МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля) «Основы теории сигналов»

Специальность 11.05.01 Радиоэлектронные системы и комплексы Специализация Радиоэлектронные системы передачи информации Квалификация выпускника Инженер Нормативный период обучения 5,5 лет Форма обучения Очная Год начала подготовки 2017 г.

Автор программы		/Володько А.В./
Заведующий кафедрой радиоэлектронных устройств и систем	Joshs	/ Балашов Ю.С./
Руководитель ОПОП	Johns	_/Балашов Ю.С./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины:

Изучить основные методы описания и цифрового моделирования типовых детерминированных и случайных воздействий, сигналов и помех, а также преобразование сигналов в аналоговых и цифровых радиотехнических устройств и систем

1.2. Задачи освоения дисциплины

- - овладение студентами теории и практики цифрового статистического моделирования сигналов и их преобразование в радиотехнических устройствах и системах, в том числе адаптивных;
- изучить основные методы цифрового моделирования типовых детерминированных и случайных воздействий, сигналов и помех, аналоговых и цифровых радиотехнических устройств и систем;
- освоить практические приемы статистического моделирования сигналов, радиоустройств и систем на алгоритмических языках высокого уровня, используемых в современных персональных ЭВМ.

.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Основы теории сигналов» относится к дисциплинам обязательной части блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Основы теории сигналов» направлен на формирование следующих компетенций:

ПК-2 — Способностью разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов, а также принципиальные схемы радиоэлектронных устройств с применением современных САПР и пакетов прикладных программ.

ПСК-2.3 - Способностью проводить оптимизацию радиосистем передачи информации и отдельных ее подсистем;

Компетенция	Результаты обучения, характеризующие сформированность компетенции		
ПК-2	ИД-1 _{ПК-2} Знает основные принципы функционирования современных радиосистем передачи информации .		
	ИД-2 _{ПК-2} Умеет осуществлять анализ и синтез функциональных схем радио систем передачи информации		
	ИД-3 _{ПК-2} Владеет навыками применения современных прикладных программных пакетов для проектирования радиосистем передачи информации		
ПСК-2.3	ИД-1 _{ПСК-2.3} Знает предельные соотношения оптимизации современных радиосистем передачи данных ИД-2 _{ПСК-2.3} Умеет проводить оптимизацию радиосистем		
	передачи данных ИД-3 _{ПСК-2.3} Владеет способностью проводить оптимизацию структуры систем радиосвязи с позиций повышения их основных характеристик.		

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины составляет 4 зачетных единиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы		Всего	Сем	естр	Ы	
		часов	6			
Аудиторные занятия (всего)		54	54			
В том числе:						
Лекции		18	18			
Практические занятия (ПЗ)		18	18			
Лабораторные работы (ЛР)		18	18			
Самостоятельная работа		90	90			
Курсовой проект		-	1			
Контрольная работа		-	-			
Вид промежуточной аттестации		Зачет с	Зачет с			
		оценкой	оценкой			
Общая трудоемкость	час	144	144			
	зач. ед.	4	4			

Заочная форма обучения

Заочная форма обучения не предусмотрена учебным планом

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

		очная форма обучения	<u> </u>				
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Все го, час
1	Предмет и задачи курса, связь с другими дисциплинами. Особенности исследования радиосистем и радиоустройств методами математического моделирования	Определение цифрового математическое моделирование. Место цифрового математического моделирования при проектировании радиотехнических систем и устройств. Виды моделирования радиотехнических устройств и систем. Причины использования цифрового моделирования при разработке адаптивных радиосистем. Структура, цели и содержание курса, его связь с другими курсами. Роль курса в подготовке квалифицированного радиоинженера. Функциональный принцип моделирования радиосистем. Виды функционального моделирования. Основные этапы исследования методами цифрового математического моделирования. Моделирования непрерывных детерминированных сигналов и помех. Методы моделирования гармонических сигналов. Его преимущества и недостатки по сравнению с методом, использующим стандартные функции математического обеспечения ЭВМ.	2	2	2	10	16
2	Моделирование случайных воздействий, сигналов и помех	Основные этапы моделирования на ЭВМ случайных процессов с заданными параметрами. Датчики случайных чисел. Основные характеристики датчиков. Линейный конгруэнтный метод моделирования псевдослучайных чисел. Выбор параметров алгоритма. Способы повышения качества датчиков псевдослучайных чисел. Проверка датчиков псевдослучайных последовательностей. Тесты теоретические и эмпирические. Оценивание числовых характеристик и эмпирических законов распределения случайных величин и процессов. Оценка математического ожидания и дисперсии случайных процессов. Гистограмма и полигон. Оценивание корреляционных функций случайных процессов. Рекуррентное оценивание характеристик случайных процессов. Моделирование некоррелированных случайных процессов с заданными законами распределения вероятностей. Метод обратной функции. Моделирование случайной величины с равномерным распределением в заданном интервале.	8	8	8	40	64
3	Моделирование радиотехнически х устройств и систем	Моделирование случайной величины с распределением Релея. Моделирование случайных процессов с обобщенным распределением Релея. Моделирование случайных процессов с заданным распределением по методу	4	4	4	20	32

		 достаточное условие для обеспечения минимума среднего квадрата ошибки выделения полезного сигнала. 					
		Минимум среднего квадрата ошибки на выходе					
		работы адаптивного компенсатора помех.					
		Математическое описание его функционирования. Критерий оптимальности					
		Адаптивный компенсатор помех.					
		телефонных каналов.					
		моделирования. Адаптивного обратного					
		и идентификации систем. Применение адаптивного обратного					
		моделирования для синтеза цифровых фильтров					
		узкополосных помех. Применение адаптивного					
		примеры адаптивных систем. Адаптивный компенсатор помех, режекторный фильтр					
		моделировании аналоговых систем и устройств. Примеры адаптивных систем. Адаптивный					
		(информационного) эквивалента при				-	
		Использование метода статистического	4	4	4	20	32
		Моделирование разомкнутых систем. Моделирование замкнутых систем.					
		систем.					
		систем. Классификация нелинейных устройств и					
		Моделирование нелинейных					
		Представление модели узкополосной системы в виде комплексного цифрового фильтра.					
		Метод комплексных огибающих.					
		систем и устройств.					
		Особенности моделирования узкополосных					
		пространстве состояний.					
		пространства состояний. Составление дифференциальных уравнений модели в					
		дискретными эквивалентами. Метод					
		интегрирования и дифференцирования их					
	радиосистем	Методы замены операторов непрерывного					
	адаптивных	модели в цифровую. Метод дискретной свертки.					
4	Моделирование	Преобразование непрерывной математической					
		нерекурсивного формирующего фильтра.					<u> </u>
		Методы расчета коэффициентов					
		нерекурсивного формирующего фильтра.					
		случайного процесса с коэффициентами					
		моделирования коррелированных случайных процессов. Связь корреляционной функции					
		Метод скользящего суммирования для					
		Метод формирующего фильтра.					
		низкочастотных и полосовых процессов.					
		дискретизации для моделирования					
		входных сигналов и помех. Выбор частоты					
		функциями. Особенности дискретного представления					
		процессов с заданными корреляционными					
		Моделирование нормальных случайных					
		процессов.					
		Моделирование нормальных случайных					
		моделирования случайных процессов с заданным распределением.					
		Метод кусочной аппроксимации для					

5.2 Перечень лабораторных работ

Неделя	Наименование лабораторной работы	Объем	Виды
семестра		часов	контро
			ЛЯ
	6 семестр	18	
1. Особен	ности исследования радиосистем и радиоустройств	2	
методами	математического моделирования		
1	Вводное занятие. Инструктаж по технике безопасности.	2	
	Ознакомление с лабораторными оборудованием и		
	программным обеспечением.		
2. Модели	рование случайных воздействий, сигналов и помех	8	
2	Освоение системы программирования на языке Паскаль.	4	отчет
3	Моделирование случайных последовательностей	4	отчет
3. Модели	рование радиотехнических устройств и систем	4	
4	Моделирование случайных последовательностей с	2	
	заданным распределением вероятностей		
5	Моделирование случайных процессов с заданной	2	
	корреляционной функцией		
4. Модели	рование адаптивных радиосистем	4	
6	Моделирование аналоговых фильтров	2	отчет
7	Моделирование адаптивного компенсатора помех	2	отчет
Итого час	COB	18	

5.3 Практические занятия

Неделя семестра	Тема и содержание практического занятия	Объем часов	Виды контроля
1	Статистические описания процедур извлечение информации в РТС: обнаружение и различение сигналов, оценка и фильтрация неизвестных	2	Выполнение заданий
	параметров сигналов, разрешение сигналов, обобщения на пространственно-временной случай		
3	Основные определения теории вероятностей: математическое ожидание, дисперсия, ковариационный и корреляционный моменты, классификация случайных процессов	2	Выполнение заданий
5	Структура и качественные показатели оптимальных обнаружителей полностью известного сигнала и сигнала со случайными параметрами. Характеристики обнаружения Согласованная фильтрация пачек когерентных радиоимпульсов	2	Выполнение заданий
7	Ансамбли сигналов, ортогональные, и равноудаленные сигналы. Различение сигналов со случайными фазами. Синтез и анализ цифровых устройств обнаружения и различение сигналов	2	Выполнение заданий
9	Структура обнаружителей с бинарным квантованием входного процесса Выбор интервала дискретизации и разрядности аналогово-цифровых преобразователей в цифровых обнаружителях.	2	Выполнение заданий
11	Условные плотности вероятностей случайных величин, априорная и апостериорная плотности вероятностей. Критерии качества оценок неслучайных векторных параметров. Неравенство Крамера-Рао. Байесовские оценки, при различных функциях потерь	2	Выполнение заданий
13	Линейная и нелинейная фильтрация. Использование фильтров Винера и Калмана — Бьюси. Оценки параметров при наличии неинформационных параметров. Алгоритмы и потенциальные точности измерения амплитуды, запаздывания, фазы и частоты сигнала	2	Выполнение заданий
15	Разрешение - обнаружение, разрешение - измерение. Критерий Вудворда, двумерная функция корреляции, функция неопределенности, принцип неопределенности в радиолокации	2	Выполнение заданий

17	Роль принципа неопределенности в задачах разрешения Понятие о синтезе сигналов и фильтров, оптимальных по критериям разрешающей способности.	2	Выполнение заданий
	Итого часов	18	

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Курсовые работы и контрольные работы учебным планом не предусмотрены

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются посредством проведения зачета с оценкой уровня знаний:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компетенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл	Неудовл
	ИД-1 _{ПК-2} Знает основные принципы функционирования современных радиосистем передачи информации .	Тест	Выполнение теста на 90-100%	Выполнени е теста на 80-90%	ие теста	В тесте менее 70% правильны х ответов
	ИД-2 _{ПК-2} Умеет осуществлять анализ и синтез функциональных схем радио систем передачи информации	Тест	Выполнение теста на 90- 100%	Выполне ние теста на 80- 90%	Выполн ение теста на 70-80%	В тесте менее 70% правильн ых ответов
	ИД-3 _{ПК-2} Владеет навыками применения современных прикладных программных пакетов для проектирования радиосистем передачи информации	Тест	Выполнение теста на 90-100%	Выполне ние теста на 80- 90%	Выполн ение теста на 70-80%	В тесте менее 70% правильн ых ответов
ПСК-2.3	ИД-1 _{ПСК-2.3} Знает предельные соотношения оптимизации современных радиосистем передачи данных	Тест	Выполнение теста на 90-100%	Выполне ние теста на 80- 90%	Выполн ение теста на 70-80%	В тесте менее 70% правильн ых ответов

	ИД-2 _{ПСК-2.3}	Умеет	проводить	Тест	Выполнение	Выполне	Выполн	В тесте	
	оптимизацию	радиосистем	передачи		теста на 90-	ние теста	ение	менее	
	данных	•	•		100%	на 80-	теста на	70%	
						90%	70-80%	правильн	
								ых	
								ответов	
-	ИД-3 _{ПСК-2.3} Вла	деет способно	стью	Тест	Выполнение	Выполне	Выполн	В тесте	
	проводить опт	гимизацию стр	руктуры		теста на 90-	ние теста	ение	менее	
	систем радиос	вязи с позици	ій		100%	на 80-	теста на	70%	
	повышения их					90%	70-80%	правильн	
	характеристик	τ.						ых	
	<u> </u>							ответов	

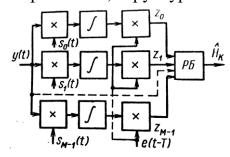
7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

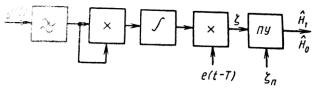
- 1) Что не входит в общую структурную схему РТС?
 - а)Канал связи.
 - б) Источник помех.
 - в) Блок питания.
 - г) Источник информации.
- 2) К какому блоку схемы РТС относится модулятор?
 - а) Канал распространения.
 - б) Преобразователь сообщение-волна.
 - в) Преобразователь волна-сообщение.
 - г) Источник информации.
- 3) Какого вида помех, искажающих сообщения в канале связи, не существует?
 - а)Атмосферные.
 - б) Ноосферные.
 - в) Индустриальные.
 - г) Межсистемные.
- 4) Как называются помехи, умышленно излучаемые и противодействующие той или иной РТС?
 - а) Преднамеренные.
 - б) Боевые.
 - в) Межсистемные.
 - г) Индустриальные.
- 5) Что называется, достаточным «иммунитетом» РТС в отношении тех или иных помех?
 - а) Помехоблокировка.
 - б) Помехоустойчивость.
 - в) Изолированность.
 - г) Быстродействие.

- 6) Что из нижеперечисленного не является одной из приоритетных задач статистической теории РТС?
 - а) Оптимальное извлечение информации из сигнала.
 - б) Использование наилучшим образом свойств сигналов и помех.
 - в) Максимизация помехоустойчивости РТС.
 - г) Изучение свойств антенн и СВЧ устройств.
- 7) Чем является S(t) в формуле описания радиосигнала $u(t) = S(t)\cos(\theta(t))$?
 - а) Фаза.
 - б) Амплитуда.
 - в) Огибающая.
 - г) Поляризация.
- 8. Как называется комплекснозначная функция времени, получаемая прибавлением к s(t) мнимого слагаемого $js_{\perp}(t)$?
 - а) Аналитический сигнал.
 - б) Теоретический сигнал.
 - в) Мнимый сигнал.
 - г) Огибающая сигнала.
- 9. Что принято называть функционалом плотности вероятности случайного процесса?
 - а) Множество многомерных плотностей вероятности.
 - б) Вероятностная мера отдельных реализаций случайного процесса.
 - в) Набор автокорреляционных функций.
 - г) Такого определения не существует.
- 10) Почему «белый шум» является неосуществимой в реальном мире абстракцией?
 - а) Его дисперсия бесконечна.
 - б) Его математическое ожидание мнимая величина.
 - г) Его спектральный состав только из отрицательных частот.
 - д) Его невозможно понять и объяснить.

7.2.2 Примерный перечень заданий для решения стандартных задач


- 1) Какой из критериев предписывает добиваться минимума вероятности пропуска сигнала при ограничении сверху на вероятность ложной тревоги?
 - а) Критерий Байеса.
 - б) Критерий Котельникова.
 - в) Критерий Неймана-Пирсона.
 - г) Критерий Павлова.
- 2) Как называют $W(y(t)|H_i)$ в неравенстве $W(y(t)|H_k) \ge W(y(t)|H_i)$, при $i=0,1,\dots,M-1$.
 - а) Отношение правдоподобия.
 - б) Экстремум правдоподобия.

- в) Коэффициент правдоподобия.
- г) Функция правдоподобия.
- 3) Что понимают под ошибками первого рода?
 - а) Решение о наличии сигнала, при его отсутствии.
 - б) Решение о отсутствии сигнала, при его наличии.
 - в) Ошибка в приятом сигнале, которую можно исправить.
 - г) Ошибка в принятом сигнале, которую невозможно исправить.
- 4) Какова особенность корреляционного приемника?
 - а) Он инвариантен ко времени прихода сигнала.
 - б) Необходимо синхронизировать его с передатчиком.
 - г) Возможен прием недетерминированных сигналов.
 - д) Возможен прием бесконечно малых сигналов.
- 5) Импульсная характеристика согласованного фильтра имеет вид:
 - a) h(t) = s(T t);
 - 6) $h(t) = s^2(t)$;
 - B) h(t) = s(T + 2t);
 - Γ) h(t) = 2s(T-t).
- 6) Максимально достижимое соотношение сигнал/шум по мощности на выходе согласованного фильтра:
 - a) E/N_0 ;
 - б) $2E/N_0$;
 - B) $10E/N_0$;
 - $_{\Gamma})E^2/N_0$.
- 7) Какова особенность оптимального корреляционного приемника сигналов со случайной фазой?
 - а) Используется 4 канала приема.
 - б) Используется 2 канала и квадратурный прием.
 - в) Он способен принимать бесконечно малые сигналы.
 - г) Необходима синхронизация с передатчиком.
- 8) Как называют сигнал, образованный повторением с одинаковым интервалом копий стандартного импульса?
 - а) Пакет импульсов.
 - б) Меандр.
 - в) Гармонический сигнал.
 - г) Импульсная сборка.
- 9) Как называют пакет импульсов, у которого начальные фазы всех радиоимпульсов случайны и независимы друг от друга?
 - а) Когерентный пакет.
 - б) Квадратурный пакет.
 - в) Некогерентный пакет.
 - г) Асинхронный пакет.


- 10) Как называют обнаружитель некогерентного независимого флуктуирующего пакета?
 - а) Магнитным приемником.
 - б) Электрическим приемником.
 - в) Энергетическим приемником.
 - г) Пакетным приемником.

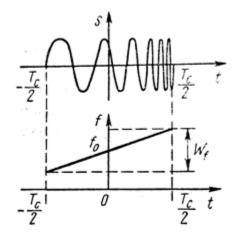
7.2.3 Примерный перечень заданий для решения прикладных задач

1) Какова функция приемника, структурная схема которого изображена ниже?

- а) Обнаружение пакета импульсов.
- б) Различение М сигналов.
- в) Обнаружение сигнала со случайно начальной фазой.
- г) Различение М сигналов со случайными начальными фазами.
- 2) Как называется приемник, изображенный ниже?

- а) Корреляционный приемник.
- б) Квадратурный приемник.
- в) Энергетический приемник.
- г) Согласованный приемник.
- 3) Как называется устройство, на выходе которого будет наблюдаться сумма белого шума с некоторым новым искаженным сигналом, если на его входе будет смесь небелого шума и некоторого сигнала?
 - а) Белый фильтр.
 - б) Согласованный фильтр.
 - в) Обеляющий фильтр.
 - г) Аддитивный фильтр.
- 4) Что подразумевают под независимо флуктуирующими пакетами?
 - а)Амплитуды импульсов независимые случайные величины.
 - б) Фазы импульсов независимые случайные величины.
 - в) Амплитуда импульсов промодулирована одним законом.

- д) Фазы импульсов промодулированы.
- 5) Что такое параметр обнаружения при согласованной фильтрации?
 - а) Сигнал/шум на входе СФ.
 - б) Сигнал/шум на выходе СФ.
 - в) Средний уровень сигнала на входе СФ.
 - г) Пиковый уровень сигнала на выходе СФ.
- 6) Как можно вычислить минимальное значение отношения сигнал/шум, при котором достигается требуемая вероятность обнаружения?


a)
$$q_{min} = \Phi^{-1}(1 - p_{\pi T}) + \Phi^{-1}(1 - p_{\pi C}).$$

$$6)q_{min} = \Phi^{-1}(1 - p_{\pi T}).$$

$$_{\Gamma}) \, q_{min} = \Phi^{-1} (1 - p_{nc}).$$

д)
$$q_{min} = \Phi^{-1}(p_{\pi T}) * \Phi^{-1}(p_{\pi c})$$

7) Какой вид сигналов изображен на рисунке ниже?

- а) ЛЧМ-импульс.
- б) АМ сигнал.
- в) ШИМ сигнал
- г) ПИМ сигнал.
- 8) Дополните утверждение: «Когда девиация частоты многократно превосходит ширину спектра модулирующего колебания, спектр модулированного сигнала занимает полосу частот, приближенно равную ...».
 - а) Удвоенной несущей.
 - б)Удвоенной девиации.
 - в) Девиации.
 - г) Половине несущей.
- 9) Как называют сигналы, состоящие из последовательностей регулярно повторяющихся радиоимпульсов одинаковой формы и центральной частоты, отличающихся друг от друга лишь значениями комплексных амплитуд?
 - а) Плавные сигналы
 - б) Непрерывные сигналы
 - в) Дискретные сигналы.
 - г) Особо сложные сигналы.

- 10) Что называют кодовой последовательностью?
 - а) Набор импульсов, устанавливающих закон изменения поляризации сигнала.
 - б) Набор импульсов, устанавливающий закон изменения амплитуд и фаз дискретного сигнала.
 - в) Набор одинаковых пилообразных импульсов.
 - г) Набор фаз гармонического колебания.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Модели радиосигналов в РТС.
- 2. Помехи, статистические характеристики помех.
- 3. Критерии оптимальности при обнаружении и различении сигналов.
- 4. Синтез обнаружителя сигнала со случайной фазой и его качественные показатели.
- 5. Синтез обнаружителя сигнала со случайной фазой и его качественные показатели.
 - 6. Согласованная фильтрация сигнала.
- 7. Синтез обнаружителя сигнала со случайной фазой и его качественные показатели.
- 8. Структура обнаружителей сигналов в виде пачек и их качественные показатели.
- 9. Постановка и решение задачи оптимального измерения параметров сигналов (до принципа максимума правдоподобия).
 - 10. Оценка начальной фазы, частоты и временного положения сигналов.
- 11. Разрешение сигналов. Критерий Вудворда. Принцип неопределенности в радиолокации.
- 12. Понятие о простых, сложных сигналах и эффекте сжатия. Особенности сложных сигналов.
- 13. В чем состоит смысл неравенства Рао -Крамера в теории оценки параметров ?
 - 14. Функции неопределенности простого сигнала и сигнала с ЛЧМ.
 - 15. Дискретные сигналы и примеры кодов для их получения.
 - 16. Характеристики сигнала с ЛЧМ.
 - 17. Линейные реккурентные последовательности и их свойства.
- 18. Какой вид имеет функциональная схема фильтра согласованного с одиночным прямоугольным видеоимпульсом?
 - 19. Основные характеристики согласованных фильтров.
- 20. Принцип максимума правдоподобия и корреляционного интеграла в теории оценки параметров.
- 21. Какой вид имеет функциональная схема фильтра, согласованного с пачкой когерентных радиоимпульсов?
 - 22. Замечания об М ичных СПИ. Помехоустойчивость связи.

- 23. Двумерная функция корреляции. Принцип неопределенности в радиолокации.
- 24. Функциональная схема некогерентного приемника различения сигналов с неизвестной начальной фазой. Помехоустойчивость при различных видах манипуляции сигнала.
- 25. Синтез обнаружителя полностью известного сигнала и его качественные показатели.
 - 26. Согласованная фильтрация сигнала.
- 27. Синтез когерентного приемника различения сигналов и его качественные показатели.
 - 28. Оценка начальной фазы, частоты и временного положения сигналов.
- 29. Понятие о простых, сложных сигналах и эффекте сжатия. Особенности сложных сигналов.
 - 30. Функции неопределенности простого сигнала и сигнала с ЛЧМ.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Экзамен не предусмотрен учебным планом

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 10 вопросов, 10 стандартных задач и 10 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов – 30.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 16 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 16 до 20 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 21 до 25 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 26 до 30 баллов.

7.2.7 Паспорт оценочных материалов

Контролируемые Код контролируемой		Наименование
разделы (темы)	компетенции (или ее	оценочного
дисциплины	части)	средства
Предмет и задачи курса.	ПК-2, ПСК-2.3	Тест, зачет,
Классификация РТС		устный опрос
Обнаружение и различение	ПК-2, ПСК-2.3	Тест, зачет,
сигналов		устный опрос
Оценка неизвестных	ПК-2, ПСК-2.3	Тест, зачет,
параметров сигналов		устный опрос
Разрешение сигналов	ПК-2, ПСК-2.3	Тест, зачет,
		устный опрос
	разделы (темы) дисциплины Предмет и задачи курса. Классификация РТС Обнаружение и различение сигналов Оценка неизвестных параметров сигналов	разделы (темы) компетенции (или ее дисциплины части) Предмет и задачи курса. Классификация РТС Обнаружение и различение сигналов Оценка неизвестных параметров сигналов Компетенции (или ее части) ПК-2, ПСК-2.3 ПК-2, ПСК-2.3

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. Бессарабова А.А., Ледовских В.И. Системы передачи информации с кодовым разделением каналов 621.396 Б535 2006 г.
- 2. Бессарабова А.А., Ледовских В.И. Псевдослучайные двоичные последовательности 621.396 Б535 2006 г.
- 3. Бессорабова А.А., Ледовских В.И. Разделение каналов по форме в широкополосных системах передачи информации 621.39 Б535 2007 г.
- 4. Под ред. Ю.М. Казаринова Радиотехнические системы 621.37/39 P154 2008 г.
- 5. Васин В.А. и др. Радиосистемы передачи информации 621.396.9 Р154 2005 г.
- 6. Володько А.В. Ледовских В.И. Сборник заданий и методические указания по их выполнению по дисциплинам «Статистическая теория радиотехнических систем» и «Радиотехнические системы» Часть 1. 133-2007
- 7. Володько А.В. Ледовских В.И. Сборник заданий и методические указания по их выполнению по дисциплинам «Статистическая теория

радиотехнических систем» и «Радиотехнические системы» Часть 2. (60 экз) 146-2007

- 8. Силич В.А. Теория систем и системный анализ [Электронный ресурс]: учебное пособие/ Силич В.А., Силич М.П.— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, 2011.— 276 с.— Режим доступа: http://www.iprbookshop.ru/13987.html.— ЭБС «IPRbooks»
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Microsoft Word, Internet Explorer, оригинальное программное обеспечение.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная плакатами и пособиями по профилю 312/4.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Основы теории сигналов» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета инженерных систем теплогазоснабжения, подбора основного и вспомогательного оборудования. Занятия проводятся путем решения конкретных задач в аудитории.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины производится проверкой курсового проекта, защитой курсового проекта. Освоение дисциплины оценивается на зачете.

Вид учебных	Деятельность студента
занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практические	Конспектирование рекомендуемых источников. Работа с конспектом лекций,
занятия	подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Подготовка к дифференцированно му зачету	При подготовке к зачету необходимо ориентироваться на конспекты лекций, рекомендуемую литературу и решение задач на практических занятиях.

Аннотация

к рабочей программе дисциплины «Основы теории сигналов»

Направление подготовки (специальность) <u>11.05.01 «Радиоэлектронные системы и комплексы»</u>

Профиль (специализация) <u>Радиоэлектронные системы передачи информации</u> **Квалификация выпускника** <u>Инженер</u>

Срок освоения образовательной программы 5 лет 6 месяцев

Форма обучения Очная

Год начала подготовки <u>2017 г.</u>

Цель изучения дисциплины: Изучение студентами методов синтеза оптимальных устройств обработки сигналов, принципа их работы; освоение методики определения основных качественных показателей устройств обнаружения, различения сигналов, оценки их параметров и разрешающей способности.

Задачи изучения дисциплины:

- Изучение основных характеристик и качественных показателей РТС;
- Освоение метода синтеза радиотехнических систем;
- Ознакомление с принципами работы основных типов РТС.

Перечень формируемых компетенций:

Общая трудоемкость дисциплины ЗЕТ: 4 з.е.

- ПК-2 Способностью разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов, а также принципиальные схемы радиоэлектронных устройств с применением современных САПР и пакетов прикладных программ.
- ПСК-2.3 Способностью проводить оптимизацию радиосистем передачи информации и отдельных ее подсистем

Форма итогового контроля по дисциплине:	зачет с оценкой	

Лист регистрации изменений

			Подпись
		Дата	заведующего
№			<u> </u>
Π/Π	Перечень вносимых изменений	внесения	кафедрой,
		изменений	ответственной за
			реализацию ОПОП
1	Актуализирован раздел 8 в части	30.08.2018	
	учебно-методического обеспечения		1. /
	дисциплины;		
	в части состава используемого		ALLA
	лицензионного программного		7
	обеспечения, современных		
	профессиональных баз данных и		
	справочных информационных систем;		
	Актуализирован раздел 9 в части		
	материально-технической базы		
	необходимой для проведения		
	образовательного процесса.		
2	Актуализирован раздел 8 в части	30.08.2019	10 000
	учебно-методического обеспечения		Ke, A
	дисциплины;		Altik
	в части состава используемого		affect of
	лицензионного программного		
	обеспечения, современных		
	профессиональных баз данных и		
	справочных информационных систем;		
	Актуализирован раздел 9 в части		
	материально-технической базы		
	необходимой для проведения		
	образовательного процесса.	20.00.2022	
3	Актуализирован раздел 8 в части	30.08.2020	
	учебно-методического обеспечения		k. 1
	дисциплины;		
	в части состава используемого		All
	лицензионного программного		
	обеспечения, современных		
	профессиональных баз данных и		
	справочных информационных систем;		
	Актуализирован раздел 9 в части		
	материально-технической базы		
	необходимой для проведения		
	образовательного процесса.		