МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан факультета ______ А.И. Колосов «30» августа 2017г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Электроника и электротехника»

Направление подготовки <u>20</u>	.03.01 ТЕХНОСФЕРНАЯ І	<u>БЕЗОПАСНОСТЬ</u>
Профиль		
Квалификация выпускника	а <u>бакалавр</u>	
Нормативный период обуче	ния <u>4года / 5лет</u>	
Форма обучения очная / заоч	<u>тная</u>	
Год начала подготовки <u>2017</u>	, -	
Автор программы	/	/
Заведующий кафедрой электропривода, автоматики и управления в технических системах	/	/
Руководитель ОПОП	/	/

1.ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

- получение знаний по основам электротехники и электроники, необходимых для организации эффективного и безопасного применения, эксплуатации электротехнических и электронных устройств,
- получение знаний по основным типам электронных приборов и устройств; параметрам современных полупроводниковых устройств: усилителей, генераторов, вторичных источников питания, цифровых преобразователей, микропроцессорных управляющих систем.

1.2. Задачи освоения дисциплины

- изучить теоретический материал по построению и расчету электрических цепей, а также по устройству и принципам работы типового электротехнического оборудования;
- получить практические навыки по исследованию и расчету характеристик электротехнических устройств, построению и расчету электрических цепей;
- изучение основных типов электронных приборов: диодов, транзисторов, тиристоров;
 - освоение физических основ полупроводниковой электроники
- изучение современных полупроводниковых устройств: усилителей, генераторов, вторичных источников питания, цифровых преобразователей;
- ознакомление со структурой и принципом работы микропроцессорных управляющих систем;
- приобретение навыков исследования типовых электронных устройств с помощью измерительных приборов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Электроника и электротехника» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Электроника и электротехника» направлен на формирование следующих компетенций:

ОК-8-способностью работать самостоятельно,

ОК-9-способностью принимать решения в пределах своих полномочий, ОК-10-способностью к познавательной деятельности.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОК-8	Знать:
	- основные законы электротехники для электри-
	ческих цепей;
	- основные типы, конструкцию, принципы работы
	электрических машин и трансформаторов, области их
	применения, механические и рабочие характеристики;

	Уметь:						
	- разрабатывать принципиальные электрические						
	схемы,						
	Владеть:						
	- навыками работы с электротехнической аппара-						
	турой						
ОК-9	Знать:						
	- методы измерения электрических величин;						
	- основные типы и области применения элек-						
	тронных приборов и устройств;						
	Уметь:						
	- рассчитывать и эксплуатировать типовые элек-						
	трические устройства;						
	Владеть:						
	- методами анализа и обработки результатов из-						
	мерения;						
ОК-10	Знать:						
	- параметры современных полупроводниковых						
	устройств: усилителей, генераторов, вторичных источ-						
	ников питания, цифровых преобразователей, микро-						
	процессорных и измерительных комплексов.						
	Уметь:						
	- рассчитывать типовые электронные устройства.						
	Владеть:						
	- навыками работы с электронными устройствами;						
	- навыками исследования электронных устройств с						
	помощью измерительных приборов.						

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Электроника и электротехника» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Puru vyjekuož pokomu		Семестры
Виды учебной работы	часов	4
Аудиторные занятия (всего)	36	36
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	18	18
Самостоятельная работа	72	72
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

Заочная форма обучения

Dunia vinckych pokomu	Всего	Семестры
Виды учебной работы	часов	5
Аудиторные занятия (всего)	8	8
В том числе:		
Лекции	4	4
Практические занятия (ПЗ)	4	4
Самостоятельная работа	96	96
Часы на контроль	4	4
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	0	108
зач. ед.	3	3

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоем-кости по видам занятий

Очная форма обучения

No	Наименование	Содержание раздела	Лекц	Прак.	Лаб.	CPC	Всего,
п/п	темы			зан.	зан.		час
1	Линейные электрические цепи посто-янного тока	Основные понятия электрических цепей. Понятие электрической цепи. Ток, напряжение, ЭДС, мощность в цепи. Основные элементы электрической цепи. Источники и приемники электрической энергии. Эквивалентные преобразования в электрических цепях. Основные законы электротехники для электрических цепей. Закон Ома для участка цепи, содержащего и не содержащего источник ЭДС. Первый и второй законы Кирхгофа. Метод расчета цепи на основе законов Кирхгофа. Баланс мощностей в электрической цепи. Методы контурных токов, узловых потенциалов, двух узлов, наложения и эквивалентного генератора.	2	2	-	12	16
2	Анализ периодических процессов в линейных цепях	Синусоидальные величины и линейные элементы в цепи синусоидального тока. Основные параметры синусоидального сигнала: амплитуда, частота, фаза. Средние и действующие значения периодических ЭДС, напряжений и токов. Линейные элементы R, L, С в цепи синусоидального тока. Треугольники сопротивлений и мощностей. Активная, реактивная и полная мощность.	6	6	-	12	24

		n ~		1	1	I	1
		Расчет цепей синусоидального					
		тока, построение векторных					
		диаграмм. Электрическая цепь с					
		последовательным соединением					
		элементов R, L, C. Комплексное					
		сопротивление. Векторные диа-					
		граммы. Треугольник напряже-					
		ний. Резонанс напряжений в по-					
		следовательной электрической це-					
		пи.					
		Трехфазные электрические					
		цепи. Трехфазная симметричная					
		система ЭДС. Получение трехфаз-					
		ной системы ЭДС. Схемы соеди-					
		нения трехфазных цепей. Линей-					
		ные и фазные напряжения и токи					
		трехфазной цепи при соединении					
		фаз в звезду. Линейные и фазные					
		напряжения и токи при соединении					
		фаз треугольником.					
3	Электриче-	Электрические машины и					
	ские машины	трансформаторы. Трансформатор:					
	1	устройство и принцип действия.					
	маторы, сред-	Соотношения для токов и напря-					
	ства измере-	жений обмоток и числа витков.					
	ния	Электрические машины постоян-					
		ного и переменного тока. Син-					
		хронные и асинхронные двигатели.					
		Синхронные и асинхронные гене-	4	4	_	12	20
		раторы.					
		Электрические измерения и					
		приборы. Методы измерений					
		электрических и магнитных вели-					
		чин. Погрешности измерений.					
		Принцип действия магнитоэлек-					
		трических, электромагнитных,					
		электродинамических и электро-					
		статических приборов. Измерение					
		токов, напряжений и мощностей.					
4	Полупровод-	Полупроводниковые диоды.					
	никовые эле-	Собственная и примесная элек-					
	менты и ос-	тропроводность полупроводников.					
	новы микро-	Полупроводниковые диоды, их					
	электроники	назначение и характеристики: вы-					
	•	прямительные диоды, стабилит-					
		роны, фото и светодиоды, тири-					
		сторы. Варикапы, оптроны: назна-	2	2	_	12	16
		чение и принцип работы.					
		Биполярные и полевые тран-					
		зисторы. Структура и принцип					
		действия биполярного и полевого					
		транзисторов. Схемы включения					
		биполярного транзистора.					
		Характеристики биполярного и					
		* *					
5	Лианогород	полевого транзисторов.					
ا ا	Аналоговая	Источники вторичного элек-					
	схемотехника	тропитания. Структура источника					
		питания электронных устройств.	2	2		10	1.0
		Однофазный однополупериодный	2	2		12	16
		выпрямитель. Однофазный мосто-					
		вой выпрямитель. Трехфазный мо-					
		стовой выпрямитель.					
		Усилители. Классификация и					

		характеристики усилителей посто-					
		янного и переменного тока. Каскадное построение усилителей.					
		кадное построение усилителей. Обратная связь в усилителях. Од-					
		нокаскадный усилитель.					
		_					
		Операционные усилители. Подходы к построению усили-					
		тельных устройств. Общие свой-					
		ства устройств с операционными					
		усилителями. Основные виды вы-					
		числительных схем на основе опе-					
		рационных усилителей. Схемо-					
		техника и основные параметры					
		операционных усилителей.					
		Генераторы. Режимы возбуж-					
		дения генератора. Условия само-					
		возбуждения.					
		RC-генераторы. Генератор с мо-					
		стом Вина на операционном уси-					
		лителе. Генератор пилообразного					
		напряжения.					
6	Цифровая	Комбинационные цифровые					
	схемотехника	устройства. Основные логические					
		операции. Виды логических эле-					
		ментов. Таблицы истинности эле-					
		ментов И, ИЛИ, НЕ. Двоичная					
		система исчисления. Комбинаци-					
		онные цифровые устройства:					
		шифраторы и дешифраторы,					
		мультиплексоры и демультиплек-				10	1.0
		соры, их условное обозначение и	2	2	-	12	16
		таблицы истинности.					
		Последовательностные циф-					
		ровые устройства. Триггеры, их					
		классификация по способу записи и					
		функциональному назначению. Обозначения триггера, его входов и					
		выходов. Триггер <i>RS</i> -типа.					
		Триггер <i>D</i> -типа. <i>T</i> -триггер.					
		<i>JK</i> -триггер. Двоичный и двоич-					
		но-десятичный счетчики.					
		Итого	18	18	-	72	108
	-	Заочная форма о	_				-

No	Наименование	Содержание раздела	Лекц	Прак.	Лаб.	CPC	Всего,
п/п	темы			зан.	зан.		час
1	Линейные электрические цепи посто-янного тока	Основные понятия электрических цепей. Понятие электрической цепи. Ток, напряжение, ЭДС, мощность в цепи. Основные элементы электрической цепи. Источники и приемники электрической энергии. Эквивалентные преобразования в электрических цепях. Основные законы электротехники для электрических цепей. Закон Ома для участка цепи, содержащего и не содержащего источник ЭДС. Первый и второй	-	-	,	16	16

				T	T	Г	<u> </u>
		законы Кирхгофа. Метод расчета					
		цепи на основе законов Кирхгофа.					
		Баланс мощностей в электриче-					
		ской цепи. Методы контурных то-					
		ков, узловых потенциалов, двух					
		узлов, наложения и эквивалентного					
		генератора.					
2	Анализ пери-	Синусоидальные величины и					
	одических	линейные элементы в цепи сину-					
	процессов в	соидального тока. Основные па-					
	линейных це-	раметры синусоидального сигнала:					
	ПЯХ	амплитуда, частота, фаза. Средние					
		и действующие значения периоди-					
		ческих ЭДС, напряжений и токов.					
		Линейные элементы R, L, C в цепи					
		синусоидального тока. Треугольни-					
		ки сопротивлений и мощностей.					
		Активная, реактивная и полная					
		мощность.					
		Расчет цепей синусоидального					
		тока, построение векторных					
		диаграмм. Электрическая цепь с					
		последовательным соединением	2	2	-	16	20
		элементов R, L, C. Комплексное	_	=			
		сопротивление. Векторные диа-					
		граммы. Треугольник напряже-					
		ний. Резонанс напряжений в по-					
		следовательной электрической це-					
		пи.					
		Трехфазные электрические					
		цепи. Трехфазная симметричная					
		система ЭДС. Получение трехфаз-					
		ной системы ЭДС. Схемы соеди-					
		нения трехфазных цепей. Линей-					
		ные и фазные напряжения и токи					
		трехфазной цепи при соединении					
		фаз в звезду. Линейные и фазные					
		напряжения и токи при соединении					
		фаз треугольником.					
3	Электриче-	Электрические машины и					
3	ские машины	трансформаторы. Трансформатор:					
	и трансфор-	устройство и принцип действия.					
	маторы, сред-	Соотношения для токов и напря-					
	ства измере-	жений обмоток и числа витков.					
	ния	Электрические машины постоян-					
	1111/1	ного и переменного тока. Син-					
		хронные и асинхронные двигатели.					
		Синхронные и асинхронные гене-					
		раторы.	1	-	-	16	17
		раторы. Электрические измерения и					
		приборы. Методы измерений					
		электрических и магнитных вели-					
		чин. Погрешности измерений.					
		Принцип действия магнитоэлек-					
		трических, электромагнитных,					
		электродинамических и электро-					
		статических приборов. Измерение					
		токов, напряжений и мощностей.					
4	Попушнован	-					
4	Полупровод-	Полупроводниковые диоды.					
	никовые эле-	Собственная и примесная элек-	-	-	-	16	16
	менты и ос-	тропроводность полупроводников.					
	новы микро-	Полупроводниковые диоды, их					
	электроники	назначение и характеристики: вы-		l		<u> </u>	

		прямительные диоды, стабилит-					
		роны, фото и светодиоды, тири-					
		сторы. Варикапы, оптроны: назна-					
		чение и принцип работы.					
		Биполярные и полевые тран-					
		зисторы. Структура и принцип					
		действия биполярного и полевого					
		транзисторов. Схемы включения					
		биполярного транзистора.					
		Характеристики биполярного и					
		полевого транзисторов.					
5	Аналоговая	Источники вторичного элек-					
	схемотехника	тропитания. Структура источника					
		питания электронных устройств.					
		Однофазный однополупериодный					
		выпрямитель. Однофазный мостовой выпрямитель. Трехфазный мо-					
		стовой выпрямитель. Трехфазный мо-					
		Усилители. Классификация и					
		характеристики усилителей посто-					
		янного и переменного тока. Кас-					
		кадное построение усилителей.					
		Обратная связь в усилителях. Од-					
		нокаскадный усилитель.					
		Операционные усилители.	1	2		16	19
		Подходы к построению усили-	1	2		10	19
		тельных устройств. Общие свой-					
		ства устройств с операционными					
		усилителями. Основные виды вы-					
		числительных схем на основе опе-					
		рационных усилителей. Схемо-					
		техника и основные параметры					
		операционных усилителей. Генераторы . Режимы возбуж-					
		дения генератора. Условия само-					
		возбуждения. <i>LC</i> -генераторы.					
		RC-генераторы. Генератор с мо-					
		стом Вина на операционном уси-					
		лителе. Генератор пилообразного					
		напряжения.					
6	Цифровая	Комбинационные цифровые					
	схемотехника	устройства. Основные логические					
		операции. Виды логических эле-					
		ментов. Таблицы истинности эле-					
		ментов И, ИЛИ, НЕ. Двоичная					
		система исчисления. Комбинаци-					
		онные цифровые устройства: шифраторы и дешифраторы,					
		мультиплексоры и демультиплек-					
		соры, их условное обозначение и	_	_	_	16	16
		таблицы истинности.					
		Последовательностные циф-					
		ровые устройства. Триггеры, их			1		
		классификация по способу записи и					
		функциональному назначению.					
		Обозначения триггера, его входов и					
		выходов. Триггер RS-типа.					
		Tриггер D -типа. T -триггер.					
		JK-триггер. Двоичный и двоич-					
		но-десятичный счетчики.	4	_		0.4	40.4
		Итого	4	4	-	96	104

5.2 Перечень лабораторных работ

Не предусмотрены учебным планом

5.3 Перечень практических работ

очная форма обучения

- 1. Расчет линейной цепи постоянного тока с одним источником ЭДС.
- 2. Расчет линейной цепи постоянного тока с несколькими источниками ЭДС.
 - 3. Расчет параметров линейных цепей синусоидального тока.
- 4. Расчет цепей синусоидального тока с последовательным и параллельным соединением элементов R, L, C.
 - 5. Расчет трехфазной электрической цепи.
 - 6. Электромагнитный расчет трансформатора.
 - 7. Определение показаний средств измерения.
 - 8. Расчет схем с диодами.
 - 9. Расчет схем с биполярными транзисторами.
 - 10. Расчет однофазного мостового выпрямителя.
 - 11. Расчет транзисторного усилителя напряжения.
 - 12. Синтез комбинационных цифровых устройств.
 - 13. Синтез последовательностных цифровых устройств.

заочная форма обучения

- 1. Расчет трехфазной электрической цепи.
- 2. Расчет однофазного мостового выпрямителя.

3.

6 ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкалоценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются последующей системе:

«аттестован»;

«неаттестован».

Компе- тенция	Результатьобуче- ния,характеризующие сформированностьком- петенции	Критерии оценивания	Аттестован	Неаттестован
OK-8	Знать: - основные законы электротехники для электрических цепей; - основные типы, конструкцию, принципы работы электрических машин и трансформаторов, области их применения, механические и рабочие характеристики;	практических занятиях, отвечает на теоретические вопросы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь:	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	- навыками работы с	Решение прикладных задач в конкретной предметной области, выполнение плана самостоятельной работы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
OK-9	Знать: - методы измерения электрических величин; - основные типы и области применения электронных приборов и устройств;	практических занятиях, отвечает на теоретические вопросы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь:		Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
		Решение прикладных задач в конкретной предметной области, выполнение плана самостоятельной работы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
OK-10	Знать: - параметры современных полупроводниковых устройств: усилителей, генераторов, вторичных источников питания, цифровых преобразователей, микропроцессорных и измерительных комплексов.	практических занятиях, отвечает на теоретические вопросы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
		Решение стандартных практических задач	Выполнение работ в срок, предусмот- ренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

Владеть:	Решение прикладных за-	Выполнение работ в	Невыполнение работ в
- навыками работы с электронными устройствами; - навыками исслело-	дач в конкретной пред- метной области, выпол- нение плана самостоя-	срок, предусмот- ренный в рабочих программах	гевыполнение расот в срок, предусмотренный в рабочих программах
устройств с помощью измерительных приборов.			

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 4 семестре для очной формы обучения, 5 семестре для заочной формы обучения по двухбалльной системе:

«зачтено»

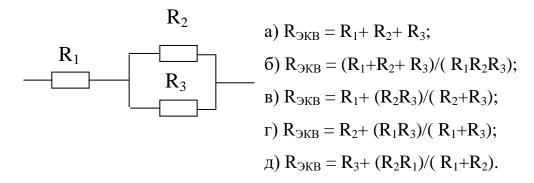
«незачтено»

(11100)	чтено»		I	T
	Результатыобуче- ния,характеризующи			
Компе-	ния,харак геризующи е	Критерии	Зачтено	Незачтено
тенция	сформированность- компетенции	оценивания	Ja Heno	nesa neno
ОК-8	Знать:	Тест	Выполнение теста на	Выполнение менее 70%
	- основные зако-		70-100%	
	ны электротех-			
	ники для элек-			
	трических цепей;			
	- основные типы,			
	конструкцию,			
	принципы работы			
	электрических			
	машин и транс-			
	форматоров, об-			
	ласти их приме-			
	нения, механиче-			
	ские и рабочие			
	характеристики;			
	Уметь:	Решение стандартных	Продемонстрирова н	Задачи не решены
		практических задач	верный ход решения	THE TOTAL TOTAL
	принципиальные	npakin issami saga i	в большинстве задач	
	электрические		р сольшинотре зада т	
	схемы,			
	Владеть:	Решение прикладных за-	Продемонстрирова н	Задачи не решены
		дач в конкретной пред-	верный ход решения	онда из по рошения
	боты с электро-		в большинстве задач	
	технической ап-		В сольшинетье зада т	
	паратурой			
OK-9	Знать:	Тест	Выполнение теста на	Выполнение менее 70%
OR)	- методы измере-	1661	70-100%	Banosineime Menee 7070
	ния электриче-		70 10070	
	ских величин;			
	- основные типы и			
	области приме-			
	нения электрон-			
	ных приборов и			
	устройств;			
	Уметь:	Решение стандартных	Продемонстрирова н	Задачи не решены
		_	верный ход решения	задачи по решены
	*	практических задач	в большинстве задач	
	эксплуатировать типовые элек-		в оольшинстве задач	
	трические			
	устройства;	D.	п	2
	Владеть:	Решение прикладных за-	Продемонстрирова н	Задачи не решены

	- методами ана-	дач в конкретной пред-	верный ход решения	
	лиза и обработки		в большинстве задач	
	результатов из-		, ,	
	мерения;			
ОК-10	Знать:	Тест	Выполнение теста на	Выполнение менее 70%
	- параметры со-		70-100%	
	временных полу-			
	проводниковых			
	устройств: уси-			
	лителей, генера-			
	торов, вторичных			
	источников пи-			
	тания, цифровых			
	преобразовате-			
	лей, микропро-			
	цессорных и из-			
	мерительных			
	комплексов.			
	Уметь:	Решение стандартных	Продемонстрирова н	Задачи не решены
	- рассчитывать	практических задач	верный ход решения	-
	типовые элек-		в большинстве задач	
	тронные устрой-			
	ства.			
	Владеть:	Решение прикладных за-	Продемонстрирова н	Задачи не решены
	- навыками ра-	дач в конкретной пред-	верный ход решения	
	_	метной области	в большинстве задач	
	тронными			
	устройствами;			
	- навыками ис-			
	следования элек-			
	тронных			
	устройств с по-			
	мощью измери-			
	тельных прибо-			
	ров.			

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию 1. Количество уравнений, записанных по первому закону Кирхгофа, на одно меньше количества_


;

- б) ветвей;
- в) узлов;
- г) ЭДС.

2. Количество уравнений в методе контурных токов равно количеству контуров.

- а) зависимых;
- б) независимых;
- в) свободных;
- г) наружных.

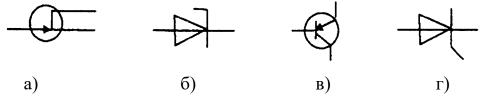
3. Эквивалентное сопротивление участка определяется выражением.....:

<u>4 Действующее значение синусоидального тока определяется выражением</u>

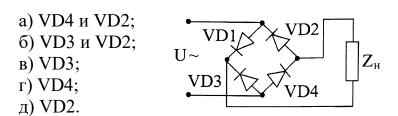
a)
$$I = \sqrt{2} \cdot I_m$$
; 6) $I = \sqrt{3} \cdot I_m$;

в)
$$I = \frac{I_m}{2}$$
; г) $I = \frac{I_m}{\sqrt{2}}$; д) $I = \frac{I_m}{\sqrt{3}}$.

5. Для тока $\mathbf{i} = \mathbf{I_m} sin(\omega t + \psi)$ комплекс действующего значения имеет вид:

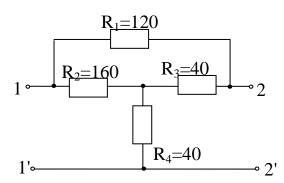

$$a) \ \dot{I} = I_m \cdot e^{j \cdot \omega \cdot t} \,, \quad \ \, 6) \ \dot{I} = \frac{I_m}{\sqrt{2}} \cdot e^{j \cdot \psi} \,, \qquad \ \, B) \ \dot{I} = I_m \cdot e^{j \cdot \psi} \,, \quad \ \, \Gamma) \ \dot{I} = \frac{I_m}{\sqrt{2}} \cdot e^{j \cdot \omega \cdot t} \,.$$

- 6. Вращающаяся часть электродвигателя называются
- а) статор;
- б) ротор;
- в) коммутатор.
- 7. В цепи питания нагревательного прибора, включенного на напряжение 220 В, сила тока равна 5 А. Определить мощность прибора.
 - a) 25 BT,
 - б) 1,1 кВт,
 - в) 120 Вт,
 - г) 44 Вт.

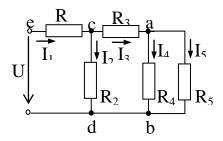

8. Какое из приведенных определений полупроводника наиболее точно?

- а) полупроводник это вещество, на внешней атомной оболочке которого находится 4 электрона;
- б) полупроводник это вещество, основным свойством которого является сильная зависимость удельного сопротивления от воздействия внешних факторов температуры, электрического и магнитного полей, светового и ионизирующего излучений;
- в) полупроводник это вещество, температурный коэффициент удельного сопротивления которого отрицателен.

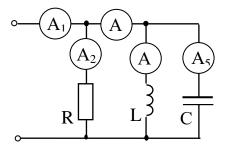
9. Полевой транзистор имеет обозначение:

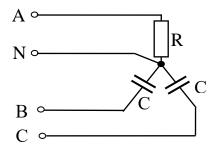


10. Укажите, какой из диодов мостовой схемы выпрямителя включен неправильно, если VD1 включен верно:

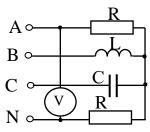


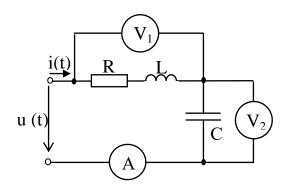
7.2.2 Примерный перечень заданий для решения стандартных задач


1. Определить входное сопротивление относительно зажимов 1-1' цепи (рис. 1.10) при холостом ходе (зажимы 2-2' разомкнуты) и при коротком замыкании (зажимы 2-2' замкнуты). Значения сопротивлений указаны на схеме.


2. В электрической цепи, схема которой приведена на рисунке, известен ток четвертой ветви I_4 =0,2 A. Определить приложенное напряжение и мощность, расходуемую в цепи, если сопротивления резисторов: R_1 = 50 Ом; R_2 = 80 Ом; R_3 = 20 Ом; R_4 = 30 Ом; R_5 = 60 Ом.

- **3.** Элементы R, L, C соединены последовательно. Известны действующие значения напряжений этих элементов. Построить качественно векторную диаграмму напряжений и тока, определить действующее значение неизвестной величины и угол сдвига фаз ф между входным напряжением и током для следующих случаев:
 - 1) $U_R=50 \text{ B}$, $U_L=150 \text{ B}$, $U_C=100 \text{ B}$, U=?;
 - 2) $U_R=?$; $U_L=100 \text{ B}$, $U_C=50 \text{ B}$, U=100 B;
 - 3) $U_R=60 \text{ B}$, $U_L=?$, $U_C=160 \text{ B}$, U=100 B;
 - 4) U_R =40 B, U_L =30 B, U_C =?, U=50 B;
 - 5) $U_R=60 \text{ B}$, $U_L=220 \text{ B}$, $U_C=140 \text{ B}$, U=?.
- **4.** Определить показания амперметров A_2 и A_3 в схеме рисунке, если известны показания амперметров A_1 , A_4 , A_5 : I_{A1} =5,64 A, I_{A4} =4 A, I_{A5} =3 A.


5. В цепи известны фазные токи: $I_A = 3 A$; $I_B = 4 A$; $I_C = 4 A$. Определить показание амперметра в нейтральном проводе.

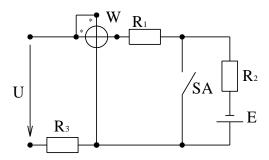


6. Линейное напряжение трехфазного трансформатора, соединенного звездой с нулевым проводом, равно 220 В. В фазе А включено 30 одинаковых ламп (40 Вт), 127 В каждая), в фазе В - 20 ламп, а фаза С - 10 ламп. Определить ток в нейтрали и напряжение на каждой группе ламп при обрыве нулевого провода.

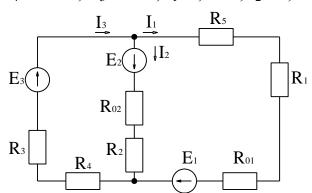
7. Определить токи в цепи, если источник питания симметричен и

 $R=\omega L=1/\omega C=2$ Om; $U_v=20$ B.

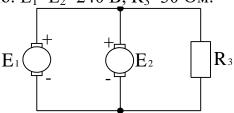
8. Определить показания приборов электромагнитной системы в цепи, схема которой показана на рисунке, записать выражение мгновенного значения тока, если: R=50 Om, $\omega L=10 \text{ Om}$, $\frac{1}{\omega C}=90 \text{ Om}$.


На вход цепи подано синусоидальное напряжение $u(t) = 310\sin(\omega t + 30^{\circ})$ В.

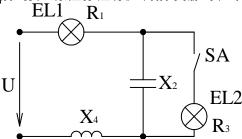
9. Трехфазный трансформатор имеет: номинальную мощность $S_{\text{ном}} = 1600$ кВ A, номинальное первичное $U_{1\text{ном}} = 10$ кВ и вторичное $U_{2\text{ном}} = 0.4$ кВ напряжения, максимальное значение магнитной индукции в стержне $B_{\text{max}} = 1.55$ Тл , ЭДС одного витка $E_{\text{вит}} = 5$ В. Частота переменного тока сети f = 50 Гц, соединение обмоток транс- форматора Y/Y, коэффициент заполнения стержня сталью $k_{\text{ст}} = 0.97$. Определить: число витков в обмотках; максимальное значение основного магнитного потока; площадь поперечного сечения стержня; номинальный ток во вторичной цепи; коэффициент трансформации.

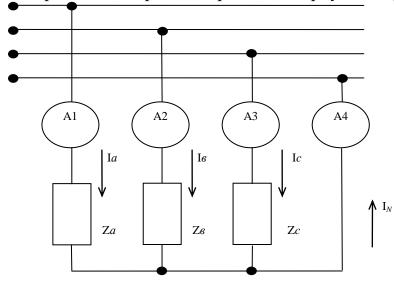

10. Трехфазный трансформатор имеет: номинальное напряжение $U_{1\text{ном}} = 127$ В, ток холостого хода $I_{0\text{ном}} = 20,5$ А , коэффициент мощности холостого хода $\cos \phi_{0\text{ном}} = 0,08$. Соединение обмоток трансформатора Y/Y. Частота переменного тока сети f = 50 Гц. Определить параметры намагничивающего контура.

7.2.3 Примерный перечень заданий для решения прикладных задач


- **1.** Определите показание вольтметра в цепи. Дано: E_1 =220 B; E_2 =60 B; E_3 =90 B; R_{01} =0,4 Ом; R_{02} =0,2 Ом; R_{03} =0,1 Ом; R_1 =40 Ом; R_2 =16 Ом; R_3 =45 Ом; R_4 =15 Ом; R_5 =20 Ом; R_V $\rightarrow \infty$.
- **2.** Определите показание ваттметра при разомкнутом и замкнутом выключателе SA. Дано: U=50 B; E=30 B; $R_1=R_3=10$ Ом; $R_2=20$ Ом.

3. Запишите уравнение энергетического баланса для цепи. Определите мощности, отдаваемые источником E_3 и потребляемые приемниками E_2 и R_5 . Дано: E_1 =100 B; E_2 =24 B; E_3 =12 B; R_{01} =0,6 Oм; R_{02} =0,2 Oм; R_1 =4,4 Ом; R_2 =3,8 Ом; R_3 =2 Ом; R_4 =12 Ом; R_5 =6 Ом; I_1 =5,95 A; I_2 =-2,63 A; I_3 =3,32 A.


- **4.** Задана полная номинальная мощность трехфазного трансформатора Sном =100 кВА, номинальные мощности холостого хода P_0 = 0,465кВт и короткого замыкания $P_{\rm K}$ =1,97 кВт , коэффициент мощности нагрузки $\cos \phi 2$ = 0,8 . Соединение обмоток трансформатора Y/Y. Частота переменного тока $\cot f$ = 50 Γ ц. Определить коэффициент полезного действия при номинальной нагрузке и максимальный КПД.
- **5.** В каких режимах работают электрические машины с ЭДС E_1 и E_2 ? Определите токи в цепи. Дано: E_1 = E_2 =240 B; R_3 =30 Ом.


6. Три приемника электрической энергии подключены к сети с напряжением U, причем первый присоединен последовательно со вторым и треть-

им, которые между собой соединены параллельно. Дано: Q_1 =0,25 кBAp; сов ϕ_1 =0,625; ϕ_1 >0; S_2 =2,6 кBA; ϕ_2 =-60°; P_3 =1,2 кBT; U_2 =200 В (напряжение на параллельных приемниках). Изобразите схему замещения цепи. Определите напряжение сети и токи приемников. Постройте векторную диаграмму.

7. Как изменится яркость свечения лампы EL1 после подключения выключателем SA такой же ламы EL2? Какая из ламп после этого будет светиться ярче? Дано: $R_{-}=X_$

- **8.** В трехфазную электрическую сеть с линейным напряжением 380 В включен трехфазный приемник. Дано: мощность фаз приемника: S_a =5,2 кВA; Q_B =4,5 кВAр; P_c =2,6 кВт; ϕ_a = ϕ_e = ϕ_c =-60°. Изобразите схему замещения цепи. Определите все мощности трехфазного приемника, фазные токи и сопротивления фаз. Постройте векторную диаграмму.
- **9.** Трехфазный приемник потребляет из сети реактивную мощность Q=4,647 кВАр. Полные сопротивления фаз $Z_a = Z_B = Z_c = 25$ Ом при $\phi_a = \phi_B = \phi_c = -53,1^\circ$. Изобразите схему замещения цепи. Определите комплексы фазных и линейных напряжений. Постройте векторную диаграмму.
- **10.** На рисунке приведена принципиальная схема трехфазной цепи с несимметричной нагрузкой (при включении однофазных приемников). Дано: U=380 B; аргументы приемников ϕ_a = 0°; ϕ_b = 60°; ϕ_c = 30°; показания амперметров I_{A1} =25 A; I_{A2} =10 A; I_{A3} =20 A. Определите показание I_{A4} , активные и реактивные сопротивления фаз. Постройте векторную диаграмму.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Понятие электрической цепи. Ток, напряжение, ЭДС, мощность в цепи. Основные элементы электрической цепи.
 - 2. Источники и приемники электрической энергии. Баланс мощностей.
 - 3. Законы Ома и Кирхгофа.
- 4. Составление уравнений для расчета цепи постоянного тока на основе законов Кирхгофа (на примере).
- 5. Составление уравнений для расчета цепи постоянного тока методом контурных токов (на примере).
 - 6. Эквивалентные преобразования в электрических цепях.
- 7. Основные параметры синусоидального сигнала: амплитуда, частота, фаза. Среднее и действующее значения.
 - 8. Линейные элементы R, L, C в цепи синусоидального тока.
- 9. Последовательное соединение элементов R, L, C. Комплексное сопротивление.
 - 10. Векторные диаграммы. Активная, реактивная и полная мощность.
 - 11. Резонанс напряжений.
- 12. Трехфазная симметричная система ЭДС. Получение трехфазной системы ЭДС.
- 13. Схемы соединения трехфазных цепей. Линейные и фазные напряжения и токи.
- 14. Трансформатор: устройство и принцип действия. Соотношения для токов и напряжений обмоток и числа витков.
- 15. Электрические машины постоянного и переменного тока. Синхронные и асинхронные двигатели и генераторы.
- 16. Методы измерений электрических и магнитных величин. Погрешности измерений.
- 17. Принцип действия магнитоэлектрических, электромагнитных, электродинамических и электростатических приборов.
 - 18. Измерение токов, напряжений и мощностей.
 - 19. Собственная и примесная электропроводность полупроводников.
 - 20. Выпрямительные диоды.
 - 21. Стабилитроны.
 - 22. Фотодиоды и светодиоды.
 - 23. Тиристоры.
 - 24. Структура и принцип действия биполярного транзистора.
 - 25. Схемы включения биполярного транзистора.
 - 26. Характеристики биполярного транзистора.
 - 27. Полевые транзисторы: принцип действия, характеристики.
 - 28. Структура источника питания электронных устройств.
 - 29. Однофазный однополупериодный выпрямитель.
 - 30. Однофазный мостовой выпрямитель.
 - 31. Усилители постоянного и переменного тока.

- 32. Обратная связь в усилителях.
- 33. Однокаскадный усилитель напряжения.
- 34. Подходы к построению усилительных устройств.
- 35. Общие свойства устройств с операционными усилителями.
- 36. Основные виды линейных схем на основе операционных усилителей.
- 37. Режимы возбуждения генератора. Условия самовозбуждения.
- 38. *LC* генераторы.
- 39. *RC*-генераторы.
- 40. Основные логические операции. Виды логических элементов. Таблицы истинности элементов И, ИЛИ, НЕ.
 - 41. Шифраторы и дешифраторы.
 - 42. Мультиплексоры и демультиплексоры.
- 43. Триггеры, их классификация по способу записи и функциональному назначению.
 - 44. Триггер *RS*-типа.
 - **45**. Триггер *D*-типа.
 - **46**. *Т*-триггер.
 - 47. *JК*-триггер.
 - 48. Двоичный и двоично-десятичный счетчики.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Экзамен по дисциплине не предусмотрен учебным планом.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится в форме Зачета по тест-билетам, каждый из которых содержит 5 вопросов, 5 стандартных задач и 5 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов — 15.

- 1. Оценка «Зачтено» ставится в случае, если студент набрал не менее 10 баллов.
- 2. Оценка «Незачтено» ставится, если студент набрал менее 9 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п 1	Контролируемые разделы (темы) дисциплины Линейные электрические цепи постоянного тока	Код контро- лируемой компетенции (или ее части) ОК-8, ОК-9, ОК-10	Наименование оценочного средства Тест, зачет, устный опрос, решение стандартных и прикладных задач
2	Анализ периодических процессов в линейных цепях	OK-8, OK-9, OK-10	Тест, зачет, устный опрос, решение стандартных и прикладных задач
3	Электрические машины и трансформаторы, средства измерения	, ,	Тест, зачет, устный опрос, решение стандартных и прикладных задач
4	Полупроводниковые элементы и основы микроэлектроники	OK-8, OK-9, OK-10	Тест, зачет, устный опрос, решение стандартных и прикладных задач
5	Аналоговая схемотехника	OK-8, OK-9, OK-10	Тест, зачет, устный опрос, решение стандартных и прикладных задач
6	Цифровая схемотехника	ОК-8, ОК-9, ОК-10	Тест, зачет, устный опрос, решение стандартных и прикладных задач

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется

проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Кузовкин, В. А.Электротехника и электроника: учебник для бакалавров / В. А. Кузовкин, В. В. Филатов - М.: Юрайт, 2013. - 431 с.
- 2. Миловзоров, О. В. Электроника: учебник / О. В. Миловзоров, И. Г. Панков 3-е изд., стереотип. : Высш. шк., 2006. 288 с.
- 3. Попова, Т. В. Анализ линейных электрических цепей, электротехнических машин и аппаратов: лабораторный практикум: учеб. пособие / Т. В. Попова, Д. А. Тонн. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2016. 206 с.
- 4. Попова, Т. В. Расчет линейных электрических цепей, параметров и основных характеристик электротехнических машин и трансформаторов: практикум: учеб. пособие /Т.В. Попова, Д.А. Тонн. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2016. 99 с.
- 5. Миловзоров, О.В. Электроника: Учебник для бакалавров / О. В. Миловзоров, И. Г. Панков 5-е изд., перераб. и доп. М.: Юрайт, 2013. 407 с. (Бакалавр. Базовый курс).
- 6. Новожилов, О. П. Электротехника и электроника: Учебник / О. П. Новожилов М.: Гардарики, 2008. 653 с.
- 7. Иванов, И. И. Электротехника: Учеб. пособие / И. И. Иванов, Г. И. Соловьев Г.И.- 6-е изд., стереотип. СПб.; М.; Краснодар: Лань, 2009. 496 с.
- 8. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи: Учеб. для вузов / Л.А. Бессонов. 10-е изд. М.: Гардарики, 2002. 638 с.: ил.
- 9. Белов, Н.В. Электротехника и основы электроники [Электронный ресурс]: учебное пособие / Н.В. Белов, Ю.С. Волков. Электрон. дан. Санкт-Петербург: Лань, 2012. 432 с. Режим доступа: https://e.lanbook.com/book/3553.
- 10. Ермуратский, П. В. Электротехника и электроника [Электронный ресурс] : учебник / П. В. Ермуратский, Г. П. Лычкина, Ю. Б. Минкин. Электрон. дан. Москва: ДМК Пресс, 2011. 417 с. Режим доступа: https://e.lanbook.com/book/908.
- 11. Кравчук, Д.А. Электротехника и электроника [Электронный ресурс] : учебное пособие / Д.А. Кравчук, С.С. Снесарев. Электрон. дан. Ростов-на-Дону: ЮФУ, 2016. 100 с. Режим доступа:

https://e.lanbook.com/book/114421.

- 12. Гордеев-Бургвиц М.А. Общая электротехника и электроника [Электронный ресурс]: учебное пособие/ Гордеев-Бургвиц М.А.— Электрон. текстовые данные.— М.: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2015.— 331 с.— Режим доступа: http://www.iprbookshop.ru/35441.html.— ЭБС «IPRbooks»
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсовинформационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем
 - OpenOffice Text.
 - OpenOffice Calc.
 - https://cyberleninka.ru/,
 - https://studopedia.org/,
 - https://students-library.com/.
 - https://e.lanbook.com/,
 - http://www.iprbookshop.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой (видеопроектор Epson). Специализированные лаборатории, оснащенные лабораторными стендами 144/3, 143/3, 139/3.

10.МЕТОДИЧЕСКИЕУКАЗАНИЯДЛЯОБУЧАЮЩИХСЯПООСВ ОЕНИЮДИСЦИПЛИНЫ(МОДУЛЯ)

По дисциплине «Электротехника и электроника» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета электрических цепей, электрических машин и аппаратов, устройств электроники. Занятия проводятся путем решения конкретных задач в аудитории.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию обо всех видах самостоятельной работы студенты получают на занятиях.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом три дня эффективнее всего использовать для повторения и систематизации материала.