 - а) Изгиба
 - б) Сжатия.
 - в) Растяжения.
 - г) Среза.
- 8 Под действием осевой силы в головке болта возникает напряжение:
 - а) Смятия.
 - б) Растяжения.
 - в) Среза.
 - г) Изгиба.
- 9 Под действием осевой силы в резьбе гаки и стержня болта не возникает напряжение:
 - а) Растяжения.
 - б) Изгиба.
 - в) Смятия.
 - г) Среза.
- 10. Укажите на рисунке схему шарикового радиального однорядного шарикового подшипника:

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Определите коэффициент мощности $\cos \varphi_{_H}$ трехфазного асинхронного двигателя, имеющего следующие данные: $P_{_H} = 40\,$ кВт, $U_{_H} = 220/380\,$ В, $I_{_H} = 135/77,5\,$ А, $\eta_{_H} = 0.89.$ Укажите правильный ответ:
 - a) $\cos \varphi_{H} = 0.5$;
 - 6) $\cos \varphi_{H} = 0.68$;
 - B) $\cos \varphi_{H} = 0.78$;
 - Γ) $\cos \varphi_{H} = 0.90$.
- 2. Определить сопротивление пускового реостата, которое нужно включить в каждую фазу асинхронного двигателя с фазным ротором, чтобы получить максимальный пусковой момент если активное сопротивление фазовой обмотки ротора равно $r_2=0{,}0256\,$ Ом, а критическое скольжение $S_m=0{,}22$. Укажите правильный ответ:
 - a) $r_0 = 0.09 \,\text{Om};$

- б) $r_0 = 0,1156 \,\mathrm{Om};$
- B) $r_0 = 0.0312 \,\mathrm{Om}$;
- Γ) $r_{o} = 0.1412 \,\text{Om}$;
- 3. Трехфазный асинхронный двигатель с фазным ротором работая при $U_I=380~\mathrm{B},~f_I=50~\mathrm{\Gamma L}$, развивает на валу полезный момент $M_2=141~\mathrm{H\cdot M},$ вращаясь с частотой $n=250~\mathrm{of/muh}$ и потребляя из сети ток $I_I=31~\mathrm{A}$ при $\cos\varphi=0.82$. Определить полезную мощность P_2 , потребляемую мощность P_I , к.п.д. η и скольжение. Укажите неправильный ответ
 - a) $P_2 = 14,75 \text{ kBT}$;
 - 6) s = 2.5 %;
 - в) $P_1 = 16,75$ кВт;
 - Γ) $\eta = 0.88$ o.e.
- 4. Трехфазный асинхронный шестиполюсный двигатель работая при $U_I = 380$ В, $f_I = 50$ Гц развивает на валу полезный момент $M_2 = 700$ Н·м, вращаясь со скольжением s = 2 % и потребляя из сети ток $I_I = 140$ А и мощность $P_I = 81$ кВт. Определить частоту вращения ротора n, коэффициент мощности $cos \varphi$, полезную мощность P_2 и к.п.д. η . Укажите неправильный ответ:
 - a) n = 980 об/мин;
 - б) $\cos \varphi = 0.88$ o.e.;
 - в) $P_2 = 90$ кВт;
 - Γ) $\eta = 0.905$ o.e.
- 5. Асинхронный двигатель с фазным ротором с включенными в цепь ротора добавочными сопротивлениями вращается с частотой n=750 об/мин и потребляет из сети $P_1=55$ кВт. Определить электромагнитную мощность $P_{\scriptscriptstyle 3M}$, полезную мощность P_2 , потери в цепи ротора $P_{\scriptscriptstyle 3n2}$ (в обмотке и реостате) и электромагнитный момент M, если потери в обмотке и сердечнике статора $P_{\scriptscriptstyle 3n1}+P_c=5$ кВт. Потерями в сердечнике ротора, механическими и добавочными пренебрегаем. Частота вращения магнитного поля $n_1=1500$ об/мин. Укажите неправильный ответ.
 - a) $P_{_{9M}} = 50 \text{ kBT};$
 - б) $P_2 = 25 \text{ кВт};$
 - в) M = 159 Н·м;
 - г) $P_{9n2} = 25$ кВт.
- 6. Определить номинальный ток в фазе обмотки статора асинхронного двигателя, имеющего следующие паспортные данные: $P_{\scriptscriptstyle H}=20~{\rm kBt}$; $U_{\scriptscriptstyle H}=220/380~{\rm B}$; $\eta_{\scriptscriptstyle H}=0.86~{\rm o.e.}$; $cos \varphi_{\scriptscriptstyle H}=0.84$. Укажите правильный ответ:
 - a) 36 A;
 - б) 42 А;
 - в) 24,3 А;
 - г) 30,3 А.
 - 7. На сколько процентов уменьшатся пусковой ток ротора I_2 ,

максимальный момент M_m , критическое скольжение S_m и пусковой момент M_n , если напряжение, подводимое к обмотке статора асинхронного двигателя, уменьшится на 20 %? Укажите неправильный ответ:

- а) M_n на 30 %;
- б) M_m на 36 %;
- в) S_m не уменьшится;
- г) I_2 на 36 %.
- 8. Для трехфазного асинхронного двигателя, работающего от сети с частотой $f_1 = 50$ Гц при частоте вращения ротора n = 2850 об/мин необходимо определить следующие величины: скольжение S, число пар полюсов p, частоту тока в обмотке ротора f_2 , частоту вращения поля ротора относительно ротора n_2 . Укажите неправильный ответ:
 - a) S = 0.02;
 - б) p = 1;
 - в) $f_2 = 2.5 \Gamma$ ц;
 - Γ) $n_2 = 150$ об/мин.
- 9. Трехфазный асинхронный четырехполюсный двигатель работая при $U_I=380~{\rm B}$ и $f_I=50~{\rm \Gamma L}$ развивает на валу полезный момент $M_2=260~{\rm H\cdot M}$, вращаясь со скольжением s=2~% и потребляя из сети ток $I_I=74~{\rm A}$ и мощность $P_I=45~{\rm kBt}$. Определить частоту вращения ротора n, коэффициент мощности $cos \varphi$, полезную мощность P_2 и к.п.д. η . Укажите неправильный ответ:
 - a) n = 1470 об/мин;
 - б) $\cos \varphi = 0.925$ o.e.;
 - B) $\eta = 0.91$ o.e.;
 - г) P_2 = 36,4 кВт.
- 10. Э.д.с., индуктируемая в обмотке ротора неподвижного четырехполюсного асинхронного двигателя с фазным ротором равна $E_2 = 90$ В. Каково будет значение этой э.д.с., если ротор вращается с частотой $n^a = 1455$ об/мин и $n^6 = 1460$ об/мин? Укажите правильный ответ:
 - a) $E_2^a = 88 \text{ B}, \quad E_2^{\delta} = -88 \text{ B};$
 - 6) $E_2^a = 2.7 \text{ B}, \quad E_2^6 = 177 \text{ B};$
 - B) $E_2^a = 5.4$ B, $E_2^6 = 88.5$ B;
 - r) $E_2^a = 2.7 \text{ B}, \quad E_2^{\delta} = 183 \text{ B}.$

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет следующие параметры: основной магнитный поток $\Phi = 0.028$ Вб; число последователь соединенных витков в обмотке статора $w_I = 18$; номинальное скольжение $s_{HOM} = 0.04$; обмоточный коэффициент $k_{OOI} = 0.95$; количество полюсов 2p = 4. Требуется определить: ЭДС обмотки статора $E_{I\phi}$, В; ЭДС обмотки неподвижного ротора E_2 , В; ЭДС обмотки ротора при номинальной частоте вращения E_{2s} , В; частоту ЭДС ротора при номинальном

скольжении f_2 , Γ ц; номинальную частоту вращения ротора $n_{\text{ном}}$, об/мин. Укажите правильный ответ:

- а) $E_{1d} = 90$ B; $E_2 = 4$ B; $E_{2s} = 0.20$ B; $f_2 = 6$ Гц; $n_{HOM} = 1400$ об/мин;
- б) $E_{1d} = 106 \text{ B}$; $E_2 = 3 \text{ B}$; $E_{2s} = 0.12 \text{ B}$; $f_2 = 2 \text{ Гц}$; $n_{HOM} = 1440 \text{ об/мин}$;
- в) $E_{1\phi} = 100$ B; $E_2 = 5$ B; $E_{2s} = 0.10$ B; $f_2 = 3.5$ Гц; $n_{HOM} = 1450$ об/мин;
- г) $E_{1\phi}=108~{\rm B};~E_2=3~{\rm B};~E_{2s}=0$,11 B; $f_2=2$,5 Гц; $n_{_{HOM}}=1340~{\rm of/}$ мин.
- 2. Трехфазный асинхронный двигатель с фазным ротором имеет следующие параметры: максимальное значение магнитной индукции в воздушном зазоре $B_{\delta}=1,5$ Тл; диаметр расточки статора $D_I=180$ мм; длина сердечника статора $l_I=141$ мм; число полюсов в обмотках статора и ротора 2p=4; число последовательно соединенных витков в фазной обмотке статора $w_I=48$ и ротора $w_2=8$; обмоточный коэффициент для основной гармоники статора $k_{o\delta I}=0,93$ и ротора $k_{o\delta 2}=k_{o\delta I}=0,93$; номинальное скольжение $s_H=8$ %. Требуется определить: полюсное деление τ , мм; основной магнитный поток Φ , Вб; ЭДС фазной обмотки статора E_I , В; ЭДС в обмотке неподвижного ротора E_2 , В; ЭДС во вращающемся роторе при скольжении s, E_{2s} , В; частота тока в неподвижном роторе f_2 , Γ ц; частота тока во вращающемся роторе при скольжении s, E_{2s} , E_{2
 - а) $\tau = 144$ мм; $\Phi = 0.025$ Вб; $E_1 = 180$ В; $E_2 = 29$ В; $E_{2s} = 2.0$ В $f_2 = 50$ Гц; $f_{2s} = 4.5$ Гц.
 - б) τ = 139 мм; Φ = 0,021 Вб; E_1 = 185 В; E_2 = 34 В; E_{2s} = 2,5 В f_2 = 50 Гц; f_{2s} = 3,5 Гц.
 - в) $\tau = 142$ мм; $\Phi = 0.022$ Вб; $E_1 = 182$ В; $E_2 = 32$ В; $E_{2s} = 3$ В $f_2 = 50$ Гц; $f_{2s} = 4$ Гц.
 - г) $\tau=141$ мм; Вб; $E_1=188$ В; $E_2=31$ В; $E_{2s}=2,5$ В $f_2=50$ Гц; $f_{2s}=4$ Гц.
- 3. Трехфазный асинхронный двигатель включен в сеть напряжением 380 В, частотой 50 Гц, обмотка статора соединена «звездой». Статический нагрузочный момент на валу двигателя $M_c = 180$ Н·м, КПД $\eta_{\text{ном}} = 82$ %, коэффициент мощности $\cos \varphi_l = 0.80$ о.е., скольжение $s_{\text{ном}} = 4$ %, количество полюсов 2p = 6. Требуется определить: полезную мощность двигателя $P_{2\text{ном}}$, кВт; потребляемую из сети мощность $P_{1\text{ном}}$, кВт; ток в фазной обмотке статора $I_{1\text{ном}}$, А. Укажите правильный ответ:
 - a) $P_{2_{HOM}} = 18,154 \text{ kBT}$; $P_{1_{HOM}} = 22,186 \text{ kBT}$; $I_{1_{HOM}} = 38,5 \text{ A}$
 - б) $P_{2_{HOM}} = 18,144$ кВт; $P_{1_{HOM}} = 22,126$ кВт; $I_{1_{HOM}} = 41,9$ А
 - в) $P_{2_{HOM}} = 18,160$ кВт; $P_{1_{HOM}} = 22,180$ кВт; $I_{1_{HOM}} = 40,5$ А
 - г) $P_{2_{HOM}} = 18,140$ кВт; $P_{1_{HOM}} = 22,120$ кВт; $I_{1_{HOM}} = 41,5$ А
- 4. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет следующие параметры: основной магнитный поток $\Phi = 0.032$ Вб; обмоточный коэффициент $k_{ool} = 0.96$; э.д.с. обмотки статора $E_{I\phi} = 210$ В; номинальная частота вращения $n_{HOM} = 970$ об/мин; количество полюсов 2p = 6.

Требуется определить: число последовательно соединенных витков в обмотке статора w_I ; номинальное скольжение s_{HOM} ; э.д.с. обмотки неподвижного ротора E_2 , B; э.д.с. обмотки ротора при номинальной частоте вращения E_{2s} , B; частоту э.д.с. ротора при номинальном скольжении f_2 , Γ ц. Укажите правильный ответ:

- a) $w_1 = 31$; $s_{HOM} = 0.03$ o.e.; $E_2 = 111$ B; $E_{2s} = 3.33$ B; $f_2 = 1.5$ Γ u.
- б) $w_1 = 30$; $s_{HOM} = 0.25$ o.e.; $E_2 = 115$ B; $E_{2s} = 3.25$ B; $f_2 = 1.3$ Гц.
- в) $w_1 = 34$; $s_{HOM} = 0.15$ o.e.; $E_2 = 110$ B; $E_{2s} = 3.30$ B; $f_2 = 1.6$ Гц.
- г) $w_1 = 28$; $s_{HOM} = 0.02$ o.e.; $E_2 = 112$ B; $E_{2s} = 3.28$ B; $f_2 = 1.2$ Гц.
- 5. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет следующие параметры: основной магнитный поток $\Phi = 0.048$ Вб; число последовательно соединенных витков в обмотке статора $w_1 = 24$; обмоточный коэффициент $k_{ool} = 0.96$; номинальное скольжение $s_{hom} = 0.05$; количество полюсов 2p = 2. Требуется определить: э.д.с. обмотки статора $E_{1\phi}$; э.д.с. обмотки неподвижного ротора E_2 , B; э.д.с. обмотки ротора при номинальной частоте вращения E_{2s} , B; частоту э.д.с. ротора при номинальном скольжении f_2 , Γ ц; номинальную частоту вращения n_{hom} , об/мин. Укажите правильный ответ:
 - а) $E_{1\phi}=246$ B; $E_2=5.4$ B; $E_{2s}=0.27$ B; $f_2=2.5$ Гц; $n_{_{HOM}}=2850$ об/мин.
 - б) $E_{1\phi}=250$ B; $E_2=5.2$ B; $E_{2s}=0.25$ B; $f_2=2.7$ Гц; $n_{HOM}=2855$ об/мин.
 - в) $E_{1\phi}=240$ В; $E_2=5.6$ В; $E_{2s}=0.28$ В; $f_2=2.3$ Гц; $n_{_{HOM}}=2900$ об/мин.
 - г) $E_{1\phi}=242~{
 m B};~~E_2=5,5~{
 m B};~~E_{2s}=0,30~{
 m B};~~f_2=3,0~\Gamma$ ц; $n_{_{HOM}}=2840~{
 m o}$ б/мин.
- 6. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет следующие параметры: число последовательно соединенных витков в обмотке статора $w_1=16$; обмоточный коэффициент $k_{oб1}=0.98$; номинальное скольжение $s_{hom}=0.04$; количество полюсов 2p=4; э.д.с. обмотки статора $E_{I\phi}=98$ В. Требуется определить: основной магнитный поток Φ ; э.д.с. обмотки неподвижного ротора E_2 , В; э.д.с. обмотки ротора при номинальной частоте вращения E_{2s} , В; частоту э.д.с. ротора при номинальном скольжении f_2 , Γ ц; номинальную частоту вращения n_{hom} , об/мин. Укажите правильный ответ:
 - а) $\Phi = 0.025$ Вб; $E_2 = 3.5$ В; $E_{2s} = 0.10$ В; $f_2 = 2.2$ Гц; $n_{_{HOM}} = 1430$ об/мин.
 - б) $\Phi = 0.028$ Вб; $E_2 = 3.0$ В; $E_{2s} = 0.12$ В; $f_2 = 2.0$ Гц; $n_{_{\!HOM}} = 1440$ об/мин.
 - в) $\Phi = 0.030$ Вб; $E_2 = 3.2$ В; $E_{2s} = 0.15$ В; $f_2 = 2.5$ Гц; $n_{\mu \alpha M} = 1445$ об/мин.
 - г) $\Phi = 0.031$ Вб; $E_2 = 3.3$ В; $E_{2s} = 0.18$ В; $f_2 = 2.7$ Гц;

- $n_{HOM} = 1435$ об/мин.
- 7. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет следующие параметры: основной магнитный поток $\Phi = 0.025$ Вб;. обмоточный коэффициент $k_{obl} = 0.98$; э.д.с. обмотки статора $E_{l\phi} = 110$ В; номинальная частота вращения $n_{hom} = 2920$, об/мин. Требуется определить: число последовательно соединенных витков в обмотке статора w_l ; номинальное скольжение s_{hom} ; количество полюсов 2p; э.д.с. обмотки неподвижного ротора E_2 , В; э.д.с. обмотки ротора при номинальной частоте вращения E_{2s} , В; частоту э.д.с. ротора при номинальном скольжении f_2 , Гц;. Укажите правильный ответ:
 - а) $w_1=21$; $s_{_{HOM}}=0.025$ o.e.; 2p=2; $E_2=2.75$ B; $E_{2s}=0.070$ B; $f_2=1.32$ Гц
 - б) $w_1=20$; $s_{_{HOM}}=0.027$ o.e.; 2p=2; $E_2=2.78$ B; $E_{2s}=0.075$ B; $f_2=1.35$ Гц
 - в) $w_1=25$; $s_{_{HOM}}=0.030$ o.e.; 2p=2; $E_2=2.72$ B; $E_{2s}=0.072$ B; $f_2=1.33$ Гц
 - г) $w_1=22$; $s_{_{HOM}}=0.028$ o.e.; 2p=2; $E_2=2.78$ B; $E_{2s}=0.076$ B; $f_2=1.31$ Гц.
- 8. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет следующие параметры: число последовательно соединенных витков в обмотке статора $w_1 = 24$; обмоточный коэффициент $k_{o6l} = 0.96$; номинальное скольжение $s_{HOM} = 0.05$; количество полюсов 2p = 8; э.д.с. обмотки статора $E_{I\phi} = 200$ В. Требуется определить: основной магнитный поток Φ , Вб; э.д.с. обмотки неподвижного ротора E_2 , В; э.д.с. обмотки ротора при номинальной частоте вращения E_{2s} , В; частоту э.д.с. ротора при номинальном скольжении f_2 , Γ ц; номинальную частоту вращения n_{HOM} , об/мин. Укажите правильный ответ:
 - а) $\Phi=0.037$ Вб; $E_2=4.42$ В; $E_{2s}=0.26$ В; $f_2=2.51$ Гц; $n_{_H}=710$ об/мин.
 - б) $\Phi=0.042$ Вб; $E_2=3.95$ В; $E_{2s}=0.20$ В; $f_2=2.55$ Гц; $n_{_H}=715$ об/мин.
 - в) Φ = 0,039 Вб; E_2 = 4,40 В; E_{2s} = 0,22 В; f_2 = 2,50 Гц; $n_{_{\! H}}$ = 713 об/мин.
 - г) Φ = 0,035 Вб; E_2 = 4,39 В; E_{2s} = 0,24 В; f_2 = 2,45 Гц; $n_{_{\! H}}$ = 708 об/мин.
- 9. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет следующие параметры: число последовательно соединенных витков в обмотке статора $w_1 = 18$; обмоточный коэффициент $k_{oбl} = 0,95$; количество полюсов 2p = 4; э.д.с. обмотки ротора при номинальной частоте вращения $E_{2s} = 0,13$ В; частота э.д.с. ротора при номинальном скольжении $f_2 = 2,5$ Гц. Требуется определить: основной магнитный поток Φ , Вб; номинальное скольжение s_{Hom} ; э.д.с. обмотки статора $E_{1\phi}$, В; э.д.с. обмотки неподвижного

ротора E_2 , B; номинальную частоту вращения $n_{\text{ном}}$, об/мин. Укажите правильный ответ:

- а) $\Phi = 0.025$ Вб; $s_{_{HOM}} = 0.03$ o.e.; $E_{1\phi} = 86$ В; $E_2 = 2.4$ В; $n_{_{HOM}} = 1420$ об/мин.
- б) $\Phi = 0.022$ Вб; $s_{HOM} = 0.06$ о.е.; $E_{1\phi} = 84$ В; $E_2 = 2.0$ В; $n_{HOM} = 1412$ об/мин.
- в) $\Phi = 0.023$ Вб; $s_{_{HOM}} = 0.05$ о.е.; $E_{1\phi} = 87$ В; $E_2 = 2.6$ В; $n_{_{HOM}} = 1425$ об/мин.
- г) $\Phi = 0{,}020$ Вб; $s_{_{HOM}} = 0{,}04$ о.е.; $E_{1\phi} = 89$ В; $E_2 = 2{,}8$ В; $n_{_{HOM}} = 1422$ об/мин.
- 10. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором имеет следующие параметры: основной магнитный поток $\Phi = 0.028$ B6; э.д.с. обмотки статора $E_{I\phi} = 120$ B; обмоточный коэффициент $k_{o6I} = 0.95$; количество полюсов 2p = 8; частота э.д.с. ротора при номинальном скольжении $f_2 = 3.2$ Гц. Требуется определить: число последовательно соединенных витков в обмотке статора w_I ; номинальное скольжение s_{Hom} ; э.д.с. обмотки неподвижного ротора E_2 , B; э.д.с. обмотки ротора при номинальной частоте вращения E_{2s} , B; номинальную частоту вращения n_{Hom} , об/мин. Укажите правильный ответ:
 - a) $w_1 = 18$; $s_{HOM} = 0.058$ o.e.; $E_2 = 3.5$ B; $E_{2s} = 0.18$ B; $n_{HOM} = 700$ об/мин.
 - б) $w_1 = 20$; $s_{HOM} = 0.064$ o.e.; $E_2 = 3.0$ B; $E_{2s} = 0.20$ B; $n_{HOM} = 702$ об/мин.
 - в) $w_1 = 21$; $s_{HOM} = 0.062$ o.e.; $E_2 = 2.8$ B; $E_{2s} = 0.22$ B; $n_{HOM} = 710$ об/мин.
 - г) $w_1 = 19$; $s_{HOM} = 0,060$ o.e.; $E_2 = 3,2$ B; $E_{2s} = 0,26$ B; $n_{HOM} = 715$ об/мин.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. В чём состоит задача конструирования электрической машины?
- 2. Главные показатели, определяющие уровень разработки?
- 3. Что называют коэффициентом использования машины?
- 4. Что называют рентабельностью машины?
- 5. Что называют годовым экономическим эффектом?
- 6. Назовите основные тенденции в развитии электромашиностроения.
- 7. Что называют главными размерами асинхронной машины?
- 8. Что называют главными размерами машины постоянного тока?
- 9. Что такое «критическая частота вращения вала»?
- 10. Назовите наиболее распространенный материал для изготовления вала электрической машины.
- 11. Как предупредить недопустимую концентрацию напряжений в местах перехода с одного диаметра вала на другой?

- 12. Какой величиной нормируется радиус галтели?
- 13. Какой величиной нормируется соотношение диаметров соседних ступеней вала электрической машины?
- 14. Какую форму может иметь выступающий конец вала электрической машины?
- 15. Что располагается на выступающем конце вала электрической машины и чем закрепляется?
- 16. Как на этапе конструирования вала электрической машины упростить его обработку, если на нем имеется ряд шпонок для закрепления различных узлов, размещаемых на нем?
- 17. Какими соображениями руководствуются при выборе размеров выступающего цилиндрического конца вала электрической машины?
- 18. Назовите допустимый результирующий прогиб вала асинхронной электрической машины при различных видах передачи.
- 19. Назовите допустимый результирующий прогиб вала синхронной электрической машины при различных видах передачи
- 20. Назовите допустимый результирующий прогиб вала электрической машины постоянного тока при различных видах передачи.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

No	Контролируемые разделы (темы)	Код контролируемой	Наименование
Π/Π	дисциплины	компетенции	оценочного средства
1	Принципы и методика		Тест, устный опрос,
1	конструирования	11IX-1	индивидуальные задания
	Механические показатели		Тест, устный опрос,
2	совершенства конструкции	ПК-1	индивидуальные задания
	машины		
2	Конструирование деталей и	ПК-1	Тест, устный опрос,
	сборочных единиц	11IX-1	индивидуальные задания

4	Уплотнения	ПК-1	Тест, устный опрос, индивидуальные задания
5	Сборка	ПК-1	Тест, устный опрос, индивидуальные задания
6	Разборные и неразборные соединения, удобство обслуживания	ПК-1	Тест, устный опрос, индивидуальные задания
7	Подшипники	ПК-1	Тест, устный опрос, индивидуальные задания
8	Магнитопроводы электрических машин	ПК-1	Тест, устный опрос, индивидуальные задания
9	Обмотки электрических машин	ПК-1	Тест, устный опрос, индивидуальные задания

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Гуляев А.А. Основы конструирования / Нюхин Р.О.; Писаревский А.Ю.: Учеб. пособие. Воронеж : Научная книга, 2009. 132 с. (Учебная серия "Открытое образование", ISSN 1814-0130). 100-00.
- 2. Орлов В.В. Конструирование электрических машин малой мощности / Орлов В.В., Анненков А.Н. [Электронный ресурс] : учеб. пособие. Воронеж : Изд-во ВГТУ, 1998. 85 с. С дискетой. 7.00.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных

профессиональных баз данных и информационных справочных систем:

- 8.2.1 Программное обеспечение
- Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic
- Компас-График LT;
- OpenOffice;
- Adobe Acrobat Reader;
- Internet explorer;
- Opera;
- SMath Studio.

.

- 8.2.2 Ресурсы информационно-телекоммуникационной сети «Интернет»
- Российское образование. Федеральный портал. http://www.edu.ru/
- Образовательный портал ВГТУ https://education.cchgeu.ru/
- 8.2.3 Информационные справочные системы
- http://window.edu.ru
- https://wiki.cchgeu.ru/
- 8.2.4 Современные профессиональные базы данных
- Электронный фонд правовой и нормативно-технической документации. URL: http://docs.cntd.ru
- Единая система конструкторской документации. URL: https://standartgost.ru/0/2871-edinaya_sistema_konstruktorskoy_dokumentatsii
- Федеральный институт промышленной собственности. Информационно-поисковая система. URL: www1.fips.ru
 - Национальная электронная библиотека. URL: elibrary.ru
- Electrical 4U. Разделы сайта: «Машины постоянного тока», «Трансформаторы», «Электротехника», «Справочник». Адрес ресурса: https://www.electrical4u.com/
- All about circuits. Одно из самых крупных онлайн-сообществ в области электротехники. На сайте размещены статьи, форум, учебные материалы (учебные пособия, видеолекции, разработки, вебинары) и другая информация. Адрес ресурса: https://www.allaboutcircuits.com
- Netelectro. Новости электротехники, оборудование и средства автоматизации. Информация о компаниях и выставках, статьи, объявления. Адрес ресурса: https://netelectro.ru/
- Marketelectro. Отраслевой электротехнический портал. Представлены новости отрасли и компаний, объявления, статьи, информация о мероприятиях, фотогалерея, видеоматериалы, нормативы и стандарты, библиотека, электромаркетинг. Адрес ресурса: https://marketelectro.ru/
 - Чертежи.ru Адрес ресурса: https://chertezhi.ru/
 - Библиотека Адрес ресурса: WWER http://lib.wwer.ru/
- Каталог электротехнического оборудования. URL: https://electro.mashinform.ru;

- Справочник обмотчика асинхронных электродвигателей. URL: http://sprav.dvigatel.org;
 - Электродвигатели. http://www.elecab.ru/dvig.shtml.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Занятия по дисциплине «Основы конструирования электрических машин» проводятся в специализированной аудитории кафедры ЭМСЭС, снабженной видеопроекционной системой и наглядными учебными пособиями в виде разобранных макетов электрических машин, а также информационными плакатами по профилю.

Учебная лаборатория «Электрических машин», аудитория 135, корпус 3, ВГТУ.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Основы конструирования электрических машин» .

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета электрических машин. Занятия проводятся путем решения конкретных задач в аудитории.

Контроль усвоения материала дисциплины производится тестированием с использованием выданных тест-заданий на бумажном носителе.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с
занятие	конспектом лекций, подготовка ответов к контрольным вопросам,
	просмотр рекомендуемой литературы. Прослушивание аудио- и
	видеозаписей по заданной теме, выполнение расчетно-

	графических заданий, решение задач по алгоритму.
Самостоятельная	Самостоятельная работа студентов способствует глубокому
работа	усвоения учебного материала и развитию навыков
	самообразования. Самостоятельная работа предполагает
	следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически,
промежуточной	в течение всего семестра. Интенсивная подготовка должна
аттестации	начаться не позднее, чем за месяц-полтора до промежуточной
	аттестации. Данные перед зачетом с оценкой три дня эффективнее
	всего использовать для повторения и систематизации материала.