МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета Д.В. Панфилов

«З1» августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Процессы и аппараты в технологии строительных материалов»

Направление подготовки 08.03.01 Строительство

Профиль «Производство и применение строительных материалов, изделий и конструкций»

Квалификация выпускника бакалавр

Нормативный период обучения <u>4 года / 4 года и 11 м.</u>

Форма обучения очная / заочная

Год начала подготовки 2018

Автор программы

Е.И.Шмитько /

И.о заведующего кафедрой

Технологии строительных

материалов, изделий и

конструкций

/ С.М. Усачев /

Руководитель ОПОП

/ А.М. Усачев /

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цель дисциплины состоит в содействии формированию у обучающихся теоретических и практических подходов к содержанию строительных технологий, управлению ими, обеспечению высокого качества выпускаемой продукции.

1.2. Задачи освоения дисциплины:

- **рассмотреть структуру** технологического процесса как объекта исследования и управления;
- дать оценку параметрам технологического процесса, их взаимной связи и обусловленности;
- рассмотреть общие принципы современных методов моделирования технологических процессов;
- **рассмотреть** общие принципы оптимизации технологических процессов;
- рассмотреть количественные модели для элементарных процессов, отражающих механическую, гидромеханическую, тепловую и массообменную сущность строительно-технологических процессов;
- преломить общие принципы моделирования, оптимизации и управления на конкретные задачи строительных технологий.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Процессы и аппараты в технологии строительных материалов» относится к дисциплинам вариативной части блока Б1. При ее освоении используются знания и компетенции следующих дисциплин.

Философия: материя и основные формы ее существования; познание как отражение действительности; диалектика как учение о всеобщей связи и развитии.

Математика: определители и системы уравнений; введение в анализ функции одного переменного; дифференциальное исчисление функции одной переменной; исследование функции и построение графика; приближенное решение уравнений; интегральное исчисление; дифференциальные уравнения; основы теории вероятности; элементы математической статистики (ОК-15).

Химия: химическая кинетика и равновесие; химическая связь; вода и формы связанной воды; химическая термодинамика, второе начало термодинамики; химическое равновесие; фазовое равновесие и учение о растворах; дисперсные системы; поверхностная энергия; коллоидное состояние.

Физика: инерция, масса, импульс (количество движения), сила; законы сохранения; силы упругости и трения; силы тяготения; механика жидкостей и газов; колебания; молекулярная физика и термодинамика; жидкости, характеристики жидкого состояния; теплопроводность.

Строительные материалы: неорганические (минеральные) вяжущие вещества; бетоны и изделия из них.

Знания, полученные при изучении дисциплины «Процессы и аппараты в технологии строительных материалов» используются в дальнейшем при изучении специальных дисциплин в части идентификации определяющих параметров технологического процесса, моделирования и управления технологическими процессами.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Процессы и аппараты в технологии строительных материалов» направлен на формирование следующих компетенций:

ПК-3 - Способен проводить предварительное технико-экономическое обоснование проектных решений, разрабатывать проектную и рабочую техническую документацию, контролировать соответствие разрабатываемых проектов и технической документации заданию, стандартам, техническим условиям и другим нормативным документам

ПК-6 - Владеет технологией, методами доводки и освоения технологических процессов, производства строительных материалов, изделий и конструкций

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-3	Знать глубинную сущность реализации основных
	законов в реальных технологических процессах
	Уметь использовать основные законы
	естественнонаучных дисциплин в
	профессиональной деятельности
	Владеть методами проведения инженерных
	изысканий относительно технологических
	процессов
ПК-6	Знать научно-техническую информацию по
	профилю дисциплины
	Уметь выявлять естественнонаучную сущность
	проблем, возникающих в ходе профессиональной
	деятельности
	Владеть методами опытной проверки оборудования
	и средств технологического обеспечения

4. ОБЪЕМ ДИСЦИПЛИНЫ Общая трудоемкость дисциплины «Процессы и аппараты в технологии строительных материалов» составляет 7 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Виды учебной работы	Всего	Семес	стры
Виды учеоной работы	часов	5	6
Аудиторные занятия (всего)	90	36	54
В том числе:			
Лекции	54	18	36
Лабораторные работы (ЛР)	36	18	18
Самостоятельная работа		72	54
Курсовая работа			+
Часы на контроль	36	ı	36
Виды промежуточной аттестации:			
зачет с оценкой	+	+	-
экзамен	+	-	+
Общая трудоемкость:			
академические часы	252	108	144
зач.ед.	7	3	4

заочная форма обучения

Виды учебной работы	Всего	Семес	тры
Виды учеоной работы	часов	6	7
Аудиторные занятия (всего)	34	18	16
В том числе:			
Лекции	18	10	8
Лабораторные работы (ЛР)	16	8	8
Самостоятельная работа	205	86	119
Курсовая работа	+		+
Часы на контроль	13	4	9
Виды промежуточной аттестации:			
зачет с оценкой	+	+	-
экзамен		-	+
Общая трудоемкость:			
академические часы	252	108	144
зач.ед.	7	3	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	o man wopma ooy tennn						
№ n/n	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час	
1	плане подготовки	Главная задача – идентификация модели управления технологическим процессом	2	-	8	10	
2	как объект исследования и моделирования	Технология, технологический процесс: определения, термины, составляющие признаки Классификация технологических процессов в зависимости от определяющих законов протекания Классификация технологических процессов в зависимости от категорий пространства и времени, причинности и случайности Структура технологического процесса как объекта исследования и управления. Внешние и внутренние связи Общие задачи и принципы анализа и проектирования технологических процессов	6	-	30	36	
3	Моделирование технологических процессов	Место моделирования в современной науке и технике. Основные определения. Виды моделей. Физическое моделирование. Основные положения теории подобия. Теоремы подобия. Критерии подобия. Критерии подобия. Критерии виды математическое моделирование. Виды математических моделей и источники их создания. Методы реализации математических моделей и моделей. Математические модели как средство оптимизации технологических процессов Оптимизация технологических процессов. Задачи оптимизации, критерии оптимизации, методы оптимизации.	10	18	34	62	
4	-	Сущность гидромеханических процессов, их место в строительных технологиях. Виды технологических жидкостей и жидкообразных масс. Понятие ньютоновских и неньютоновских жидкостей. Гидростатика, основные уравнения. Инженерные задачи гидростатики	10	4	20	34	

		Гидродинамика, основные				
		характеристики движения жидкостей.				
		Распределение скоростей по сечению трубопровода при ламинарном- режиме				
		истечения, при турбулентном режиме.				
		Основные уравнения гидродинамики				
5	Гидродинамика:	Общеинженерные задачи				
	инженерные задачи	гидродинамики: измерения и расчеты				
	1	скоростей в трубах и каналах, расчет				
		скорости осаждения твердых частиц				
		Смешанные задачи гидродинамики:				
		фильтрация жидкости через слой				
		зернистого материала, состояние				
		псевдоожижения, пневмотранспорт.				
		Практические задачи				
		Разделение двухфазных потоков: под				
		действием силы тяжести, под				
		действием центробежной силы.				
		Пылеосадительные камеры, пневмо- и				
		гидроциклоны				
		лараты для перемещения жидкостей				
		и газов: насосы, компрессоры,	8	6	10	24
		вентиляторы				
		Течение в трубах				
		высококонцентрированных паст типа				
		строительных бетонов и растворов.				
		Бетононасосы, растворонасосы				
		Перемешивание жидких и				
		жидкообразных масс.				
		*				
		Гидромеханическое перемешивание:				
		механизмы, математические модели, их				
		применение в бетоноведении.				
		Процессы вибрационного формования				
		бетонных и железобетонных изделий:				
		механизм процессов, пути создания математических моделей и				
		возможности оптимального управления				
		процессами				
6	Управление тепловыми	Тепловые процессы в строительных				
	процессами	технологиях. Основные уравнения	6	4	o	10
		теплопереноса. Тепловое подобие.	6	4	8	18
		Инженерные задачи теплопереноса				
7	Управление	Вид массопереносных процессов в				
	массопереносными	строительных технологиях. Уравнения				
	процессами	массопереноса. Массообменные	6	4	8	18
		подобия. Использование критериев				
0	П	подобия в инженерных задачах				
8	Процессы совмещенного	Общие представления о процессах				
	тепло- и массопереноса	совмещенного тепло- и массопереноса.	6		8	14
		Технологические примеры. Уравнения совмещенного тепло- и массопереноса	υ	-	Ó	14
		и возможности их практического				
		п возможности ил практического				

тепловой энергии и топлива Итого 54 36 126 216		использования Управление процессами сушки строительных материалов и изделий. Основные характеристики и параметры конвективного способа сушки. Скорость процесса. Распределение влаги в высушиваемом материале. Режимы сушки. Расчет и управление сушильным процессом. Конструкции и принципы работы сушилок, реализующих конвективный способ сушки Расчет процесса сушки с помощью I-х — диаграммы. Расход сушильного агента. Тепловой баланс процесса. Расход тепловой энергии и топлива		36	126	216
--	--	---	--	----	-----	-----

заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего,
1		Главная задача – идентификация модели управления технологическим процессом	2	-	20	22
2		Технология, технологический процесс: определения, термины, составляющие признаки Классификация технологических процессов в зависимости от определяющих законов протекания Классификация технологических процессов в зависимости от категорий пространства и времени, причинности и случайности Структура технологического процесса как объекта исследования и управления. Внешние и внутренние связи Общие задачи и принципы анализа и проектирования технологических процессов	4	-	20	24
3	Моделирование технологических процессов	Место моделирования в современной науке и технике. Основные определения. Виды моделей. Физическое моделирование. Основные положения теории подобия. Теоремы подобия. Критерии подобия. Критериальные уравнения Математическое моделирование. Виды математических моделей и источники их создания. Методы реализации математических моделей. Математических моделей. Математические модели как средство оптимизации технологических	4	8	46	58

		процессов				
		Оптимизация технологических				
		процессов. Задачи оптимизации,				
		критерии оптимизации, методы оптимизации.				
4	Гинромауанниаскиа					
	Гидромеханические процессы: основные	Сущность гидромеханических процессов, их место в строительных				
	*	технологиях. Виды технологических				
	динамики	жидкостей и жидкообразных масс.				
	Amenini	Понятие ньютоновских и				
		неньютоновских жидкостей.				
		Гидростатика, основные уравнения.	_			
		Инженерные задачи гидростатики	2	2	39	43
		Гидродинамика, основные				
		характеристики движения жидкостей.				
		Распределение скоростей по сечению				
		трубопровода при ламинарном- режиме				
		истечения, при турбулентном режиме.				
		Основные уравнения гидродинамики				
	Гидродинамика:	Общеинженерные задачи				
	инженерные задачи	гидродинамики: измерения и расчеты				
		скоростей в трубах и каналах, расчет				
		потерянного напора, определение				
		скорости осаждения твердых частиц				
		Смешанные задачи гидродинамики:				
		фильтрация жидкости через слой				
		зернистого материала, состояние				
		псевдоожижения, пневмотранспорт.				
		Практические задачи				
		•				
		Разделение двухфазных потоков: под				
		действием силы тяжести, под				
		действием центробежной силы.				
		Пылеосадительные камеры, пневмо- и				
		гидроциклоны				
		Аппараты для перемещения жидкостей	•		•	
		и газов: насосы, компрессоры,	2	2	20	24
		вентиляторы				
		Течение в трубах				
		высококонцентрированных паст типа				
		строительных бетонов и растворов.				
		Бетононасосы, растворонасосы				
		Перемешивание жидких и				
		жидкообразных масс.				
		*				
		Гидромеханическое перемешивание:				
		механизмы, математические модели, их				
		применение в бетоноведении.				
		Процессы вибрационного формования				
		бетонных и железобетонных изделий:				
		механизм процессов, пути создания				
		математических моделей и				
		возможности оптимального управления				
6	Vправление женевител	Тапловие процесси в строительних	2	2	20	24
U	Управление тепловыми	Тепловые процессы в строительных	7		∠∪	24

процессами	технологиях. Основные уравнения теплопереноса. Тепловое подобие. Инженерные задачи теплопереноса				
7 Управление массопереносными процессами	Вид массопереносных процессов в строительных технологиях. Уравнения массопереноса. Массообменные подобия. Использование критериев подобия в инженерных задачах		2	20	24
8 Процессы совмещенного тепло- и массопереноса	Общие представления о процессах совмещенного тепло- и массопереноса. Технологические примеры. Уравнения совмещенного тепло- и массопереноса и возможности их практического использования Управление процессами сушки строительных материалов и изделий. Основные характеристики и параметры конвективного способа сушки. Скорость процесса. Распределение влаги в высушиваемом материале. Режимы сушки. Расчет и управление сушильным процессом. Конструкции и принципы работы сушилок, реализующих конвективный способ сушки Расчет процесса сушки с помощью I-х — диаграммы. Расход сушильного агента. Тепловой баланс процесса. Расход тепловой энергии и топлива	2	-	20	22
	Итого	18	16	205	239

5.2 Перечень лабораторных работ

№ л.р.	Наименование лабораторных работ			
Л3-1	Моделирование гидродинамического процесса течения			
	неньютоновской жидкости на примере транспортирования			
	по трубам растворной смеси			
ЛЗ-2	Моделирование методом прямой аналогии процесса нагрева			
	строительного изделия			
	Исследование процесса псевдоожижения слоя зернистого			
ЛЗ-3	материала			
Л3-4	Моделирование процесса перемешивания в смесителе			
	гидромеханического типа			
Л3-5	Моделирование процесса виброуплотнения бетонной смеси			

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы в 6 семестре для очной формы

обучения, в 7 семестре для заочной формы обучения.

Примерная тематика курсовой работы:

№ темы КП	Наименование темы КП
1	Завод по производству строительного гипса мощностью 300 тыс.т./год
2	Завод по производству высокопрочного гипса производительностью 100
	тыс.т./год
3	Завод по производству ангидритового вяжущего мощностью 200 тыс.т./год
4	Завод по производству строительной извести воздушного твердения
	мощностью 500 тыс.т./год
5	Завод по производству извести-пушонки мощностью 100 тыс.т./год
6	Завод по производству гидравлической извести мощностью 200 тыс.т./год
7	Завод по производст каустического магнезита мощностью 100 тыс.т./год
8	Завод по производству гипсоцементно-пуццоланового вяжущего
	мощностью 100 тыс.т./год
9	Завод по производству шлако-щелочного вяжущего мощностью 100
	тыс.т./год.
10	Завод по производству известково-песчаного вяжущего мощностью 200
	тыс.т./год
11	Завод по производству цементно-зольного вяжущего мощностью 300
	тыс.т./год
12	Завод по производству каустического доломита мощностью 200 тыс.т./год
13	Завод по производству известково-шлакового вяжущего мощностью 200
	тыс.т./год
14	Завод по производству строительного гипса мощностью 200 тыс.т./год

Задачи, решаемые при выполнении курсовой работы:

курсовой проект имеет целью закрепление материала курса и получение практических навыков расчетов технологических процессов и аппаратов. Объектом проектирования является технология получения одного из видов вяжущего вещества по заданной программе. Итогом проектной разработки должны быть: технологический регламент производственного процесса с детальным технологическим расчетом одного из основных аппаратов запроектированной технологии. Курсовая работа включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован». 0

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-3	знать глубинную сущность реализации основных законов в реальных технологических процессах уметь использовать основные законы естественнонаучных дисциплин в профессиональной деятельности владеть методами проведения инженерных	Изучение лекционного материала Выполнение КР Подготовка и отчет по лабораторным	работ в срок,	Невыполнение работ в срок, предусмотренный в рабочих программах Невыполнение работ в срок, предусмотренный в рабочих программах Невыполнение работ в срок,
	изысканий относительно технологических процессов	работам	предусмотренны й в рабочих программах	предусмотренный в рабочих программах
ПК-6	знать научно-техническую информацию по профилю дисциплины	Изучение лекционного материала Выполнение КР	Выполнение работ в срок, предусмотренны й в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности	Подготовка и отчет по лабораторным работам	Выполнение	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть методами опытной проверки оборудования и средств технологического обеспечения		Выполнение работ в срок, предусмотренны й в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 5, 6 семестрах для очной формы обучения, 6, 7 семестрах для заочной формы обучения по четырехбалльной системе:

«отлично»; «хорошо»; «удовлетворительно»; «неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
	знать глубинную сущность реализации основных законов в реальных технологических	Изучение лекционного материала Выполнение КП Подготовка и	Выполне ние теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильны х ответов

	1	I	l	I		
	процессах	отчет по				
		лабораторным				
		работам Зачет с				
		зачет с оценкой/экзамен				
		1	2	Пио	Пист	20
	уметь использовать	Изучение	Задачи	Продемонст	Продемонстр	Задачи не
	основные законы	лекционного	решены в	р ирован	ирован	решены
	естественнонаучных	материала	полном	верный ход	верный ход	
	дисциплин в	Выполнение КП	объеме и	решения	решения в	
	профессиональной		получены	всех, но не	большинстве	
	деятельности	отчет по		получен	задач	
		лабораторным	ответы	верный ответ		
		работам		во всех		
		Зачет с		задачах		
		оценкой/экзамен	2	П	П	2
	владеть методами	Изучение	Задачи	Продемонст	Продемонстр	Задачи не
	проведения	лекционного	решены в	р ирован	ирован	решены
	инженерных	материала	полном	верный ход	верный ход	
	изысканий	Выполнение КП	объеме и	решения	решения в	
	относительно		получены	всех, но не	большинстве	
	технологических	отчет по	1	получен	задач	
	процессов	лабораторным	ответы	верный ответ		
	процосов	работам		во всех		
		Зачет с		задачах		
THE C		оценкой/экзамен	D	ъ	D	D.
ПК-6	знать	Изучение	Выполне	Выполнение	Выполнение	В тесте
	научно-техническу	лекционного	ние теста	теста на 80-	теста на 70-	менее 70%
	ю информацию по	материала	на 90-	90%	80%	правильны
	профилю	Выполнение КП	100%			х ответов
	* *	Подготовка и				
	дисциплины	отчет по				
		лабораторным работам				
		раоотам Зачет с				
		оценкой/экзамен				
			Задачи	Продолена	Продолена	20 пони ***
	уметь выявлять	Изучение		Продемонст	Продемонстр	Задачи не
	естественнонаучну	лекционного	решены в	р ирован	ирован	решены
	ю сущность	материала Выполнение КП	полном объеме и	верный ход	верный ход	
	проблем,			решения всех, но не	решения в большинстве	
	возникающих в ходе		получены верные	получен	задач	
		лабораторным	ответы	верный ответ		
	профессиональной	работам	OIBCIDI	во всех		
	деятельности	Зачет с				
		оценкой/экзамен		задачах		
	DHOHOTI MOTOHOMI	Изучение	Задачи	Продемонст	Продемонстр	Задачи не
	владеть методами	лекционного	решены в	р ирован	ирован	решены
	опытной проверки	материала	полном	р ирован верный ход	ирован верный ход	решены
	оборудования и	Выполнение КП	объеме и	решения	решения в	
	средств		получены	всех, но не	большинстве	
	технологического	отчет по	_	получен	задач	
	обеспечения	лабораторным	ответы	верный ответ		
	Киноволючения	работам	O I DÇ I DI	во всех		
		Зачет с		задачах		
		оценкой/экзамен		зиди шл		
		одонкои/экзамоп		1	-	

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - 7.2.1 Примерный перечень заданий для подготовки к тестированию

Не предусмотрено учебным планом

- **7.2.2 Примерный перечень заданий для решения стандартных задач** Не предусмотрено учебным планом
- **7.2.3 Примерный перечень заданий для решения прикладных задач** Не предусмотрено учебным планом
- 7.2.4 Примерный перечень вопросов для подготовки к зачету с оценкой
 - 1.Задачи дисциплины в подготовке современного инженера.
- 2.Общая характеристика технологического процесса. Основные термины и понятия.
- 3. Классификация технологических процессов в зависимости от определяющих законов их протекания.
- 4. Классификация технологических относительно категорий времени и пространства.
- 5. Классификация технологических относительно категорий причинности и случайности.
- 6. Структура технологического процесса как объекта исследования и управления. Внешние и внутренние связи.
- 7. Общие задачи и принципы анализа и проектирования технологических аппаратов.
- 8. Моделирование технологически процессов. Место моделирования в современной науке и технике.
 - 9. Основные определения, возможные виды моделей.
 - 10. Физическое моделирование. Основные положения теории подобия.
 - 11. Правила или теоремы подобия.
- 12. Формирование критериев подобия методом подобного преобразования дифференциальных уравнений.
 - 13. Свойства и значение критериев подобия.
 - 14. Критериальные уравнения, их значение.
- 15. Основные этапы физического моделирования. Результат моделирования.
 - 16. Сущность, определения математического моделирования.
 - 17. Виды математических моделей, источники их создания.
 - 18. Этапы построения математической модели технологического процесса.
- 19. Методы и средства реализации математических моделей при решении практических задач.
 - 20. Оптимизация технологических процессов. Сущность оптимизации.
 - 21. Методы оптимизации.
- 22. Оптимизация экспериментально-графическим методом при одном факторе. Метод Кифера-Джонсона.
 - 23. Дисперсионный анализ однофакторного эксперимента.
- 24. Оптимизация экспериментально-графическим методом при 2-х, 3-х, 4-х факторах.
 - 25. Оптимизация математическими методами.
 - 26. Оптимизация экспериментально-математическими методами или

методами планирования многофакторных экспериментов.

- 27. Сущность гидромеханических процессов, их место в технологии.
- 28. Виды технологических жидкостей и жидкообразных масс, их реологические свойства.
 - 29. Представление неньютоновских жидкостей как дисперсных систем.
- 30. Реологические свойства истинных молекулярных жидкостей. Сущность поверхностного натяжения.
- 31. Общая оценка влияния поверхностного натяжения на ход технологических процессов. Явление смачивания. Явление образования пленок воды на зернах дисперсной твердой фазы.
 - 32. Капиллярный стягивающий эффект.
 - 33. Влияние поверхностного натяжения на устойчивость пен.
 - 34. Вязкость ньютоновских жидкостей.
- 35. Реологические особенности неньютоновских жидкостей. Реологические модели.
 - 36. Основные виды и свойства неньютоновских жидкостей.
 - 37. Общие положения гидростатики.
- 38. Дифференциальное уравнение равновесия Эйлера для покоящейся жидкости.
 - 39. Основное уравнение гидростатики в интегральной форме.
- 40. Инженерные задачи гидростатики: расчет давления и силы давления жидкости на стенки и дно резервуара.
 - 41. Инженерные задачи гидростатики: расчет сообщающихся сосудов.
 - 42. Инженерные задачи гидростатики: расчеты гидравлических машин.
 - 43. Гидродинамика: основные термины, понятия, характеристики.
- 44. Распределение скоростей и расход жидкости при установившемся ламинарном потоке.
 - 45. Распределение скоростей в турбулентном потоке.
- 46. Уравнение неразрывности (сплошности) потока в дифференциальной и интегральной форме.
- 47. Дифференциальное уравнение движения идеальной жидкости уравнение Эйлера.
- 48. Дифференциальное уравнение движения реальной жидкости уравнение Навье-Стокса.

7.2.5 7.2.4 Примерный перечень вопросов для подготовки к экзамену

- 1. Гидродинамика. Уравнение Бернулли для идеальной жидкости.
- 2. Гидродинамика. Уравнение Бернулли для реальной жидкости.
- 3. Принципы измерения скоростей и расходов жидкостей с применением уравнения Бернулли.
- 4. Измерение скорости течения жидкости в трубопроводе с помощью пневмометрических трубок и дифференциального манометра.
- 5. Измерение скоростей и расходов жидкостей с помощью дроссельных приборов.
- 6. Расчет скорости истечения жидкости из резервуара через донные отверстия.

- 7. Расчет гидравлических сопротивлений в трубах и каналах при ламинарном течении жидкости.
- 8. Расчет гидравлических сопротивлений в трубах и каналах при турбулентном течении жидкости.
- 9. Расчет потери напора на преодоление местных сопротивлений. Определение полных потерь.
 - 10. Общие закономерности процессов движения тел в жидкостях.
- 11. Осаждение твердых частиц в жидкой или газовой среде. Скорость осаждения.
- 12. Основные три типа смешанных задач гидродинамики: общая характеристика.
 - 13. Движение жидкости через зернистые и пористые слои.
 - 14. Гидродинамика псевдоожиженного слоя.
- 15. Пневмо-и гидротранспорт частиц зернистого материала: необходимые условия, расчетные формулы.
 - 16. Особенности работы пневмотранспорта (практические вопросы).
 - 17. Особенности работы гидротранспорта (практические вопросы).
- 18. Разделение двухфазных систем под действием гравитационных сил. Гидроотстойники и пылеосадительные камеры.
- 19. Разделение двухфазных систем под действием центробежных сил. Пневмоциклоны и гидроциклоны.
 - 20. Общие сведения о насосах, насосы общего пользования.
 - 21. Насосы для подачи бетонных и растворных смесей.
 - 22. Основные расчетные характеристики насосов.
 - 23. Общие сведения о компрессорах и вентиляторах.
 - 24. Устройство и основные характеристики вентиляторов.
 - 25. Применение вентиляторов в технологических процессах.
 - 26. Основные расчетные характеристики вентиляторов.
- 27. Реология высококонцентрированных паст типа глиняной массы, цементного теста, бетона.
- 28. Особенности течения по трубам вязкопластичных жидкостей типа цементного и глиняного теста, строительного раствора.
 - 29. Расчет скорости течения в трубе вязкопластичной жидкости.
- 30. Насосы для транспортирования по трубам бетонных и растворных смесей.
 - 31. Значение, виды и характеристики процессов перемешивания.
- 32. Общие характеристики процессов гидромеханического перемешивания, типы мешалок и течений.
- 33. Общие принципы моделирования процесса гидромеханического перемешивания. Условия геометрического подобия.
 - 34. Приближенное моделирование процесса перемешивания.
- 35. Сущность и значение процессов уплотнения бетонной смеси при формовании изделий.
- 36. Сущность процессов вибрационного уплотнения бетонных смесей. Механизм процесса.
- 37. Способы реализации вибраций в технологии бетонных и железобетонных изделий.
- 38. Общие предпосылки построения математической модели процесса уплотнения бетонной смеси.
- 39. Основные понятия и уравнения гармонических колебаний материальной точки, используемые при количественном представлении процесса виброуплотнения бетонной смеси.

- 40. Модель упруго-вязкой системы как прототип модели виброуплотнения бетонной смеси.
- 41. Приближенное моделирование процесса виброуплотнения бетонной смеси: дифференциальное уравнение колебательного процесса применительно к бетонной смеси.
- 42. Контроль и управление процессом виброуплотнения бетонной смеси.
- 43. Теплоперенос. Основные термины и понятия. Движущая сила процесса.
 - 44. Основное уравнение теплопередачи.
- 45. Температурное поле и температурный градиент в строительных изделиях и конструкциях.
- 46. Передача теплоты теплопроводности в неподвижной сплошной среде.
- 47. Дифференциальное уравнение теплопереноса в неподвижной среде, в том числе в объеме строительного изделия: уравнение Фурье.
- 48. Некоторые частные случаи решения дифференциального уравнения теплопереноса уравнение Фурье применительно к строительным изделиям.
- 49. Уравнения, описывающие распределение температуры в конвективно движущемся носителе уравнение Фурье-Киргхгофа.
- 50. Перенос теплоты на границе между конвективнодвижущемся теплоносителем и поверхностью строительного изделия. Пограничный слой.
 - 51. Уравнение поверхностной теплоотдачи уравнение Ньютона.
- 52. Критерии теплового подобия и критериальные уравнения теплопереноса.
 - 53. Основные виды и общие характеристики массопереноса.
- 54. Закон переноса вещества диффузией. Сущность коэффициента диффузии.
- 55. Дифференциальное уравнение массопереноса в неподвижной среде.
 - 56. Уравнение переноса вещества в конвективно движущейся среде.
- 57. Перенос вещества на границе раздела сред. Уравнение поверхностной массоотдачи.
 - 58. Критерии массообменного подобия, критериальные уравнения.
- 59. Уравнение совместного тепло-и массопереноса в капиллярно-пористых телах.
- 60. Процессы сушки строительных материалов и изделий: сущность, назначение и виды сушки.
 - 61. Три влажностные состояния материала.
 - 62. Структура строительного материала и его влажностное состояние.
- 63. Тепло-и массоперенос в процессе сушки. Распределение влаги в объеме высушиваемой частицы материала в зависимости от режима сушки.
- 64. Кинетика высушивания капиллярно-пористых материалов. Периоды сушки.
- 65. Кинетика высушивания капиллярно-пористых материалов. Скорость и продолжительность сушки.
- 66. Внешний тепло-и массоперенос в процессе сушки строительных материалов и изделий.
- 67. Механизм внутреннего массопереноса в процессе сушки строительных материалов и изделий.
- 68. Туннельная сушилка для штучных материалов. Схемы, потоки, параметры, режим работы, оценки эффективности.

- 69. Барабанная сушилка для сыпучих материалов. Схемы, потоки, параметры, режимы работы, оценки эффективности.
- 70. Башенная распылительная сушилка. Схемы, потоки, режимы работы, оценки эффективности.
- 71. Сушка в псевдоожиженном слое. Схемы, потоки, режимы работы, оценки эффективности.
- 72. Расчетные параметры сушильного агента. Использование в расчетах І-х диаграмм.
 - 73. Расчетные параметры высушиваемого материала.
 - 74. Количество сушильного агента, необходимое для сушки.
 - 75. Тепловой баланс процесса конвективной сушки. Определение расхода топлива на процесс сушки.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой включает два вопроса, освещающие отдельные разделы курса. При проведении устного зачета студенту предоставляется 30 минут на подготовку ответа и 10-15 минут на сам ответ. Оценка выставляется по результатам ответа на основные и дополнительные вопросы, учитываются также результаты защиты отчетов по лабораторным занятиям.

Экзамен принимается по такой же схеме. Экзаменационный билет включает 3 вопроса, на подготовку ответа предоставляется 30-45 минут.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Главная задача — идентификация модели управления технологическим процессом	ПК-3, ПК-6	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту.
2	Технология, технологический процесс: определения, термины, составляющие признаки Классификация технологических процессов в зависимости от определяющих законов протекания Классификация технологических процессов в зависимости от категорий пространства и времени, причинности и случайности Структура технологического процесса как объекта исследования и управления. Внешние и внутренние связи Общие задачи и принципы анализа и проектирования технологических процессов		Тест, контрольная работа, защита лабораторных работ, защита защита реферата, требования к курсовому проекту.

3	Место моделирования в современной науке и технике. Основные определения. Виды моделей. Физическое моделирование. Основные положения теории подобия. Теоремы подобия. Критерии подобия. Критерии подобия. Критериальные уравнения Математическое моделирование. Виды математических моделей и источники их создания. Методы реализации математических моделей. Математические модели как средство оптимизации технологических процессов. Оптимизация технологических процессов. Задачи оптимизации, критерии оптимизации, критерии оптимизации.	ПК-3, ПК-6	Тест, контрольная работа, защита лабораторных работ, защита ращита реферата, требования к курсовому проекту.
4	оптимизации, методы оптимизации. Сущность гидромеханических процессов, их место в строительных технологиях. Виды технологических жидкостей и жидкообразных масс. Понятие ньютоновских и неньютоновских жидкостей. Гидростатика, основные уравнения. Инженерные задачи гидростатики Гидродинамика, основные характеристики движения жидкостей. Распределение скоростей по сечению трубопровода при ламинарном- режиме истечения, при турбулентном режиме. Основные уравнения гидродинамики	ПК-3, ПК-6	Тест, контрольная работа, защита лабораторных работ, защита защита реферата, требования к курсовому проекту.
5	Общеинженерные задачи гидродинамики: измерения и расчеты скоростей в трубах и каналах, расчет потерянного напора, определение скорости осаждения твердых частиц Смешанные задачи гидродинамики: фильтрация жидкости через слой зернистого материала, состояние псевдоожижения, пневмотранспорт. Практические задачи Разделение двухфазных потоков: под действием силы тяжести, под действием центробежной силы. Пылеосадительные камеры, пневмо- и гидроциклоны Аппараты для перемещения жидкостей и газов: насосы, компрессоры, вентиляторы Течение в трубах высококонцентрированных паст типа строительных бетонов и растворов. Бетононасосы, растворонасосы Перемешивание жидких и жидкообразных	ПК-3, ПК-6	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту.

6	масс. Гидромеханическое перемешивание: механизмы, математические модели, их применение в бетоноведении. Процессы вибрационного формования бетонных и железобетонных изделий: механизм процессов, пути создания математических моделей и возможности оптимального управления процессами Тепловые процессы в строительных		Тест, контрольная
	технологиях. Основные уравнения теплопереноса. Тепловое подобие. Инженерные задачи теплопереноса		работа, защита лабораторных работ, защита реферата, требования к курсовому проекту.
7	Вид массопереносных процессов в строительных технологиях. Уравнения массопереноса. Массообменные подобия. Использование критериев подобия в инженерных задачах	,	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту.
8	Общие представления о процессах совмещенного тепло- и массопереноса. Технологические примеры. Уравнения совмещенного тепло- и массопереноса и возможности их практического использования Управление процессами сушки строительных материалов и изделий. Основные характеристики и параметры конвективного способа сушки. Скорость процесса. Распределение влаги в высушиваемом материале. Режимы сушки. Расчет и управление сушильным процессом. Конструкции и принципы работы сушилок, реализующих конвективный способ сушки Расчет процесса сушки с помощью I-х — диаграммы. Расход сушильного агента. Тепловой баланс процесса. Расход тепловой энергии и топлива		Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется

проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач - 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Шмитько Е. И. Поцессы и аппараты технологии строительных материалов и изделий: Учебное пособие С.-Петербург: Изд-во «Проспект науки». 2010.-736 с.
- 2. Касаткин А.Г. Основные процессы и аппараты химической технологии: Учебник для вузов. 14-е издание стереотипное. Перепечатка с девятого издания 1973 г. М.; ООО ИД «Альянс», 2008. 753 с.
- 3. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии: Учебное пособие для вузов под редакцией чл.-корр. АН России П.Г. Романкова. 14-е изд., стереот. Перепечатка с издания 1987 г. М.: ООО ИД «Альянс», 2007. 576 с.
- 4. Шмитько Е. И. Процессы и аппараты в технологии строительных материалов и изделий: лабораторные практикум/Е.И. Шмитько, Д.Н. Коротких, В.В. Мысков.- Воронеж: Изд-во ВГАСУ, 2006.
- 5. Шмитько Е.И. Комплексный курсовой проект оп дисциплинам «Вяжущие вещества», «Процессы и аппараты технологии строитльных материалов и изделий», «Механическое оборудование предприятий стройиндустрии»: Учебное пособие/Е.И. Шмитько, А.В.Крылова, В.С. Кабанов, С.П. Козодаев.-Воронеж: Изд-во ВГАСУ, 2008.
- 6. Шмитько Е.И. Процессы и аппараты технологии строительных материалов и изделий. Расчет аппаратов: Учебное пособие/Е.И. Шмитько -Воронеж: Изд-во ВГАСУ, 2006.
- 7. Использование ГОСТов, стандартов, технологических схем, демонстрационных, справочных, информационных, рекламных и др. учебно-методических пособий и материалов в электронном виде.

- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - 1. LibreOffice
 - 2. http://www.edu.ru/

Образовательный портал ВГТУ

- 3. БД ЭБС «ЛАНЬ»
- 4. 9EC IPRbooks
- 5. «НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА eLIBRARY.RU»
- 6. ЭБС «Университетская библиотека онлайн»

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- Учебная лаборатория ауд. 6146
- Мультимедиа
- Компьютерное обеспечение

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Процессы и аппараты в технологии строительных материалов» читаются лекции, проводятся лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсовой работы изложена в учебно-методическом пособии. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой работы, защитой курсовой работы.

Рекомендации студенту

Вид учебных занятий	Деятельность студента
	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с
	помощью энциклопедий, словарей, справочников с выписыванием

	толкований в тетрадь. Обозначение вопросов, терминов,		
	материала, которые вызывают трудности, поиск ответов в		
	рекомендуемой литературе. Если самостоятельно не удается		
	разобраться в материале, необходимо сформулировать вопрос и		
	задать преподавателю на лекции или на практическом занятии.		
Лабораторная работа	Лабораторные работы позволяют научиться применять		
	теоретические знания, полученные на лекции при решении		
	конкретных задач. Чтобы наиболее рационально и полно		
	использовать все возможности лабораторных для подготовки к		
	ним необходимо: следует разобрать лекцию по соответствующей		
	теме, ознакомится с соответствующим разделом учебника,		
	проработать дополнительную литературу и источники, решить		
	задачи и выполнить другие письменные задания.		
Самостоятельная	Самостоятельная работа студентов способствует глубокому		
работа	усвоения учебного материала и развитию навыков		
	самообразования. Самостоятельная работа предполагает		
	следующие составляющие:		
	- работа с текстами: учебниками, справочниками, дополнительной		
	литературой, а также проработка конспектов лекций;		
	- выполнение домашних заданий и расчетов;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций, олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует систематически,		
промежуточной	в течение всего семестра. Интенсивная подготовка должна		
аттестации	начаться не позднее, чем за месяц-полтора до промежуточной		
	аттестации. Данные перед зачетом с оценкой, экзаменом, зачетом с		
	оценкой, экзаменом три дня эффективнее всего использовать для		
	повторения и систематизации материала.		
	<u> </u>		