МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

	УТВЕРЖДАЮ				
Дека	н факультета I	ET9	В.А. Небольсин		
	«C	30» августа 201	7 г.		
	АЯ ПРОГРАМ цисциплины ия измерений				
Направление подготовки 28.03.	02 Наноинжен	ерия			
Профиль Инженерные нанотехно	ологии в прибо	ростроении			
Квалификация выпускника Бак	калавр				
Нормативный период обучения	<u>4 года</u>				
Форма обучения очная					
Год начала подготовки <u>2017</u>					
Автор программы		/Липатов Г.И.	/		
Заведующий кафедрой Полупроводниковой электроники и наноэлектроники		/Рембеза С.И./	/		
Руководитель ОПОП		/Липатов Г.И.	/		

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Формирование у обучающихся знаний, умений, навыков и компетенций по основам обработки сигналов на системном уровне и использовании среды графического программирования LabVIEW.

1.2. Задачи освоения дисциплины:

Знать современную компонентную базу, методы измерения и принципы построения измерительных блоков устройств микросистемной техники, в том числе на основе применения средств вычислительной техники.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Автоматизация измерений и контроля» относится к дисциплинам вариативной части блока Б1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Автоматизация измерений и контроля» направлен на формирование следующих компетенций:

ПК-1 —Способность в составе коллектива участвовать в разработке макетов изделий и их модулей, разрабатывать программные средства, применять контрольно-измерительную аппаратуру для определения технических характеристик макетов;

ПКВ-4 — Способность проектировать и анализировать электрические схемы обработки сигналов (аналоговых и цифровых).

Компе-	Результаты обучения, характеризующие					
тенция	сформированность компетенции					
ПК-1	знает методы аппаратного и программного обеспечения обработки					
	сигналов для автоматизации измерений и контроля					
	умеет программировать в среде графического программирования					
	LabVIEW					
	владеет навыками применения контрольно-измерительной аппарату-					
	ру для определения технических характеристик макетов					
ПКВ-4	знает общую характеристику сигналов, методы их описания и модели					
	умеет осуществлять формализацию и алгоритмизацию функциониро-					
	вания исследуемой системы					
	владеет методами анализа и расчета характеристик систем обработки					
	сигналов					

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Автоматизация измерений и контроля» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий:

очная форма обучения

Dyggy ywas was a mas a my	Всего	Семестры
Виды учебной работы	часов	7
Аудиторные занятия (всего)	72	72
В том числе:		
лекции	36	36
лабораторные работы (лр)	36	36
Самостоятельная работа	72	72
Часы на контроль	36	36
Виды промежуточной аттестации — экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
3.e.	5	5

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

$N_{\underline{0}}$	Наименование	Санаруанна рариана	Лек-	Лаб.	CPC	Всего
Π/Π	раздела	Содержание раздела	ции	зан.	CrC	часов
1	Общие сведения о датчиках физических величин и измерительных системах. Принципы построения измерительных систем	Цели и задачи автоматизации измерений. Обобщенные структурные схемы процессов измерения и контроля. Основные принципы построения средств автоматизированного контроля. Базовые элементы технического обеспечения автоматических систем измерений и контроля	8	8	12	28
2	Интерфейсные электронные схемы	Входные характеристики интерфейсных схем. Усилители. Схемы возбуждения. Аналого-цифровые преобразователи (АЦП). Прямая дискретизация и обработка сигналов. Измерители отношений сигналов. Мостовые схемы	16	16	24	56
3	Шумы в датчиках и интерфейсных схемах	Шумы в датчиках и интерфейсных схемах	4		8	12
4	Системы сбора и передачи и данных	Системы сбора и передачи и данных	4	8	12	24
5	Обработка сигналов на системном уровне с использованием LabVIEW	Основы программирования в графической среде LABVIEW. Генерация, анализ и обработка сигналов с использованием LabVIEW. Применение среды программирования LabVIEW	4	4	16	24

Итого 36 36 72 144

5.2 Перечень лабораторных работ

1. Анализ линейной стационарной системы с использованием метода передаточных функций.

- 2. Применение операционных усилителей в схемах обработки аналоговых сигналов
 - 3. Исследование активных аналоговых фильтров
 - 4. Измерительные усилители и мосты.
 - 5. Создание простого ВП.
 - 6. Создание ВП «Температурный анализ».
 - 7. Дискретизация, квантование и восстановление сигнала.

5.3 Перечень практических занятий

Не предусмотрены учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы в 7 семестре.

Примерная тематика курсовых работ:

- 1. Детектирование сигналов мостового резистивного датчика давления
- 2. Детектирование сигналов мостового емкостного датчика давления
- 3. Использование метода $\Delta\Sigma$ модуляции при цифровом считывании
- 4. Использование аналоговой обратной связи в схемах считывания акселерометров
 - 5. $\Delta\Sigma$ АЦП для считывания без ОС
- 6. Использование метода коррелированной двойной выборки в емкостном детектировании
- 7. Использование цифровой обратной связи в схемах считывания акселерометров
- 8. Использование метода стабилизации прерыванием в емкостном детектировании
- 9. Высокоразрешающие схемы емкостного считывания методом непрерывного преобразования
- 10. Схемы выборки/хранения с использованием переключаемых конденсаторов

Задачи, решаемые при выполнении курсовой работы:

изучение современной компонентной базы, методов измерений и принципов построения измерительных блоков устройств микросистемной техники.

Курсовая работа включает в себя пояснительную записку с рассмотрением принципа работы и архитектуры интерфейсной схемы датчика на основе МЭМС и принципиальную схему (схемы) входящих в интерфейсную схему блоков, и презентацию.

Учебным планом по дисциплине «Автоматизация измерений и контроля» не предусмотрено выполнение контрольной работы (контрольных работ).

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Ком- петен- ция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	знает методы аппаратного и программного обеспечения обработки сигналов для автоматизации измерений и контроля	Выполнение лаборатор- ных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	умеет программировать в среде графического программирования LabVIEW	Выполнение лаборатор- ных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеет навыками применения контрольно-измерительную аппаратуру для определения технических характеристик макетов	Выполнение лаборатор- ных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмот- ренный в рабочих программах
ПКВ-4	знает общую характери- стику сигналов, методы их описания и модели	Выполнение лаборатор- ных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмот- ренный в рабочих программах
	умеет осуществлять формализацию и алгоритмизацию функционирования исследуемой системы владеет методами анализа	Выполнение лаборатор- ных работ Выполнение	срок, предусмот- ренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах Невыполнение работ
	и расчета характеристик	лаборатор-	срок, предусмот-	в срок, предусмот-

систем обработки сигна-	ных работ	ренный в рабочих	ренный в рабочих
лов		программах	программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 7 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«не удовлетворительно».

Ком- петен- ция	Результаты обучения, характеризующие сформированность компетенции	Крите- рии оце- нивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-1	знает методы аппаратного и программного обеспечения обработки сигналов для автоматизации измерений и контроля	Тест	Выполнение теста на 90—100 %	Выполнение теста на 80— 90 %	Выполнение теста на 70—80 %	В тесте менее 70 % пра- вильных ответов
	умеет программировать в среде графического программирования Lab-VIEW	Решение стан- дартных практи- ческих задач	Задачи решены в полном объеме и получены верные ответы	Продемон- стрирован вер- ный ход реше- ния всех, но не получен вер- ный ответ во всех задачах	Проде- монстри- рован вер- ный ход решения в большин- стве задач	Задачи не решены
	владеет навыками применения контрольно- измерительную аппаратуру для определения технических характеристик макетов	Решение приклад- ных за- дач	Задачи решены в полном объеме и получены верные ответы	Продемон- стрирован вер- ный ход реше- ния всех, но не получен вер- ный ответ во всех задачах	Проде- монстри- рован вер- ный ход решения в большин- стве задач	Задачи не решены
ПКВ-4	знает общую характеристику сигналов, методы их описания и модели	Тест	Выполнение теста на 90— 100 %	Выполнение теста на 80— 90 %	Выполнение теста на 70—80 %	В тесте менее 70 % пра- вильных ответов
	умеет осуществлять формализацию и алгоритмизацию функционирования исследуемой системы	Решение стан- дартных практи- ческих задач	Задачи решены в полном объеме и получены верные ответы	Продемон- стрирован вер- ный ход реше- ния всех, но не получен вер- ный ответ во всех задачах	Проде- монстри- рован вер- ный ход решения в большин- стве задач	Задачи не решены
	владеет методами анали- за и расчета характери- стик систем обработки сигналов	Решение приклад- ных за- дач	Задачи решены в полном объеме и получены	Продемон- стрирован вер- ный ход реше- ния всех, но не	Проде- монстри- рован вер- ный ход решения в	Задачи не решены

				_		
		верные	ный ответ во	большин-		
		ответы	всех задачах	стве задач	1	

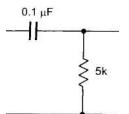
7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и(или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Какой тип обратной связи образуется при подключении навесного элемента между выходом и инверсным входом ОУ?
 - А) положительная обратная связь;
 - Б) отрицательная обратная связь.
- 2. Чем определяется коэффициент усиления усилителя на ОУ внешними элементами или ОУ, если коэффициент усиления ОУ очень велик?
 - А) внешними элементами;
 - Б) коэффициентом усиления ОУ;
 - В) внешними элементами и коэффициентом усиления ОУ.
- 3. Какова разность фаз между входным и выходным сигналами неинвертирующего усилителя на ОУ?
 - A) -180° ;
 - Б) 0°;
 - B) 90°;
 - Γ) 180°.
- 4. Как изменятся постоянные времени и коэффициент передачи апериодического второго порядка или колебательного звена при охвате его жесткой отрицательной обратной связью с коэффициентом передачи k_0 ?
 - А) постоянные времени и коэффициент передачи увеличатся;
 - Б) постоянные времени и коэффициент передачи уменьшатся;
 - В) постоянные времени увеличатся, коэффициент передачи уменьшится;
 - Г) постоянные времени уменьшатся, коэффициент передачи увеличится;
 - Д) постоянная времени увеличится, коэффициент передачи не изменится.
- 5. Как изменятся постоянная времени и коэффициент передачи апериодического звена первого порядка, если его охватить идеальной гибкой отрицательной обратной связью с передаточной функцией цепи обратной связи $W_{0,c}(s)=k_0s$?
 - А) постоянная времени и коэффициент передачи увеличатся;
 - Б) постоянная времени и коэффициент передачи уменьшатся;
 - В) постоянная времени увеличится, коэффициент передачи уменьшится;
 - Г) постоянная времени уменьшится, коэффициент передачи увеличится;
 - Д) постоянная времени увеличится, коэффициент передачи не изменится.
 - 6. Два звена первого порядка различаются только постоянной времени,

причем $T_1>T_2$. У какого звена полоса пропускания шире? Какое звено быстрее воспроизводит ступенчатый и линейный сигналы?

- А) у первого звена полоса пропускания шире и оно быстрее воспроизводит ступенчатый и линейный сигналы;
- Б) у второго звена полоса пропускания шире и оно быстрее воспроизводит ступенчатый и линейный сигналы;
- В) у первого звена полоса пропускания шире, но второе звено быстрее воспроизводит ступенчатый и линейный сигналы;
- Г) у второго звена полоса пропускания шире, но первое звено быстрее воспроизводит ступенчатый и линейный сигналы.
- 7. Что обеспечивает сигма-дельта модуляция в схемах аналого-цифрового преобразования?
 - А) передискретизацию и высокое разрешение;
 - Б) передискретизацию и низкий уровень шума;
 - В) низкий уровень шума и высокое разрешение.
- 8. При каких условиях возможно возникновение колебаний в системе с контуром обратной связи?
 - А) равный единице коэффициент передачи контура;
 - Б) полный фазовый сдвиг замкнутой системы в 360°;
- В) равный единице коэффициент передачи контура и полный фазовый сдвиг замкнутой системы в 360°.
 - 9. Каково назначение опережающего (по фазе) компенсатора?
 - А) ускорение процесса считывания;
 - Б) добавление нуля к системе;
 - В) уменьшение амплитуды колебаний инерционной массы.
 - 10. Назначение пусковой схемы?
 - А) удержание инерционной массы посредине между электродами;
 - Б) запуск схемы считывания;
 - В) генерация тактовых импульсов.

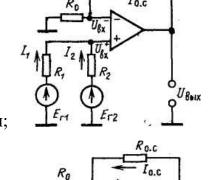

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Дайте определение понятия «автоматизация». Перечислите научные, технические, экономические и социальные цели автоматизации.
- 2. На основании анализа обобщенной структурной схемы средств измерений сформулируйте задачи автоматизации.
- 3. Проведите сопоставительный анализ обобщенных схем измерительных систем с аналоговой и цифровой передачей сигнала.
- 4. Перечислите типовые подсистемы средств автоматического контроля и поясните их назначение.
- 5. Каким должно быть соотношение точности средства контроля и точности контролируемого параметра изделия?

- 6. Методы измерений; чувствительность, линейность, диапазон, нулевая точка измерения.
- 7. Что такое синфазная помеха, как она проявляется в дифференциальном, инвертирующем и неинвертирующем усилителях?
 - 8. Опишите принцип построения схемы сумматора на ОУ.
- 9. Объясните влияние напряжения смещения нуля ОУ на ошибку суммирования постоянных напряжений.
- 10. Что такое масштабирующий преобразователь, какие схемы используются для его реализации?
- 11. Опишите принцип построения схемы интегратора на ОУ. Какие функции может выполнять интегратор, кроме основного назначения?
- 12. Зависит ли выходное напряжение дифференцирующего каскада от скорости изменения входного напряжения? Пояснить.
- 13. Зависит ли выходное напряжение дифференцирующего каскада от величины сопротивления в цепи обратной связи?
- 14.3ависит ли выходное напряжение дифференцирующего каскада от емкости конденсатора C?
- 15. Почему выходное напряжение дифференцирующего каскада пропорционально отрицательному значению производной входного напряжения?
- 16. Опишите принцип построения схемы дифференциатора на ОУ. Какие функции может выполнять дифференциатор, кроме основного назначения?
 - 17. Принцип работы и назначение компаратора в схемах считывания.
- 18. Принцип работы схемы считывания емкостного сигнала с переключаемыми конденсаторами?
- 19. Принцип работы сигма-дельта модуляторов в аналого-цифровых преобразователях.
 - 20. Цели использования фильтров в системах считывания и контроля?
 - 21. Основные компоненты ВП?
 - 22. Что представляет собой лицевая панель ВП?
 - 23. Назначение блок-диаграммы ВП.

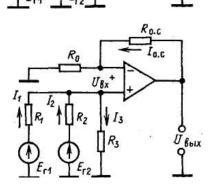
7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Найдите передаточную функцию пружины и демпфера, если пренебречь влиянием массы подвижных частей и принять за входную величину силу F, а за выходную перемещение точки A (поршня) x.
- 2. Постройте АФЧХ, ЛАЧХ и ЛФЧХ звена с передаточной функцией $W(s)=8/(1+0.025s)^2$.
- 3. Напряжение на входе фильтра, приведенного на рисунке, скачком изменяется от 0 до +5 В. Найдите зависимость



напряжения на выходе фильтра от времени и рассчитайте время, необходимое для установления на выходе напряжения 0.1 В.

- 4. Определите передаточную функцию фильтра, схема которого приведена на рисунке. При каких условиях данная схема может быть использована в качестве аналогового интегратора?
- 6. Рассчитайте простой RC фильтр для подавления помех на частоте 50 Γ ц на 40 дБ. Оцените эффективность этого фильтра для следующих сигналов: (a) 500 Γ ц, 0,8 B CK3 (CK3 среднеквадратическое значение); (б) 10 к Γ ц, 1,2 B CK3.



- 5. В схеме $E_{\rm r1}$ = $E_{\rm r2}$ =1 В; $R_{\rm 1}$ = $R_{\rm 2}$ =10 кОм; $R_{\rm 0.c}$ =20 кОм; $R_{\rm 0.c}$ =100 кОм. Чему равны напряжения на инвертирующем входе $U_{\rm BX}^-$ и выходе $U_{\rm BX}$? Чему равен ток в цепи обратной связи $I_{\rm 0.c}$? Считать операционный усилитель идеальным.
- 10. В схеме $E_{\rm rl}$ =1 В; $E_{\rm r2}$ =2 В; $R_{\rm l}$ = $R_{\rm 2}$ =10 кОм; $R_{\rm 3}$ =20 кОм; $R_{\rm 0}$ =20 кОм; $R_{\rm o.c}$ =100 кОм. Найти напряжение на выходе $U_{\rm вых}$, токи $I_{\rm l}$ — $I_{\rm 3}$. Считать операционный усилитель идеальным.
- 8. Каково должно быть минимальное входное сопротивление предусилителя для обеспечения передачи на вход не менее 95 % напряжения сигнала, если выходное сопротивление преобразователя 1,2 МОм?
- 7. В схеме $E_{\rm rl}$ =4 В; $E_{\rm r2}$ =-2 В; $R_{\rm l}$ =20 кОм; $R_{\rm 2}$ =10 кОм; $R_{\rm 3}$ =20 кОм. Чему равны напряжение на выходе $U_{\rm вых}$ и ток в цепи обратной связи $I_{\rm o,c}$?

1 R, 12 1 R2

c =

7.2.4 Примерный перечень вопросов для подготовки к зачету

Не предусмотрено учебным планом.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Классификация датчиков физических величин и измерительные схемы
- 2. Основные характеристики преобразователей и требования к аналогоцифровым системам.
 - 3. Описание систем с помощью передаточных функций
- 4. Применение операционных усилителей в схемах обработки аналоговых сигналов
 - 5. Измерительные усилители и мосты
 - 6. Фильтры первого и второго порядков
 - 7. Активные аналоговые фильтры
 - 8. Дискретизация и квантование сигналов
 - 9. ФНЧ с обратной связью. Варианты НЧ-фильтров
- 10. Транскондактансные усилители с транзисторами в активном (насыщенном) режиме
- 11. Транскондактансные усилители с транзисторами в линейном (триодном) режиме
 - 12. Устройства выборки и хранения
 - 13. Принцип работы схем на переключаемых конденсаторах
 - 14. Интеграторы на переключаемых конденсаторах
 - 15. Компараторы: структура и параметры
 - 16. ЦАП с ΣΔ-модулятором
 - 17. Сигма-дельта АЦП
 - 18. Принцип работы ΣΔ-модулятора
 - 19. Варианты ΣΔ-модуляторов
 - 20. Среда программирования LabVIEW: характеристика и особенности

7.2.5. Методика выставления оценки при проведении промежуточной аттестации

Оценка	Критерии оценок					
Отлично	Корректное использование широкого спектра научных понятий.					
	Рассуждения логически непротиворечивы, последовательны, вы-					
	явлены причинно-следственные связи, осуществлен последова-					
	тельный анализ проблемы, все выводы обоснованы достоверной					
	фактологической базой. Продемонстрировано умение целостно					
	видеть проблему, выделять ее ключевое звено.					
Хорошо	Достаточный уровень знаний. Может быть продемонстрирова					
	знание основных принципов и концепций при наличии некото-					
	рых несущественных пробелов. Целостное видение рассматри-					
	ваемой проблемы присутствует, но не до конца выражено в ав-					
	торском анализе.					
Удовлетво-	Удовлетворительный уровень знаний. Налицо ряд пробелов в					
рительно	знании основных принципов и концепций. Анализ проблемы					
	проведен фрагментарно. Выводы в основном верные, но в рас-					

	суждении допущены логические пробелы, мешающие целостно-
	му видению рассматриваемой проблемы.
Неудовле-	Низкий уровень знаний. Допущены существенные ошибки. От-
творительно	сутствие логических рассуждений, понимания проблемы, не-
	обоснованность выводов.

7.2.6 Паспорт оценочных материалов

No॒	Контролируемые разделы	Код контролируемой	Наименование оценочного сред-
Π/Π	дисциплины	компетенции	ства
1	Общие сведения о датчиках	ПК-1, ПКВ-4	Ответы на вопросы в билете и эк-
	физических величин и измери-		заменатора, решение прикладной
	тельных системах. Принципы		задачи, результаты защиты курсо-
	построения измерительных си-		вой работы
	стем		
2	Интерфейсные электронные схе-	ПК-1, ПКВ-4	Ответы на вопросы в билете и эк-
	МЫ		заменатора, решение прикладной
			задачи, результаты защиты курсо-
			вой работы
3	Шумы в датчиках и интер-	ПК-1, ПКВ-4	Ответы на вопросы в билете и эк-
	фейсных схемах		заменатора, решение прикладной
			задачи, результаты защиты курсо-
			вой работы
4	Системы сбора и передачи дан-	ПК-1, ПКВ-4	Ответы на вопросы в билете и эк-
	ных		заменатора, решение прикладной
			задачи, результаты защиты курсо-
			вой работы
5	Обработка сигналов на систем-	ПК-1, ПКВ-4	Ответы на вопросы в билете и эк-
	ном уровне с использованием		заменатора, решение прикладной
	LabVIEW		задачи, результаты защиты курсо-
			вой работы

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задачи 20 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к проекту, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисци-

плины

№	Авторы/	Заглавие	Вид и годы	Обеспе-
п/п	составители		издания	ченность
	T	8.1.1 Основная литература	T	1 .
Л1.1	Клаассен К.	Основы измерений. Электронные методы и	Учеб. посо-	1
		приборы в измерительной технике. — М.:	бие, 2000	
		Постмаркет, 2000. —352 с.		
Л1.2	Фрайден Дж.	Современные датчики. Справочник. — М.: Тех-	Справоч-	1
		носфера, 2006. — 592 с.	ник, 2006	
JI1.3	Джексон Р.	Новейшие датчики. — М.: Техносфера, 2007. —	Справоч-	1
		384 c. URL: https://www.elibrary.ru/item.asp?id	ник, 2007	
		<u>=19590924</u>		
	h c	8.1.2 Дополнительная литература		
Л2.1	Макс Ж.	Методы и техника обработки сигналов при фи-	Моногра-	0,1
		зических измерениях: В 2-х томах. — М.: Мир, 1983. — Т.1. 312 с. Т.2. 256 с.	фия, 1983	
Л2.2	Ратхор Т.	Цифровые измерения. Методы и схемотехника.	Моногра-	0,1
	1	— M.: Техносфера, 2006.	фия, 2006	
Л2.3	Топильский	Схемотехника измерительных устройств. — М.:	Учеб. посо-	1
	В.Б.	БИНОМ. Лаборатория знаний, 2006. — 232 с.	бие, 2006	
		URL: http://publ.lib.ru/shemotehnika_iz-		
		meritel'nyh_ystroystv.(2010).[djv-fax].zip		
Л2.4	Топильский	Микроэлектронные измерительные преобразо-	Учеб. посо-	1
	В.Б.	ватели. — М.: БИНОМ. Лаборатория знаний,	бие, 2013	
		2013. — 493 c. https://e.lanbook.com/book/70733		
Л2.5	Под ред. У.	Проектирование систем цифровой и смешанной	Учеб. посо-	0,5
	Кестера	обработки сигналов. — М.: Техносфера, 2010.	бие, 2010	
		— 328 c.		
Л2.6	Лапин А.	Интерфейсы. Выбор и реализация. — М.: Тех-	Моногра-	0,1
		носфера, 2005.	фия, 2005	
Л2.7	Бутыркин	Автоматизация физических исследований и	Моногра-	1
	П.А., Васи-	эксперимента: компьютерные измерения и вир-	фия, 2005	
	левская Т.В.,	туальные приборы на основе LabVIEW 7. — М.:		
	Каротков В.В.	ДМК Пресс, 2005. — 264 с. URL:		
по	A *	https://e.lanbook.com/book/1089		1
Л2.8	Аллен Ф.,	Электронные схемы с переключаемыми конден-	Моногра-	1
	Санчес-	саторами. — М.: Радио и связь, 1989. — 576 с.	фия, 1989	
	Синенсио Э.	URL: http://elib.pstu.ru/vufind/Rec-ord/RUPSTUbooks133261		
Л3.1	Дьяконов В.П	8.1.3 Методические разработки МаtchCAD 2001: специальный справочник. —	Справоч-	1
713.1	дьякопов В.П	СПб.: Питер, 2002. — 832 с.	ник, 2002	1
Л3.2	Ивановский	Компьютерные технологии в науке и образова-	Учеб. посо-	1
71.7.2	Р.И.	нии. Практика применения систем MathCAD	бие, 2003	1
	1 .11.	Pro. — М.: Высш. шк., 2003. — 431 с.	one, 2003	
Л3.3	Кехтарнаваз	Цифровая обработка сигналов на системном	Моногра-	1
-10.0	110/11upiiubus	Tarapasar copacotina cirriatios na chetemnom	1,101101 pa	1

	Н., Ким Н.	уровне с использованием LabVIEW. — М.: ИД	фия, 2007	
		«Додэка-XXI», 2007. — 304 с.		
Л3.4	Батоврин В.К.,	LabVIEW: практикум по основам измеритель-	Учеб. посо-	1
	Бессонов А.А.	ных технологий. — М.: ДМК Пресс, 2005. —	бие, 2005	
		208 c.		

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационнотелекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Давыдов А.В. Сигналы и системы. Лекции и практикум на ПК // http://prodav.narod.ru/signals/index.html

Давыдов А.В. Цифровая обработка сигналов. Лекции и практикум на ПК // http://prodav.narod.ru/dsp/index.html

Цифровая обработка сигналов // http://dsp-book.narod.ru/

Журнал «Sensors and Actuators» // www.elsevier.com/locate/sna

Системы компьютерной математики MathCAD, MATLAB.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебный компьютерный класс, оснащенный компьютерными программами для выполнения расчетов и рабочими местами для самостоятельной подготовки обучающихся с выходом в Интернет.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

«Автоматизация измерений и контроля»

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Контроль усвоения материала дисциплины производится проверкой выполнения лабораторных работ и тестированием.

Вид учеб-	Деятельность студента			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксиро-			
	вать основные положения, выводы, формулировки, обобщения; помечать важ-			
	ные мысли, выделять ключевые слова, термины. Проверка терминов, понятий			
	с помощью энциклопедий, словарей, справочников с выписыванием толкова-			
	ний в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают			
	трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно			
	не удается разобраться в материале, необходимо сформулировать вопрос и за-			
	дать преподавателю на лекции или на практическом занятии.			

П. С	П.Б			
	Лабораторные работы позволяют научиться применять теоретические знания,			
ная работа	полученные на лекции, при решении конкретных задач. Чтобы наиболее раци-			
	онально и полно использовать все возможности лабораторных занятий, для			
	подготовки к ним необходимо: разобрать лекцию по соответствующей тем			
	ознакомится с соответствующим разделом учебника, проработать дополн			
	тельную литературу и источники, решить задачи и выполнить другие пис			
	менные задания.			
Самостоя-	Самостоятельная работа студентов способствует глубокому усвоения учебного			
тельная ра-	ьная ра- материала и развитию навыков самообразования. Самостоятельная ра			
бота	предполагает следующие составляющие:			
	- работа с текстами: учебниками, справочниками, дополнительной литерату-			
	рой, а также проработка конспектов лекций;			
	- выполнение домашних заданий и расчетов;			
	- работа над темами для самостоятельного изучения;			
	- участие в работе студенческих научных конференций, олимпиад;			
	- подготовка к промежуточной аттестации.			
Подготовка	Готовиться к промежуточной аттестации следует систематически, в течение			
к промежу-	ку- всего семестра. Интенсивная подготовка должна начаться не позднее, чем з			
точной атте-	месяц до промежуточной аттестации. Дни перед зачетом с оценкой эффектив-			
стации	нее всего использовать для повторения и систематизации материала.			

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ π/π	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1			
2			
3			