МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ :

Декан факультета_

«25» ноября 2022 г

Бурковский А

РАБОЧАЯ ПРОГРАММА

дисциплины

«Теоретическая механика»

Направление подготовки 13.03.02 Электроэнергетика и электротехника

Профиль Электроснабжение

Квалификация выпускника бакалавр

Нормативный период обучения <u>4 года/ 4 года и 11 м</u>

Форма обучения очная/заочная

Год начала подготовки 2023

Автор программы

/Семенихин О.А./

Заведующий кафедрой

Прикладной математики и

механики

/Ряжских В.И./

Руководитель ОПОП

/Ситников Н.В./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

- овладение основами научного мышления;
- овладение понятиями механического движения вещественных форм материи;
- овладение методами, понятиями, моделями и законами теоретической механики применительно к задачам проектирования электромеханических систем.

1.2. Задачи освоения дисциплины

- усвоить фундаментальные понятия, законы и теории теоретической механики;
- овладеть методами исследования; приемами и методами решения теоретической механики;
- освоить методы решения конкретных задач из различных областей статики, кинематики и динамики;
- приобрести навыки умения выделить конкретное физическое содержание в прикладных задачах будущей деятельности;
 - приобрести навыки проектирования элементов оборудования;
- приобретение навыков рационального выбора расчетных моделей электромеханических систем и их механических и электрических аналогов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теоретическая механика» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Теоретическая механика» направлен на формирование следующих компетенций:

- ОПК-3 Способен применять соответствующий физикоматематический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
- ОПК-5 Способен использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-3	Знать физико-математический аппарат, методы анализа и моделирования, и основные законы механики.
	Уметь использовать физико-математический аппарат, методы анализа и моделирования, теоретического и
	экспериментального исследования и применять законы механики при решении профессиональных задач
	Владеть понятием физических явлений, методами анализа и моделирования, теоретического и экспериментального
	и моделирования, теоретического и экспериментального исследования.
ОПК-5	Знать области применения, свойства и характеристики конструкционных и электротехнических материалов.
	Уметь выполнять расчеты на прочность простых конструкций.
	Владеть методами исследования и выбора
	конструкционных и электротехнических материалов для расчетов параметров и режимов объектов
	профессиональной деятельности

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Теоретическая механика» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

During who by a bottom	Всего	Семестры
Виды учебной работы	часов	3
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	36	36
Самостоятельная работа	54	54
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

заочная форма обучения

Ριμμι γιμοδιμοй ποδοπι	Всего	Семестры
Виды учебной работы	часов	4
Аудиторные занятия (всего)	8	8
В том числе:		
Лекции	4	4
Практические занятия (ПЗ)	4	4
Самостоятельная работа	96	96
Часы на контроль	4	4
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
	•	3 Семестр				
1	Статика	Предмет и основные исторические этапы развития теоретической механики (ТМ), ТМ как фундаментальная теоретическая база областей современной техники, значение ТМ для специалистов данного профиля. Абстрактные модели реальных тел, используемые в ТМ. Исходные положения статики как раздела, где изучаются силы, их эквивалентные преобразования и условия равновесия твердых тел. Аксиомы статики. Основные виды плоских заделок (связей) и направление из реакций. Системы сходящихся сил. Равнодействующая сходящихся сил, условия равновесия системы сходящихся сил. Геометрические и аналитические способы сложения сил. Моменты силы как характеристики вращательного действия силы. Алгебраический, векторный моменты силы относительно центра, момент силы относительно ОСИ. Определение пары, векторный момент пары. Теоремы о парах. Вращающий момент как первичное силовое воздействие, дополнительные аксиомы статики. Приведение произвольной системысил кзаданному центру. Лемма о параллельном переносе силы. Главный вектор и главный момент системы сил. Эквивалентность системы сил главный момент системы сил. Вквивалентность системы сил к простейшему виду Векторные и скалярные условия равновесия произвольной системы сил, приложенных к твердому телу. Частные случаи систем сил и условий равновесия геометрической статики. Статически определимые и неопределимые задачи. Произвольно плоская система сил. Три формы аналитических условий равновесия. Равновесие	4	8	16	28

	1	,	1			
		системы сочлененных конструкций.				
		Аналитические условия равновесия. Некоторые виды				
		пространственных связей и направление их реакций. Методы расчета				
		плоских и пространственных задач статики				
_	1/	Центр параллельных сил и центр тяжести фигур.				
2	Кинематика	Способы задания движения точки в пространстве Определение основных кинематических характеристик (траектории,				
		скорости, ускорения) при векторном, координатном и естественном				
		способах задания движения. Классификация движения точки по				
		ускорениям. Пространство и время в классической механике.				
		Относительность механического движения. Системы отсчета.				
		Задачи кинематики твердого тела, понятие о степенях				
		свободы. Теорема о проекциях скоростей. Простейшие виды				
		движения твердого тела: поступательное и вращательное движение				
		вокруг неподвижной оси. Угловая скорость и угловое ускорение. Векторная формула Эйлера				
		Плоское движение твердого тела и движение плоской				
		фигуры в ее плоскости. Закон и кинематические характеристики				
		плоского движения. Векторные формулы для определения скоростей				
		и ускорений точек плоского тела. Первая интерпретация плоского				
		движения как суперпозиции поступательного и вращательного	4	8	12	24
	1	движений. Мгновенный центр скоростей плоской фигуры (МЦС) и				
	1	его свойства. Способы нахождения МЦС .Вторая интерпретация				
		плоского движения как мгновенного вращения вокруг				
	1	МЦСГрафическое определение скоростей точек плоской фигуры. Относительное и переносное движения.				
		Дифференцирование вектора, определенного в подвижной системе				
		координат. Теорема сложения скоростей. Теорема Кориолиса о				
		сложении ускорений. Механический смысл кориолисова ускорения и				
		способы его вычисления. Кинематика кулисных механизмов.				
		Сферическое движение вокруг неподвижной точки. Углы				
		Эйлера. Уравнения движения твердого тела вокруг неподвижной				
		точки. Разложение произвольного пространственного движения на поступательное движение вместе с полюсом и движение вокруг				
		полюса. Определение скоростей и ускорений точек свободного				
		твердого тела.				
3	Динамика	Классические законы Галилея-Ньютона (аксиомы динамики).				
	материальной	Инерциальные системы отсчета. Философско-физический смысл				
	точки и	ньютоновской механики. Дифференциальные уравнения движения				
	механической	точки. Начальные условия и их механический смысл. Колебательное				
	системы	движение точки. Уравнения свободных, затухающих и вынужденных колебаний. Относительное движение точки. Переносная и				
		колеоании. Относительное движение гочки. Переносная и кориолисова сила инерции. Принцип относительности классической				
		механики. Движение точки в системе координат, равномерно				
		вращающейся вокруг неподвижной оси.				
		Внутренние силы и их основное свойство. Геометрия масс.				
		Центр масс и моменты инерции как характеристики распределения				
		масс механической системы. Суммарные меры движения				
		механических систем: количество движения, кинетический момент,				
		·				
		кинетическая энергия Теоремы динамики. Теорема об изменении	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения.	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента.	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента. Кинетическая энергия механической системы и твердого тела	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента.	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента. Кинетическая энергия механической системы и твердого тела в частных случаях его движения. Теорема Кенига. Элементарная и	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента. Кинетического момента. Кинетическая энергия механической системы и твердого тела в частных случаях его движения. Теорема Кенига. Элементарная и полная работа силы. Мощность сил. Работа силы, приложенной к вращающемуся телу. Работа вращающего момента. Потенциальное силовое поле и потенциальная энергия. Закон	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента. Кинетическая энергия механической системы и твердого тела в частных случаях его движения. Теорема Кенига. Элементарная и полная работа силы. Мощность сил. Работа силы, приложенной к вращающемуся телу. Работа вращающего момента. Потенциальное силовое поле и потенциальная энергия. Закон сохранения механической энергии. Дифференциальные уравнения	6	12	12	30
		кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента. Кинетическая энергия механической системы и твердого тела в частных случаях его движения. Теорема Кенига. Элементарная и полная работа силы. Мощность сил. Работа силы, приложенной к вращающемуся телу. Работа вращающего момента. Потенциальное силовое поле и потенциальная энергия. Закон сохранения механической энергии. Дифференциальные уравнения движения твердых тел при поступательном движении, при вращении	6	12	12	30
A	Принтипт	кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента. Кинетическая энергия механической системы и твердого тела в частных случаях его движения. Теорема Кенига. Элементарная и полная работа силы. Мощность сил. Работа силы, приложенной к вращающемуся телу. Работа вращающего момента. Потенциальное силовое поле и потенциальная энергия. Закон сохранения механической энергии. Дифференциальные уравнения движения твердых тел при поступательном движении, при вращении вокруг неподвижной оси и при плоскопараллельном движении.	6	12	12	30
4	Принципы механики.	кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента. Кинетическая энергия механической системы и твердого тела в частных случаях его движения. Теорема Кенига. Элементарная и полная работа силы. Мощность сил. Работа силы, приложенной к вращающемуся телу. Работа вращающего момента. Потенциальное силовое поле и потенциальная энергия. Закон сохранения механической энергии. Дифференциальные уравнения движения твердых тел при поступательном движении, при вращении	4	12	12	30

момент сил инерции. Определение динамических реакций				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
1 3				
Обобщенные координаты, скорости и обобщенные силы. Общее				
уравнение статики.				
Принцип Даламбера- Лагранжа (ПДЛ).				
ПДЛ как объединение двух принципов: принципа Даламбера				
и принципа виртуальных перемещений. Обобщенные активные силы				
и обобщенные силы инерции. Общее уравнение динамики				
Формализм Лагранжа. Тождества Лагранжа. Вывод				

*				
* * * * * * * * * * * * * * * * * * * *				
	18	36	54	108
	подшипников при вращении твердого тела вокруг неподвижной оси. Принцип виртуальных перемещений Лагранжа (ПВП). Аналитическое выражение и классификация связей. Голономные системы. Понятие о варьировании координат точки. Виртуальные (возможные) системы. Число независимых виртуальных перемещений для голономных систем. Виртуальная работа. Идеальные и неидеальные связи. Формулировка ПВП. Обобщенные координаты, скорости и обобщенные силы. Общее уравнение статики. Принцип Даламбера- Лагранжа (ПДЛ). ПДЛ как объединение двух принципов: принципа Даламбера и принципа виртуальных перемещений. Обобщенные активные силы и обобщенные силы инерции. Общее уравнение динамики Формализм Лагранжа. Тождества Лагранжа. Вывод уравнений Лагранжа и их структура. Алгоритм получения дифференциальных уравнений движения системы с помощью уравнений Лагранжа. Уравнения Лагранжа для консервативной механической системы и основы теории колебаний. Функция Лагранжа (случай потенциальных сил). Колебания системы с одной степенью свободы около устойчивого положения равновесия. Приведенные коэффициенты жесткости и инертности системы.	подшипников при вращении твердого тела вокруг неподвижной оси. Принцип виртуальных перемещений Лагранжа (ПВП). Аналитическое выражение и классификация связей. Голономные системы. Понятие о варьировании координат точки. Виртуальные (возможные) системы. Число независимых виртуальных перемещений для голономных систем. Виртуальная работа. Идеальные и неидеальные связи. Формулировка ПВП. Обобщенные координаты, скорости и обобщенные силы. Общее уравнение статики. Принцип Даламбера- Лагранжа (ПДЛ). ПДЛ как объединение двух принципов: принципа Даламбера и принципа виртуальных перемещений. Обобщенные активные силы и обобщенные силы инерции. Общее уравнение динамики Формализм Лагранжа. Тождества Лагранжа. Вывод уравнений Лагранжа и их структура. Алгоритм получения дифференциальных уравнений движения системы с помощью уравнений Лагранжа. Уравнения Лагранжа для консервативной механической системы и основы теории колебаний. Функция Лагранжа (случай потенциальных сил). Колебания системы с одной степенью свободы около устойчивого положения равновесия. Приведенные коэффициенты жесткости и инертности	подшипников при вращении твердого тела вокруг неподвижной оси. Принцип виртуальных перемещений Лагранжа (ПВП). Аналитическое выражение и классификация связей. Голономные системы. Понятие о варьировании координат точки. Виртуальные (возможные) системы. Число независимых виртуальных перемещений для голономных систем. Виртуальная работа. Идеальные и неидеальные связи. Формулировка ПВП. Обобщенные координаты, скорости и обобщенные силы. Общее уравнение статики. Принцип Даламбера- Лагранжа (ПДЛ). ПДЛ как объединение двух принципов: принципа Даламбера и принципа виртуальных перемещений. Обобщенные активные силы и обобщенные силы и нерции. Общее уравнение динамики Формализм Лагранжа. Тождества Лагранжа. Вывод уравнений Лагранжа и их структура. Алгоритм получения дифференциальных уравнений движения системы с помощью уравнений Лагранжа. Уравнений Лагранжа для консервативной механической системы и основы теории колебаний. Функция Лагранжа (случай потенциальных сил). Колебания системы с одной степенью свободы около устойчивого положения равновесия. Приведенные коэффициенты жесткости и инертности системы.	подшипников при вращении твердого тела вокруг неподвижной оси. Принцип виртуальных перемещений Лагранжа (ПВП). Аналитическое выражение и классификация связей. Голономные системы. Понятие о варьировании координат точки. Виртуальные (возможные) системы. Число независимых виртуальных перемещений для голономных систем. Виртуальная работа. Идеальные и неидеальные связи. Формулировка ПВП. Обобщенные координаты, скорости и обобщенные силы. Общее уравнение статики. Принцип Даламбера- Лагранжа (ПДЛ). ПДЛ как объединение двух принципов: принципа Даламбера и принципа виртуальных перемещений. Обобщенные активные силы и обобщенные силы инерции. Общее уравнение динамики Формализм Лагранжа. Тождества Лагранжа. Вывод уравнений Лагранжа и их структура. Алгоритм получения дифференциальных уравнений движения системы с помощью уравнений Лагранжа. Уравнения Лагранжа для консервативной механической системы и основы теории колебаний. Функция Лагранжа (случай потенциальных сил). Колебания системы с одной степенью свободы около устойчивого положения равновесия. Приведенные коэффициенты жесткости и инертности системы.

заочная форма обучения

№	Наименование	Содержание раздела	Лекц	Прак	CPC	Всего,
п/п	темы	A 11	лекц	зан.	CIC	час
	T	3 Семестр		1		
1	Статика	Предмет и основные исторические этапы развития				
		теоретической механики (TM), TM как фундаментальная				
		теоретическая база областей современной техники, значение ТМ для				
		специалистов данного профиля. Абстрактные модели реальных тел,				
		используемые в ТМ.				
		Исходные положения статики как раздела, где изучаются				
		силы, их эквивалентные преобразования и условия равновесия				
		твердых тел. Аксиомы статики.				
		Основные виды плоских заделок (связей) и направление из				
		реакций. Системы сходящихся сил. Равнодействующая сходящихся				
		сил, условия равновесия системы сходящихся сил. Геометрические и				
		аналитические способы сложения сил.				
		Моменты силы как характеристики вращательного действия				
		силы. Алгебраический, векторный моменты силы относительно				
		центра, момент силы относительно ОСИ. Определение пары,	1	1	26	28
		векторный момент пары. Теоремы о парах. Вращающий момент как				
		первичное силовое воздействие, дополнительные аксиомы статики.				
		Приведение произвольной системысил кзаданному центру.				
		Лемма о параллельном переносе силы. Главный вектор и главный				
		момент системы сил. Эквивалентность системы сил главному				
		вектору и главному моменту. Приведение системы сил к				
		простейшему виду				
		Векторные и скалярные условия равновесия произвольной				
		системы сил, приложенных к твердому телу. Частные случаи систем				
		сил и условий равновесия геометрической статики. Статически				
		определимые и неопределимые задачи. Произвольно плоская система				
		сил. Три формы аналитических условий равновесия. Равновесие				
		системы сочлененных конструкций.				
		Аналитические условия равновесия. Некоторые виды				

		v v v				
		пространственных связей и направление их реакций. Методы расчета				
		плоских и пространственных задач статики				
\Box	17	Центр параллельных сил и центр тяжести фигур.				
2	Кинематика	Способы задания движения точки в пространстве Определение основных кинематических характеристик (траектории, скорости, ускорения) при векторном, координатном и естественном способах задания движения. Классификация движения точки по ускорениям. Пространство и время в классической механике. Относительность механического движения. Системы отсчета. Задачи кинематики твердого тела, понятие о степенях свободы. Теорема о проекциях скоростей. Простейшие виды движения твердого тела: поступательное и вращательное движение вокруг неподвижной оси. Угловая скорость и угловое ускорение. Векторная формула Эйлера Плоское движение твердого тела и движение плоской фигуры в ее плоскости. Закон и кинематические характеристики плоского движения. Векторные формулы для определения скоростей и ускорений точек плоского тела. Первая интерпретация плоского движения как суперпозиции поступательного и вращательного движений. Мгновенный центр скоростей плоской фигуры (МЦС) и его свойства. Способы нахождения МЦС. Вторая интерпретация плоского движения как мгновенного вращения вокруг МЦСГрафическое определение скоростей точек плоской фигуры. Относительное и переносное движения. Дифференцирование вектора, определенного в подвижной системе координат. Теорема сложения скоростей. Теорема Кориолиса о сложении ускорений. Механический смысл кориолисова ускорения и способы его вычисления. Кинематика кулисных механизмов. Сферическое движение вокруг неподвижной точки. Углы Эйлера. Уравнения движения твердого тела вокруг неподвижной точки. Разложение произвольного пространственного движения на	1	1	22	24
		точки. Разложение произвольного пространственного движения на поступательное движение вместе с полюсом и движение вокруг				
		полюса. Определение скоростей и ускорений точек свободного				
		твердого тела.				
3	Динамика материальной точки и механической системы	Классические законы Галилея-Ньютона (аксиомы динамики). Инерциальные системы отсчета. Философско-физический смысл ньютоновской механики. Дифференциальные уравнения движения точки. Начальные условия и их механический смысл. Колебательное движение точки. Уравнения свободных, затухающих и вынужденных колебаний. Относительное движение точки. Переносная и кориолисова сила инерции. Принцип относительности классической механики. Движение точки в системе координат, равномерно вращающейся вокруг неподвижной оси. Внутренние силы и их основное свойство. Геометрия масс. Центр масс и моменты инерции как характеристики распределения масс механической системы. Суммарные меры движения механических систем: количество движения, кинетический момент, кинетическая энергия Теоремы динамики. Теорема об изменении количества движения Вывод теоремы в дифференциальной и интегральной формах. Теорема о движении центра масс, закон сохранения количества движения. Кинетический момент точки и системы относительно центра и относительно оси. Вычисление кинетического момента вращающегося тела. Вывод теоремы. Закон сохранения кинетического момента. Кинетическая энергия механической системы и твердого тела в частных случаях его движения. Теорема Кенига. Элементарная и полная работа силы. Мощность сил. Работа силы, приложенной к вращающемуся телу. Работа вращающего момента. Потенциальное силовое поле и потенциальная энергия. Закон сохранения механической энергии. Дифференциальные уравнения движения твердых тел при поступательном движении, при вращении движения твердых тел при поступательном движении, при вращении	1	1	26	28
4	Принципы	вокруг неподвижной оси и при плоскопараллельном движении.				
4	механики.					
4	•	вокруг неподвижной оси и при плоскопараллельном движении. Принцип Даламбера для механической системы. Приведение	1	1	22	24

Итого	4	4	96	104
системы.				
равновесия. Приведенные коэффициенты жесткости и инертности				
системы с одной степенью свободы около устойчивого положения				
Функция Лагранжа (случай потенциальных сил). Колебания				
системы и основы теории колебаний.				
Уравнения Лагранжа для консервативной механической				
уравнений Лагранжа.				
дифференциальных уравнений движения системы с помощью				
уравнений Лагранжа и их структура. Алгоритм получения				
Формализм Лагранжа. Тождества Лагранжа. Вывод				
и обобщенные силы инерции. Общее уравнение динамики				
и принципа виртуальных перемещений. Обобщенные активные силы				
ПДЛ как объединение двух принципов: принципа Даламбера				
Принцип Даламбера- Лагранжа (ПДЛ).				
уравнение статики.				
Обобщенные координаты, скорости и обобщенные силы. Общее				
работа. Идеальные и неидеальные связи. Формулировка ПВП.				
виртуальных перемещений для голономных систем. Виртуальная				
Виртуальные (возможные) системы. Число независимых				
Голономные системы. Понятие о варьировании координат точки.				
Аналитическое выражение и классификация связей.				
Принцип виртуальных перемещений Лагранжа (ПВП).				

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-3	Знать физико-	тест	Выполнение работ в	Невыполнение работ
	математический аппарат,		срок,	в срок,
	методы анализа и		предусмотренный в	предусмотренный в

	T	1		
	моделирования,		рабочих программах	рабочих программах
	теоретического и			
	экспериментального			
	исследования при			
	решении			
	профессиональных задач			
	Уметь использовать	Решение стандартных	Выполнение работ в	Невыполнение работ
	физико-математический	практических задач	срок,	в срок,
	аппарат, методы анализа		предусмотренный в	предусмотренный в
	и моделирования,		рабочих программах	рабочих программах
	теоретического и			
	экспериментального			
	исследования при			
	решении			
	профессиональных задач			
	Владеть методами	Решение прикладных	Выполнение работ в	Невыполнение работ
	анализа и моделирования,	задач в конкретной	срок,	в срок,
	теоретического и	предметной области	предусмотренный в	предусмотренный в
	экспериментального		рабочих программах	рабочих программах
	исследования при			1 1
	решении			
	профессиональных задач			
ОПК-5	Знать свойства	тест	Выполнение работ в	Невыполнение работ
	конструкционных и		срок,	в срок,
	электротехнических		предусмотренный в	предусмотренный в
	материалов в расчетах		рабочих программах	рабочих программах
	параметров и режимов		pued min inperpuisium	pwoo mii nporpumiun
	объектов			
	профессиональной			
	деятельности			
	Уметь использовать	Решение стандартных	Выполнение работ в	Невыполнение работ
	свойства	практических задач	срок,	в срок,
	конструкционных и	практических задач	предусмотренный в	предусмотренный в
	электротехнических		рабочих программах	рабочих программах
	материалов в расчетах		раобчих программах	раобчих программах
	параметров и режимов			
	объектов			
	профессиональной			
	деятельности	D	D	H
	Владеть использованием	Решение прикладных	Выполнение работ в	Невыполнение работ
	свойств	задач в конкретной	срок,	в срок,
	конструкционных и	предметной области	предусмотренный в	предусмотренный в
	электротехнических		рабочих программах	рабочих программах
	материалов в расчетах			
	параметров и режимов			
	объектов			
	профессиональной			
	деятельности			

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения:

«зачтено» «не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ОПК-3	Знать физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь использовать физико- математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	Владеть методами анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ОПК-5	Знать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	Владеть использованием свойств конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

Пример типового задания Теста № 1 «Статика»

Условия равновесия системы сходящихся сил имеют вид 1.

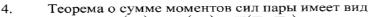
a)
$$\sum_{i=1}^{n} F_{ix} = 0$$
; $\sum_{i=1}^{n} F_{iy} = 0$; $\sum_{i=1}^{n} F_{iz} = 0$

b)
$$\sum_{i=1}^{n} F_{ix} = 0$$
, $\sum_{i=1}^{n} F_{iy} = 0$, $\sum_{i=1}^{n} M_{f}(\overline{F}_{i}) = 0$

c)
$$\sum_{i=1}^{n} F_{iz} = \sum_{i=1}^{n} F_{i} = 0$$
, $\sum_{i=1}^{n} M_{x}(\overline{F}_{i}) = 0$, $\sum_{i=1}^{n} M_{y}(\overline{F}_{i}) = 0$

d)
$$\sum_{i=1}^{n} F_i = 0$$
, $\sum_{i=1}^{n} M_i (\overline{F}_i) = 0$

e)
$$\sum_{i=1}^{n} F_{ix} = 0$$
, $\sum_{i=1}^{n} F_{iy} = 0$


- Сила реакции Y_A равна: 2.
 - a) 1 кH
 - b) 1,7 κH
 - c) 6,7 kH
 - d)
 - e) -1.7 кH
- 3. Алгебраический момент силы относительно оси z равен:

- b) $\overline{r} \times \overline{F}$ c) $yF_z zF_y$

d)
$$zF_x - xF_z$$

e)
$$xF_v - yF_x$$

a)
$$\overline{M}_0(\overline{F}_1) - \overline{M}_0(\overline{F}_2) = \overline{M}(\overline{F}_1, \overline{F}_2)$$

b)
$$\overline{M}_0(\overline{F}_1) + \overline{M}_0(\overline{F}_2) = \overline{M}(\overline{F}_1, \overline{F}_2)$$

c)
$$M_0(\overline{F_1}) + M_0(\overline{F_2}) = M(\overline{F_1}, \overline{F_2})$$

d)
$$M_0(\overline{F_1}) - M_0(\overline{F_2}) = M(\overline{F_1}, \overline{F_2})$$

e)
$$M_0(\overline{R}) = M(\overline{F}_1, \overline{F}_2)$$

Теорема Вариньона относительно оси имеет вид: 5.


a)
$$\overline{M}_{f}\left(\overline{R}^{*}\right) = \sum_{i=1}^{n} \overline{M}_{f}\left(\overline{F}_{i}\right)$$

b)
$$M_{\hat{f}}\left(\vec{R}^*\right) = \sum_{i=1}^n M_{\hat{f}}\left(\overline{F}_i\right)$$

c)
$$M_z(\vec{R}^*) = \sum_{i=1}^n \overline{M}_z(\vec{F}_i)$$

d)
$$\overline{M}_z(\overline{R}^*) = \sum_{i=1}^n \overline{M}_z(\overline{F}_i)$$

e)
$$\overline{M}_z(\overline{R}^*) = \sum_{i=1}^n M_z(\overline{F}_i)$$

Пример типового задания Теста № 2 «Кинематика»

- 1. Бинормальное ускорение точки равно:
 - a) $\dot{x}\bar{i} + \dot{y}\bar{j} + \dot{z}\bar{k}$
 - b) $\ddot{x}\bar{i} + \ddot{y}\bar{j} + \ddot{z}\bar{k}$
 - c) \dot{s}
 - ď) 0
 - e) $\frac{v^2}{\rho}$
- 2. Для задания поступательного движения тела достаточно знать:
 - a) $x = f_1(t), y = f_2(t), z = f_3(t)$
 - b) $\varphi = f(t)$
 - c) $x = f_1(t), y = f_2(t), \varphi = f(t)$
 - d) $y = f_2(t), z = f_3(t)$
 - e) $z = f_3(t), y = f_2(t), \varphi = f(t)$
- 3. Абсолютным движением называется:
 - а) движение точки относительно подвижной системы отсчета
 - b) движение точки относительно неподвижной системы отсчета
 - с) движение точки относительно тела отсчета
 - d) движение подвижной системы отсчета относительно неподвижной
 - е) движение точки в собственной системе отсчета
- 4. МЦС это:
 - а) единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, если $\omega \neq 0$, скорость которой равна нулю
 - b) единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, если $\omega \neq 0$, ускорение которой равно нулю
 - с) единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, если $\omega \neq 0$ и $\varepsilon \neq 0$, скорость которой равна нулю
 - d) единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, если $\omega \neq 0$ и $\varepsilon \neq 0$, ускорение которой равно нулю
 - единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, скорость и ускорение которой равны нулю
- 5. $\omega_e = 5$ c⁻¹, $h_e = 1.5$ м, $s_r = 4\sin\left(\frac{\pi}{6}t\right)$ м, $\left(\overline{\omega}_e, \overline{v}_r\right) = 30$, $t_1 = 1$ с. Ускорение

Кориолиса равно:

- a) 1,05
- b) 7,5
- c) 37,5
- d) 5,25
- e) -0.95

Пример типового задания Теста № 3 «Динамика»

- 1. m = 2 Kr, x = 4t M, $y = 5\sin(3t)$ M, $z = 0.2e^{-0.1t}$ M, $t_1 = 1$ c. F_x pabha:
 - a) 0
 - b) 15

- c) 0,18
- d) -0,018 e) 30
- 2. Для прямоугольной пластины:

a)
$$J_{Oz} = \frac{Ml^2}{3}$$

b)
$$J_{\hat{I}z} = M \left(\frac{h^2}{12} + \frac{l^2}{3} \right)$$

c)
$$J_{Oz} = MR^2$$

d)
$$J_{Oz} = M \frac{R^2}{2}$$

e)
$$J_{Oz} = \frac{3}{2}MR^2$$

- Кинетическим моментом точки относительно какого-либо центра называют: 3.
 - а) половину произведения массы точки на квадрат ее скорости
 - b) момент количества движения точки относительно этого центра
 - с) вектор, равный произведению массы точки на ее скорость
 - d) произведение силы на скорость точки
 - е) произведение массы точки на ускорение
- 4. Уравнения Лагранжа имеют вид:

a)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial q_i} \right) - \frac{\partial T}{\partial q_i} = Q_i$$
, $i = 1, 2, ..., n$

b)
$$\frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = Q_i$$
, $i = 1, 2, ..., n$

c)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = Q_i$$
, $i = 1, 2, ..., N$

d)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = 0$$
, $i = 1, 2, ..., n$

e)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = Q_i$$
, $i = 1, 2, ..., n$

Уравнения свободных колебаний точки имеют вид: 5.

a)
$$q = \sqrt{q_0^2 + \frac{\dot{q}_0^2}{k^2}} \sin\left(kt + arctg \frac{q_0 k}{\dot{q}_0}\right)$$

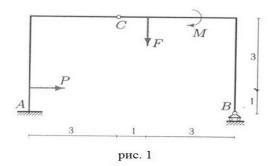
b)
$$q = Ae^{-nt}\sin(k_1t + \alpha)$$

c)
$$q_1 = Ae^{-nt_1}\sin(k_1t_1 + \alpha)$$

d)
$$q_2 = Ae^{-nt_1}e^{-n\tau_1}\sin(k_1t_1 + \alpha) = q_1e^{-n\tau_1}$$

e)
$$q = e^{-nt} \left(C_1 t + C_2 \right)$$

7.2.2 Примерный перечень заданий для решения стандартных задач


- 1. Один конец стержня постоянного сечения жестко заделан в неподвижном основании, а другой свободен. Если длину стержня увеличить в 4 раза, то его первая частота свободных продольных колебаний:
- а) уменьшится в 16 раз
- б) уменьшится в 2 раза
- в) уменьшится в 4 раза +
- 2. Тело весом Р=2 кН установлено на горизонтальной поверхности. К телу приложена горизонтально направленная сдвигающая сила Q = 100H.

Коэффициент трения скольжения f=0,2. Сила трения по опорной поверхности равна:

- a) 100 H +
- б) 500 Н
- в) 400 H
 - 3. Абсолютная скорость точки это скорость:
- а) в абсолютном движении, равная геометрической сумме двух скоростей: переносной и относительной +
- б) относительно системы координат, неизменно связанной с Землей
- в) относительно системы отсчета, совершающей переносное движение
 - 4. Натуральный логарифм коэффициента затухания есть:
- а) коэффициент демпфирования
- б) коэффициент относительного демпфирования
- в) логарифмический декремент колебаний +
- 5. Дифференциальное уравнение вращательного движения тела можно записать:
- а) одной формулой +
- б) двумя формулами
- в) тремя формулами
- 6. Какую из перечисленных резьб следует применить в винтовом домкрате:
- а) трапецеидальную
- б) треугольную +
- в) упорную
 - 7. К какому виду механических передач относятся цепные передачи:
- а) трением с промежуточной гибкой связью
- б) зацеплением с непосредственным касанием рабочих тел
- в) зацеплением с промежуточной гибкой связью +
 - 8. Сила трения между поверхностями:
- а) меньше чем нормальная реакция
- б) зависит от нормальной реакции и коэффициента трения +
- в) больше чем нормальная реакция
- 9. Приложение к твердому телу совокупности сил, которые уравновешиваются, приводит к:
- а) нарушению равновесия тела
- б) уравновешиванию тела
- в) никаких изменений не происходит +
- 10. Возбуждение вибрации системы возбуждающими силами (моментами), не зависящими от состояния системы, это такое возбуждение:
- а) силовое +
- б) кинематическое
- в) внешнее

7.2.3 Примерный перечень заданий для решения прикладных задач

Задача 1. В точке A рама заделана в неподвижное основание, а в точке B опирается на подвижный шарнир. Части рамы соединены шарниром C (рис. 1). К раме приложены горизонтальная сила P=1 кH, вертикальная F=8 кH и момент M=4 кHм. Размеры даны в метрах. Найти реакции опор.

- a) X_a =-1 κ H, Y_a =5 κ H, Y_B =3 κ H, M_a =16 κ H·M; б) X_a =3 κ H, Y_a =-1 κ H, Y_B =5 κ H, M_a =12 κ H·M;
- в) $X_a=1\kappa H, Y_a=-5\kappa H, Y_b=3\kappa H, M_a=18\kappa H\cdot M; \ \Gamma)$ $X_a=1\kappa H, Y_a=5\kappa H, Y_b=-3\kappa H, M_a=16\kappa H\cdot M.$

Задача 2. На конструкцию, состоящую из трех шарнирно соединенных частей, действуют силы $F_1 = F_2 = 10$ кH, P = 4 кH и момент M = 2 кHм. Конструкция опирается на неподвижные шарниры в точках A и B и вертикальный стержень в C (рис. 2). Найти реакции опор.

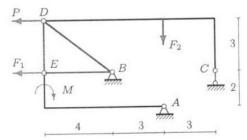


Рис. 2

a) $X_a=20\kappa H, Y_a=-6\kappa H, X_B=-8\kappa H, Y_B=44\kappa H;$ б) $X_a=-20\kappa H, Y_a=16\kappa H, X_B=-3\kappa H, Y_B=44\kappa H;$ в) $X_a=-20\kappa H, Y_a=6\kappa H, X_B=-3\kappa H, Y_B=34\kappa H;$ г) $X_a=20\kappa H, Y_a=16\kappa H, X_B=-3\kappa H, Y_B=24\kappa H.$

Задача 3. Две части составной рамы соединены шарнирным стержнем и односторонней связью в точке K (гладкая опора). На раму действуют заданные нагрузки P=2 кH, $M_1=4$ кНм, $M_2=6$ кНм и сила F. Размеры на рисунке даны в метрах (рис. 3). Для каких значений силы F система находится в положении равновесия?

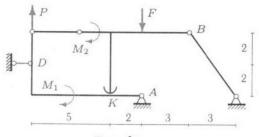


Рис. 3

a) F>2κH; δ) F<2κH; в) F<2κH; г) F>12κH

Задача 4. Механизм с идеальными стационарными связями находится в равновесии под действием силы F и моментов $M_1=10$ Нм, $M_2=11$ Нм. Длины звеньев $OA=4\sqrt{2}$ м, AB=6 м, AD=5 м, угол $\alpha=45^\circ$. Стержни AD- горизонтальный, AB- вертикальный. Уголок CB изогнут под прямым углом, длинная сторона его горизонтальна. Диск радиуса R=5 м касается горизонтальной поверхности без проскальзывания (рис. 4). Вес стержней и диска не учитывать. Найти величину F.

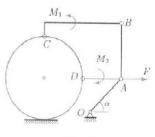


Рис. 4

Задача 5. В указанном положении механизма с двумя степенями свободы определить скорость муфты относительно стержня v_r (рис. 5).

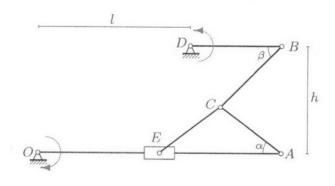
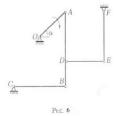



Рис. 5

Указаны направления вращения кривошипов. Стержни DB и OA считать в данный момент горизонтальными. Дано: $\operatorname{tg}\alpha=3/4,\ \beta=\pi/4,\ AC=CE=5$ см, DB=6 см, OE=AE=8 см, h=7 см, l=10 см, $\omega_{OA}=1$ с $^{-1},\ \omega_{DB}=2$ с $^{-1}.$

a) $v_r = 8 \text{cm/c}$; 6) $v_r = 18 \text{cm/c}$; B) $v_r = 28 \text{cm/c}$; $v_r = 5 \text{cm/c}$.

Задача 6. Механизм состоит из пяти шарнирно соединенных стержней. Три шарнирные опоры крепят механизм к основанию. В указанном положении механизма (рис. 6) известна угловая скорость стержня OA: $\omega_{OA_z}=-6$ с $^{-1}$. Дано: OA=5 см, AB=9 см, BC=8 см, BD=3 см, DE=EF=6 см, $\cos\alpha=4/5$. В данный момент стержень DE горизонтальный, стержни AB и FE вертикальные. Найти угловые скорости всех звеньев механизма.

a) $\omega_2=2c^{-1}$, $\omega_3=3c^{-1}$, $\omega_4=4c^{-1}$, $\omega_5=5c^{-1}$; 6) $\omega_2=4c^{-1}$, $\omega_3=2c^{-1}$, $\omega_4=1c^{-1}$, $\omega_5=3c^{-1}$; B) $\omega_2=4c^{-1}$, $\omega_3=4c^{-1}$, $\omega_4=12c^{-1}$, $\omega_5=2c^{-1}$; $\omega_2=2c^{-1}$, $\omega_3=3c^{-1}$, $\omega_4=4c^{-1}$, $\omega_5=1c^{-1}$.

Задача 7 Оси колес фрикционной передачи расположены на одной прямой (рис. 7). Даны радиусы колес $r_2=10$ см, $R_2=13$ см, $r_3=7$ см, $R_3=11$ см, $r_4=7$ см, $R_4=10$ см, расстояние между крайними осями 68 см и угловые скорости $\omega_1=33$ с $^{-1}$, $\omega_5=91$ с $^{-1}$. Найти радиусы колес 1 и 5.

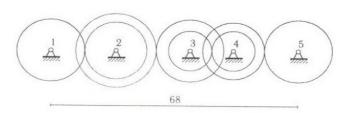
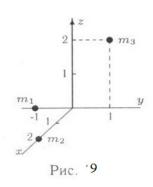



Рис. 7

а) R_1 =7см; R_5 =3см; б) R_1 =9см; R_5 =5см; в) R_1 =5см; R_5 =3см; г) R_1 =8см; R_5 =4см Задача 8.Материальная точка массой m=2 кг движется по прямой x. Имея начальную скорость $v_0=1$ м/с, точка тормозится силой, зависящей от скорости и координаты точки: $F_x=-k\,\dot{x}\,e^{cx},\,k=6$ кг/с, c=3 м $^{-1}$. Другие силы на точку не действуют. Какова должна быть начальная скорость точки для того, чтобы тормозной путь был бы в два раза больше?

a) $\upsilon_0 = 1 \text{ M/c}$; б) $\upsilon_0 = 3 \text{ M/c}$; в) $\upsilon_0 = 12 \text{ M/c}$; г) $\upsilon_0 = 5 \text{ M/c}$.

Задача 9. Механическая система, состоящая из твердого тела (на рисунке не показано) и трех закрепленных на нем материальных точек, вращается вокруг неподвижной оси z по закону $\varphi=e^{2t}\sin t$. Даны моменты инерции тела $J_{xz}=7~{\rm krm}^2$, $J_{yz}=8~{\rm krm}^2$, $J_z=2~{\rm krm}^2$ и положения точек (координаты в метрах) с массами $m_1=1~{\rm kr},\ m_2=2~{\rm kr}$ и $m_3=3~{\rm kr}$ на теле (рис. 9). Найти момент равнодействующей сил, приложенных к системе относительно начала координат при t=0.

a) $M_0=56H\cdot M$; б) $M_0=84H\cdot M$; в) $M_0=36H\cdot M$; г) $M_0=66H\cdot M$.

Задача 10. Механическая система, состоящая из блока колес 1, стержней 2, 3 и двух пружин, совершает малые колебания (рис. 10). Механизм расположен в горизонтальной плоскости, R=2r, AB=BO. Даны массы тел $m_1=4$ кг, $m_2=1$ кг, $m_3=2$ кг, жесткости пружин $c_1=70$ H/м, $c_2=40$ H/м, радиус инерции блока $\rho=3r/2$. Найти собственную частоту системы.

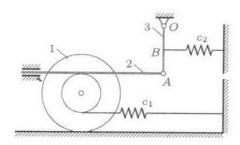


Рис. 10 a) $k=1c^{-1}$; б) $k=2c^{-1}$; в) $k=3c^{-1}$: г) $k=4c^{-1}$.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Предмет теоретической механики. Механическое движение и механическое взаимодействие объектов.
- 2. Исходные положения статики. Аксиомы статики.
- 3. Активные силы и реакции связей Аксиома связей.
- 4. Основные виды плоских заделок и направление их реакций.
- 5. Системы сходящихся сил. Геометрические и аналитические условия равновесия.
- 6. Моменты силы как характеристики вращательного действия силы. Алгебраический и векторный момент силы относительно центра.
- 7. Момент силы относительно оси. Способы вычисления момента силы относительно оси. Пара сил. Вращающий момент пары. Теоремы о парах. Эквивалентность пар.
 - 8. Условия равновесия системы вращающих моментов. Примеры

плоских заделок, реакции которых содержат вращающие моменты.

- 9. Лемма о параллельном переносе силы.
- 10. Основная теорема статики о приведении произвольной системы сил к данному центру. Главный вектор и главный момент системы сил.
- 11. Условия равновесия тела, находящегося под действием произвольной системы сил.
 - 12. Частные случаи систем сил и условий равновесия.
- 13. Три формы условий равновесия произвольной плоской системы сил. Статически определимые и неопределимые задачи.
- 14. Распределенные силы. Виды распределенных нагрузок. Приведение к равнодействующей.
 - 15. Равновесие системы сочлененных тел.
 - 16. Равновесие при наличии сил трения скольжения и трения качения.
- 17. Центр параллельных сил и центр тяжести фигур. Способы вычисления центра тяжести.
- 18. Кинематика точки . Векторный способ задания движения. Скорость и ускорение точки.
- 19. Определение кинематических характеристик при координатном способе задания движения точки.
- 20. Естественный способ задания движения точки. Разделение ускорения на нормальную и касательную составляющие.
 - 21. Задачи кинематики твердого тела. Понятие о степенях свободы.
 - 22. Поступательное движение твердого тела.
- 23. Вращательное движение твердого тела вокруг неподвижной оси. Закон движения. Угловая скорость и угловое ускорение. Определение кинематических характеристик точек вращающегося тела.
- 24. Плоскопараллельное движение твердого тела. Определение. Закон движения. Две интерпретации плоского движения фигуры.
- 25. Векторные формулы для определения скоростей и ускорения точек плоского тела.
- 26. Мгновенный центр скоростей и его свойства. Способы нахождения м.ц.с.
 - 27. Сложное движение точки. Теорема сложения скоростей.
- 28. Теорема Кориолиса. Механический смысл кориолисова ускорения и способы его вычисления.
- 29. Сложное движение твердого тела. Сложение поступательных движений и вращательных движений вокруг параллельных осей.
- 30. Динамика точки. Классические законы Галилея-Ньютона (аксиомы динамики).

- 31. Дифференциальные уравнения движения точки. Начальные условия и их механический смысл.
 - 32. Динамика колебательного движения точки.
- 33. Динамики относительного движения точки. Переносная и кориолисова силы инерции. Принцип относительности классической механики.
- 34. Динамика механической системы. Силы внешние и внутренние. Центр масс системы и моменты инерции как характеристики распределения масс.
- 35. Теорема об изменении количества движения системы. Вычисление количества движения системы. Следствия теоремы. Теорема о движении центра масс.
- 36. Теорема об изменении кинетического момента системы. Вычисление кинетического момента вращающегося тела. Закон сохранения кинетического момента.
- 37. Кинетическая энергия точки и механической системы. Теорема об изменении кинетической энергии.
- 38. Элементарная и полная работа силы. Работа силы, приложенной к вращающемуся телу.
- 39. Общая формулировка теорем динамики. Дифференциальные уравнения движения твердых тел.
- 40. Принцип Даламбера. Главный вектор и главный момент сил инерции.
 - 41. Классификация связей. Голономные и неголономные системы.
- 42. Виртуальные перемещения точки и системы. Виртуальная работа. Идеальные и неидеальные связи. Принцип виртуальных перемещений.
- 43. Обобщенные координаты, скорости и обобщенные силы. Общее уравнение статики.
 - 44. Принцип Даламбера-Лагранжа. Общее уравнение динамики.
- 45. Тождества Лагранжа. Вывод уравнений Лагранжа. Структура уравнений Лагранжа.
- 46. Уравнения Лагранжа в случае потенциальных сил. Функция Лагранжа
 - 47. Колебания механической системы с одной степенью свободы.

7.2.5 Примерный перечень заданий для подготовки к экзамену

Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов — 20.

- 1. Оценка «Не зачтено» ставится в случае, если студент набрал менее 14 баллов.
- 2. Оценка «Зачтено» ставится в случае, если студент набрал 14 и более баллов

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Статика	ОПК-3, ОПК-5	Тест, зачет, устный опрос.
2	Кинематика	ОПК-3, ОПК-5	Тест, зачет, устный опрос
3	Динамика материальной точки и твердого тела	ОПК-3, ОПК-5	Тест, зачет, устный опрос
4	Принципы механики. Элементы аналитической механики.	ОПК-3, ОПК-5	Тест, зачет, устный опрос.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
- 1. Тарг С.М. Краткий курс теоретической механики / С.М. Тарг. М: Высшая школа, 2008. 416 с.
- 2. Яблонский А.А. Сборник заданий для курсовых работ по теоретической механике: учеб. пособие для технических вузов / под ред. А.А. Яблонского. М.: Интеграл-Пресс, 2006. 384 с.
- 3. Цывильский В.Л. Теоретическая механика / В.Л. Цывильский. М: Высшая школа, 2008. 368 с.
- 4. Мещерский И.В. Задачи по теоретической механике / И.В. Мещерский. СПб.: Лань, 2001. 448 с.
- 5. Переславцева Н.С. Бестужева Н.П.БаскаковВ.АТеоретическая физика. Ч. 1: Статика: учеб. пособие / Н.С. Переславцева, Н.П. Бестужева, В.А. Баскаков. Электрон. дан. (1 файл: 3935 Кб): ГОУВПО «Воронежский государственный технический университет», 2007. 1 CD-RW.
- 6. Переславцева Н.С. Бестужева. Теоретическая механика. Ч. 2: Кинематика: учеб. пособие / Н.С. Переславцева, Н.П. Бестужева. Электрон. дан. (1 файл: 5984 Кб): ГОУВПО «Воронежский государственный технический университет», 2009. 1 CD-RW.
- 7. Переславцева Н.С. Бестужева. Теоретическая механика. Ч. 3: Динамика. учеб. пособие / Н.С. Переславцева, Н.П. Бестужева. Электрон. дан. (1 файл: 5984 Кб): ГОУВПО «Воронежский государственный технический университет», 2010. 1 CD-RW.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - 8.2.1 Программное обеспечение
 - Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic
 - Компас-График LT;
 - OpenOffice;
 - Acrobat Pro 2017 Multiple Platforms Russian AOO License TLP (1-4,999)
 - SMath Studio;
 - 8.2.2 Ресурсы информационно-телекоммуникационной сети «Интернет»
 - Российское образование. Федеральный портал. http://www.edu.ru/
 - Образовательный портал ВГТУ https://education.cchgeu.ru/

8.2.3 Информационные справочные системы

- http://window.edu.ru
- https://wiki.cchgeu.ru/

8.2.4 Современные профессиональные базы данных

- Электронный фонд правовой и номативно-технической документации. URL: http://docs.cntd.ru
- Единая система конструкторской документации. URL: https://standartgost.ru/0/2871-edinaya_sistema_konstruktorskoy_dokumentatsii
 - Национальная электронная библиотека. URL: elibrary.ru
 - Библиотека Адрес ресурса: WWER http://lib.wwer.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебные аудитории для проведения лекционных и практических занятий. Использование имеющихся компьютерных классов для выполнения студентами тестовых и расчетно-графических работ. Учебные плакаты и стенды.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Основой изучения дисциплины «Теоретическая механика» являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета реакций опор и определение кинематических характеристик движения твердых тел. Занятия проводятся путем решения конкретных задач в аудитории.

Контроль усвоения материала дисциплины производится путем проведения тестирования по вопросам пройденных тем.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.

Практическое	Конспектирование рекомендуемых источников. Работа с конспектом				
занятие	лекций, подготовка ответов к контрольным вопросам, просмотр				
	рекомендуемой литературы. Прослушивание аудио- и видеозаписей				
	заданной теме, выполнение расчетно-графических заданий, решение задач				
	по алгоритму.				
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения				
работа	учебного материала и развитию навыков самообразования.				
	Самостоятельная работа предполагает следующие составляющие:				
- работа с текстами: учебниками, справочниками, дополни					
	литературой, а также проработка конспектов лекций;				
	- выполнение домашних заданий и расчетов;				
	- работа над темами для самостоятельного изучения;				
	- участие в работе студенческих научных конференций, олимпиад;				
	- подготовка к промежуточной аттестации.				
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в				
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не				
аттестации позднее, чем за месяц-полтора до промежуточной аттестаци					
перед зачетом с оценкой три дня эффективнее всего исполь					
	повторения и систематизации материала.				

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП