МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Утверждено

В составе образовательной программы Учебно-методическим советом ВГТУ 16.02.2023 г протокол № 4

РАБОЧАЯ ПРОГРАММА междисциплинарного курса

МДК.01.02 Технология программирования мехатронных систем

Специальность: <u>15.02.10 Мехатроника и мобильная робототехника (по</u> <u>отраслям)</u>

Квалификация выпускника: техник-мехатроник

Нормативный срок обучения: <u>3 года 10 месяцев **на базе** среднего общего **образования**</u>

Форма обучения: Очная Год начала подготовки: 2023

Программа обсуждена на заседании методического совета СПК 20.01.2023 года Протокол №5

Председатель методического совета СПК ______ Сергеева С. И.

Программа одобрена на заседании педагогического совета СПК 27.01.2023 года Протокол №5

Председатель педагогического совета СПК

Дегтев Д. Н.

2023

Программа междисциплинарного курса разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования

15.02.10 Мехатроника и мобильная робототехника (по отраслям),

утвержденного приказом Минобрнауки России от 09.12.2016 г. №1550

Организация-разработчик: ВГТУ

Разработчики:

Коротков Виктор Николаевич, преподаватель

СОДЕРЖАНИЕ

1 ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ

МЕЖДИСЦИПЛИНАРНОГО КУРСА 4 1.1Место междисциплинарного курса в структуре основной
профессиональной образовательной программы
1.2 Требования к результатам освоения междисциплинарного курса
 1.3 Количество часов на освоение программы междисциплинарного курса
2 СТРУКТУРА И СОДЕРЖАНИЕ МЕЖДИСЦИПЛИНАРНОГО КУРСА
2.1 Объем междисциплинарного курса и виды учебной работы
2.2 Тематический план и содержание междисциплинарного
курса
3 УСЛОВИЯ РЕАЛИЗАЦИИ РАБОЧЕЙ ПРОГРАММЫ
МЕЖДИСЦИПЛИНАРНОГО КУРСА
3.1 Требования к материально-техническому
обеспечению
3.2 Перечень нормативных правовых документов, основной и
дополнительной учебной литературы, необходимой для освоения
междисциплинарного курса.
3.3 Перечень программного обеспечения, профессиональных баз
данных, информационных справочных систем ресурсов информационно-телекоммуникационной сети «Интернет»,
необходимых для освоения междисциплинарного
*
3.4 Особенности реализации дисциплины для обучающихся из числа
инвалидов и лиц с ограниченными возможностями здоровья
здоровья
4 КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ
МЕЖДИСЦИПЛИНАРНОГО КУРСА

1 ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ МЕЖДИСЦИПЛИНАРНОГО КУРСА

Технология программирования мехатронных систем

1.1 Место междисциплинарного курса в структуре основной профессиональной образовательной программы

Междисциплинарный курс "Технология программирования мехатронных систем" является частью основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 15.02.10 "Мехатроника и мобильная робототехника (по отраслям)".

Междисциплинарный курс "Программирование мехатронных систем" относится к обязательной части профессионального модуля ПМ.01. "Монтаж, программирование и пуско-наладка мехатронных систем".

Программа междисциплинарного курса может быть использована в дополнительном профессиональном образовании и профессиональной подготовке работников в области мехатроники и робототехники.

1.2 Требования к результатам освоения междисциплинарного курса

В результате освоения междисциплинарного курса обучающийся должен уметь:

- У1 читать и оформлять техническую и технологическую документацию;
- У2 распознавать задачу и/или проблему в профессиональном и/или социальном контексте;
- У3 анализировать задачу и/или проблему и выделять её составные части;
- У4 правильно выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У5 определять задачи поиска информации;
 - У6 определять необходимые источники информации;
 - У7 составлять алгоритмы программ;
- У8 составлять программы на языке программирования высокого уровня;
- У9 вводить и отлаживать программы для управления мехатронными системами и технологическим оборудованием;
- У10 определять актуальность нормативно-правовой документации в профессиональной деятельности.
- В результате освоения междисциплинарного курса обучающийся должен знать:
- 31 устройство и принцип действия микропорцессорных и микроконтроллерных систем управления;
- 32 физические особенности сред использования мехатронных систем;
 - 33 язык программирования высокого уровня;
- 34 правила техники безопасности при проведении работ по программированию и отладке программного обеспечения;
 - 35 современные средства и устройства информатизации;

- 36 современное программное обеспечение в профессиональной деятельности.
- В результате освоения междисциплинарного курса обучающийся должен иметь практический опыт:
 - П1 перевода чисел из одной системы счисления в другую;
 - П2 преобразования булевых выражений;
 - ПЗ реализации элементарных логических операций;
 - П4 моделирования электрической схемы цифрового устройства;
 - П5 синтеза электрической схемы цифрового устройства;
- П6 записи информации в микросхемы памяти при помощи программатора;
- П7 записи информации в микроконтроллер при помощи программатора;
- П8 работы в редакторе и компиляторе программ для микроконтроллера;
 - П9 разработки алгоритма программы;
- П10 разработки программы для микроконтроллера на языке высокого уровня;
- П11 включения программируемого логического контроллера в состав системы управления;
- П12 разработки программы для программируемого логического контроллера в специальной среде программирования.

Изучение междисциплинарного курса направлено на формирование у обучающихся следующих общих и профессиональных компетенций:

- **OK1** Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.
- **ОК2** Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
- **ПК1.2** Осуществлять настройку и конфигурирование программируемых логических контроллеров и микропроцессорных систем в соответствии с принципиальными схемами подключения.
- **ПК1.3**. Разрабатывать управляющие программы мехатронных систем и мобильных робототехнических комплексов в соответствии с техническим заданием.
- **1.3 Количество часов на освоение программы междисциплинарного курса:** Максимальная учебная нагрузка 182 часа, в том числе:
 - обязательная часть 182 часа;
 - вариативная часть 0 часов.

Объем практической подготовки: 182 часа.

2 СТРУКТУРА И СОДЕРЖАНИЕ МЕЖДИСЦИПЛИНАРНОГО КУРСА

2.1 Объем междисциплинарного курса и виды учебной работы

Вид учебной работы	Объем часов	В том числе в форме практическо й подготовки
Объем работы обучающихся в академических часах (всего)	182	182
Объем работы обучающихся во	137	137
взаимодействии с преподавателем (всего)		
в том числе:		
лекции	68	68
практические занятия	50	50
курсовое проектирование	18	18
Самостоятельная работа обучающегося (всего)	33	33
с обоснованием расчета времени,		
затрачиваемого на ее выполнение		
в том числе:		
работа с дополнительной литературой	10	10
подготовка к практическим занятиям	20	20
подготовка к промежуточной аттестации	3	3
Консультации	1	1
Промежуточная аттестация в форме		
№7 семестр - контрольной работы (другие	12	12
формы контроля),		
№6 семестр – зачета с оценкой		
(дифференцированного зачета),		
№8 семестр – курсовой работы (проекта),		
№8 <i>семестр -</i> экзамена, в том числе:		
подготовка к экзамену,		
предэкзаменационная консультация,		
процедура сдачи экзамена		

2.2 Тематический план и содержание междисциплинарного курса

Наименование	Содержание учебного материала, лабораторные и практические занятия,	Объем часов	Формируемые
разделов и тем	самостоятельная работа обучающихся, курсовая работа (проект)		знания и
			умения
1	2	3	4
Раздел 1.	Арифметические основы цифровых устройств.		
Тема 1.1. Системы	Содержание лекции:	2	У1, У2, У3,
счисления.	1. Определение системы счисления.		У4, У5, У6,
	2. Краткая история систем счисления.		У10, 31
	3. Типы систем счисления.		
Тема 1.2. Двоичная,	Содержание лекции:		У1, У2, У3,
восьмеричная и	1. Характеристики систем счисления.		У4, У5, У6,
шестнадцатеричная	2. Правила выполнения арифметических операций в разных системах счисления.		У10, 31
системы счисления.			
Тема 1.3. Перевод	Содержание лекции:		У1, У2, У3,
числа из одной	Принципы и последовательность перевода числа из одной системы счисления в		У4, У5, У6,
системы счисления в	другую.		У10, 31, П1
другую.			
Раздел 2.	Логические основы цифровых устройств.		
Тема 2.1. Основы	Содержание лекции:	2	У1, У2, У3,
алгебры логики.	1. Определение логической операции.		У4, У5, У6,
	2. Классификация логических операций.		У10
Тема 2.2. Основные	Содержание лекции:		У1, У2, У3,
законы алгебры	1. Описание законов алгебры логики.		У4, У5, У6,
логики.	2. Правила алгебры логики.		У10
Тема 2.3.	Содержание лекции:		У1, У2, У3,
Преобразование	Принципы преобразования булевых выражений.		У4, У5, У6,
булевых выражений.			У10, П2
Тема 2.4.	Содержание лекции:		У1, У2, У3,
Дизъюнктивные	1. Элементарные произведения.		У4, У5, У6,

нормальные формы.	2. Определение дизъюнктивной нормальной формы.		У10
Topiumiziizi qopiizii	3. Определение специальной дизъюнктивной нормальной формы.		
	4. Таблица истинности функций.		
Тема 2.5.	Содержание лекции:	2	У1, У2, У3,
Минимизация	Принципы минимизации логических функций.		У4, У5, У6,
логических функций.			У10
Тема 2.6. Табличные	Содержание лекции:		У1, У2, У3,
методы минимизации.	1. Определение и назначение карт Карно.		У4, У5, У6,
Карты Карно.	2. Принципы построения карт Карно.		У10
Тема 2.7. Неполностью	Содержание лекции:		У1, У2, У3,
определенные	Определение неполностью определенных логических функций.		У4, У5, У6,
логические функции.			У10
Тема 2.8. Логические	Содержание лекции:		У1, У2, У3,
элементы и логические	1. Классификация логических элементов.		У4, У5, У6,
операции.	2. Условные графические обозначения, принципы действия и таблицы истинности		У10, П3
	логических элементов И, ИЛИ, НЕ.		
	Самостоятельная работа обучающегося.		
	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	2	
Раздел 3.	Аппаратное исполнение логических элементов.		
Тема 3.1.	Содержание лекции:	2	У1, У2, У3,
Классификация	Классификация микросхем логических элементов по технологии изготовления.		У4, У5, У6,
логических элементов.			У10
Тема 3.2.	Содержание лекции:		У1, У2, У3,
Характеристики	1. Статическая характеристика передачи логического элемента.		У4, У5, У6,
логических элементов.	2. Статическая помехоустойчивость логического элемента.		У10
	3. Помехоустойчивость логического элемента.		
	4. Быстродействие логического элемента.		
	5. Коэффициент объединения по входу логического элемента.		
	6. Коэффициент разветвления по выходу логического элемента.		
	7. Потребляемая мощность логического элемента.		

Тема 3.3. Резисторно-	Содержание лекции:		У1, У2, У3,
транзисторные	Принципиальная электрическая схема и принцип действия логического элемента		У4, У5, У6,
логические элементы.	резисторно-транзисторной логики.		У10
Тема 3.4. Диодно-	Содержание лекции:		У1, У2, У3,
транзисторные	Принципиальная электрическая схема и принцип действия логического элемента		У4, У5, У6,
логические элементы.	диодно-транзисторной логики.		У10
Тема 3.5.	Содержание лекции:		У1, У2, У3,
Транзисторные	Принципиальная электрическая схема и принцип действия логического элемента		У4, У5, У6,
элементы с	транзисторного элемента с непосредственной связью.		У10
непосредственной	Самостоятельная работа обучающегося.		
связью.	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	2	
Тема 3.6.	Содержание лекции:	2	У1, У2, У3,
Транзисторно-	Принципиальная электрическая схема и принцип действия логического элемента		У4, У5, У6,
транзисторные	транзисторно-транзисторной логики.		У10
логические элементы.			
Тема 3.7. Логические	Содержание лекции:		У1, У2, У3,
элементы с тремя	Принципиальная электрическая схема и принцип действия логического элемента с		У4, У5, У6,
состояниями.	тремя состояниями на выходе.		У10
Тема 3.8. Логические	Содержание лекции:		У1, У2, У3,
элементы с открытым	Принципиальная электрическая схема и принцип действия логического элемента с		У4, У5, У6,
коллектором.	открытым коллектором на выходе.		У10
Тема 3.9. Эмиттерно-	Содержание лекции:	2	У1, У2, У3,
связанные логические	Принципиальная электрическая схема и принцип действия эмиттерно-связанного		У4, У5, У6,
элементы.	логического элемента.		У10
Тема 3.10. Логические	Содержание лекции:		У1, У2, У3,
элементы на МОП-	Принципиальная электрическая схема и принцип действия логического элемента		У4, У5, У6,
транзисторах.	на МОП-транзисторах.		У10, П4
	Практическое занятие № 1: Освоение методов моделирования цифровых	4	
	электрических схем в программе "ISIS" пакета программ "Proteus VSM".		

	Самостоятельная работа обучающегося.		
	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	2	
Раздел 4.	Цифровые комбинационные устройства.		
Тема 4.1. Устройства	Содержание лекции:	2	У1, У2, У3,
равнозначности.	1. Определение цифрового комбинационного устройства.		У4, У5, У6,
	2. Определение устройства равнозначности.		У10, П1, П2,
	2. Принципиальная электрическая схема устройства равнозначности.		П3, П4
	3. Принцип действия устройства равнозначности.		
Тема 4.2. Устройства	Содержание лекции:		У1, У2, У3,
неравнозначности.	1. Определение устройства неравнозначности.		У4, У5, У6,
	2. Таблица истинности устройства неравнозначности.		У10, П1, П2,
	3. Принципиальная электрическая схема устройства неравнозначности.		П3, П4
	4. Принцип действия устройства неравнозначности.		
	5. Пример устройства неравнозначности – микросхема К555ЛП5.		
Тема 4.3.	Содержание лекции:		У1, У2, У3,
Комбинационные	1. Определение комбинационного сумматора и полусумматора.		У4, У5, У6,
сумматоры.	2. Таблицы истинности полусумматора и сумматора.		У10, П1, П2,
	3. Принципиальная электрические схемы полусумматора и сумматора.		П3, П4
	4. Принцип действия полусумматора и сумматора.		
	5. Пример сумматоров – микросхему К155ИМ1, К155ИМ2, К155ИМ3.		
Тема 4.4.	Содержание лекции:		У1, У2, У3,
Дешифраторы.	1. Определение дешифратора.		У4, У5, У6,
	2. Таблица истинности дешифратора.		У10, П1, П2,
	3. Принципиальная электрическая схема и принцип действия дешифратора.		П3, П4
	4. Пример дешифраторов – микросхемы К155ИД4 и К1533ИД3.		
	Практическое занятие № 2: Исследование устройства неравнозначности.	2	
	Практическое занятие № 3: Исследование комбинационного полусумматора	2	
	и сумматора.		
	Практическое занятие № 4: Исследование дешифратора.	2	

	Самостоятельная работа обучающегося.		
	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	2	
Тема 4.5. Шифраторы.	Содержание лекции:	2	У1, У2, У3,
	1. Определение шифратора.		У4, У5, У6,
	2. Таблица истинности шифратора.		У10, П1, П2,
	3. Принципиальная электрическая схема и принцип действия шифратора.		П3, П4
	4. Примеры шифраторов – микросхемы К555ИВ1 и К555ИВ3.		
Тема 4.6.	Содержание лекции:		У1, У2, У3,
Мультиплексоры.	1. Определение мультиплексора.		У4, У5, У6,
	2. Таблица истинности мультиплексора.		У10, П1, П2,
	3. Принципиальная электрическая схема и принцип действия мультиплексора.		П3, П4
	4. Пример мультиплексора – микросхема К555КП7.		
Тема 4.7.	Содержание лекции:		
Демультиплексоры.	1. Определение демультиплексора.		
	2. Таблица истинности демультиплексора.		
	3. Принципиальная электрическая схема и принцип действия демультиплексора.		
	4. Пример демультиплексора – микросхема К155ИД4.		
	Практическое занятие № 5: Исследование шифратора.	2	
	Практическое занятие № 6: Исследование мультиплексора.	2	
	Практическое занятие № 7: Исследование демультиплексора.	2	
	Самостоятельная работа обучающегося.		
	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	2	
Тема 4.8.	Содержание лекции:	2	У1, У2, У3,
Коммутаторы.	1. Назначение коммутаторов.		У4, У5, У6,
	2. Пример коммутатора – микросхема К555КП12.		У10, П1, П2,

Тема 4.9.	Содержание лекции:		П3, П4
Преобразователи	1. Назначение преобразователя кодов.		
кодов.	2. Структурная схема и принцип действия преобразователя кодов.		
	3. Таблица истинности преобразователя кодов.		
	4. Варианты принципиальных электрических схем преобразователей кодов.		
	5. Пример преобразователя кодов – микросхема К555ИД18.		
	Практическое занятие № 8: Исследование коммутатора.	2	
	Практическое занятие № 9: Исследование преобразователя кодов.	2	
	Самостоятельная работа обучающегося.		
	Самостоятельная работа обучающегося.		
	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	2	
Раздел 5.	Последовательные цифровые устройства.		
Тема 6.1. Триггеры.	Содержание лекции:	2	У1, У2, У3,
	1. Определение и классификация последовательных цифровых устройств.		У4, У5, У6,
	2. Определение и назначение триггера.		У10, П1, П2,
	3. Классификация триггеров.		П3, П4, П5
	4. RS-триггеры. Пример RS-триггера – микросхема K555TP2.		
	5. D-триггеры. Пример D-триггера – микросхема К555TM2.		
	6. ЈК-триггеры. Пример ЈК-триггера – микросхема К555ТВ9.		
	7. Т-триггеры.		
	Практическое занятие № 10: Исследование триггера.	2	
Тема 5.2. Регистры.	Содержание лекции:	2	У1, У2, У3,
	1. Определение и назначение регистра.		У4, У5, У6,
	2. Классификация регистров.		У10, П1, П2,
	3. Регистры памяти. Пример регистра памяти – микросхема К555ИР23.		П3, П4, П5
	4. Регистры сдвига. Примеры регистров сдвига – микросхемы К555ИР8 и		
	К555ИР10.		
	Практическое занятие № 11: Исследование регистра хранения.	2	
	Практическое занятие № 12: Исследование сдвигового регистра.	2	

Тема 5.3. Счетчики.	Содержание лекции:	2	У1, У2, У3,
	1. Определение и назначение счетчика.	_	У4, У5, У6,
	2. Структура и принцип действия параллельного суммирующего счетчика.		У10, П1, П2,
	3. Пример параллельного суммирующего счетчика – микросхема К555ИЕ2.		П3, П4, П5
	4. Структура и принцип действия реверсивного счетчика.		, ,
	5. Пример реверсивного счетчика – микросхема К555ИЕ7.		
	Практическое занятие № 13: Исследование счетчика.	2	
	Самостоятельная работа обучающегося.		
	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	2	
Раздел 6.	Память микропроцессорной системы.		
Тема 6.1. Организация	Содержание лекции:	2	У1, У5, У6,
памяти	1. Назначение памяти микропроцессорной системы.		У10, 31, 32, 35
микропроцессорной	2. Иерархическая структура памяти микропроцессорной системы.		
системы.	3. Классификация элементов памяти по принципу действия и технологии		
	изготовления.		
Тема 6.2. Принцип	Содержание лекции:		У1, У5, У6,
работы постоянного	1. Классификация микросхем ПЗУ по технологии изготовления.		У10, 31, 32, 35
запоминающего	2. ПЗУ на мультиплексоре.		
устройства.	3. Масочное ПЗУ. Микросхемы масочных ПЗУ К155РЕЗ, К556РТ4, К556РТ8.		
Программирование	4. Программируемые ПЗУ. Микросхемы ППЗУ серии КР573.		
ПЗУ.	5. Перепрограммируемые ПЗУ. Микросхемы перепрограммируемых ПЗУ серий КР573 и КР558.		
	6. Микросхемы ФЛЭШ-памяти. Микросхема ФЛЭШ-памяти АТ24С01.		
	7. Принципиальная электрическая схема и принцип действия одного из вариантов		
	программатора ПЗУ.		
Тема 6.3. Принцип	Содержание лекции:	2	У1, У5, У6,
работы статического	1. Структурная схема и принцип действия микросхем статических ОЗУ.		У10, 31, 32, 35
оперативного	2. Микросхемы статических ОЗУ серии КР537.		
запоминающего			
устройства.			

Тема 6.4. Принцип	Содержание лекции:		У1, У5, У6,
работы динамического	1. Принцип действия микросхем динамического ОЗУ.		У10, 31, 32, 35
оперативного	2. Временные диаграммы записи и считывания информации динамического ОЗУ.		
запоминающего	3. Принцип регенерации информации в динамическом ОЗУ.		
устройства.	4. Принцип конвейерной обработки данных.		
Регенерация ОЗУ.	5. Микросхемы динамических ОЗУ серии КР565.		
Тема 6.5. Принципы	Содержание лекции:		У1, У5, У6,
построения	1. Принципы построения запоминающих устройств на микросхемах памяти.	2	У10, 31, 32, 35,
запоминающих	2. Варианты принципиальных электрических схем запоминающих устройств на		П5, П6
устройств на	микросхемах памяти.		
микросхемах памяти.	Самостоятельная работа обучающегося.		
	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	2	
	Практическое занятие № 14: Исследование статического ОЗУ.	2	
	Практическое занятие № 15: Исследование блока памяти.	2	
Раздел 7.	Аналого-цифровые и цифро-аналоговые преобразователи.		
Тема 7.1. Цифро-	Содержание лекций:	2	У1, У5, У6,
аналоговые	1. Назначение аналого-цифровых и цифро-аналоговых преобразователей.		У10, 31, 32, 35,
преобразователи.	2. Классификация цифро-аналоговых преобразователей.		П1, П2, П3, П4
	3. Основные характеристики цифро-аналоговых преобразователей.		
	4. ЦАП с суммированием весовых токов.		
	5. ЦАП на основе резистивной матрицы.		
	6. ЦАП для преобразования двоично-десятичных чисел.		
	7. Преобразователь числа в напряжение.		
	8. Микросхема ЦАП КР572ПА2.		

Тема 7.2. Аналого-	Содержание лекций:		У1, У5, У6,
цифровые	1. Классификация аналого-цифровых преобразователей.		У10, 31, 32, 35,
преобразователи.	2. Основные характеристики аналого-цифровых преобразователей.		$\Pi1, \Pi2, \Pi3, \Pi4$
1	3. Параллельный АЦП.		
	4. Двухступенчатый АЦП.	2	
	5. Двухтактный АЦП.		
	6. Конвейерный АЦП.		
	7. АЦП последовательного счета.		
	8. АЦП последовательного приближения.		
	9. АЦП двухтактного интегрирования.		
	Самостоятельная работа обучающегося.		
	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	2	
	10. АЦП двухтактного интегрирования с автоматической компенсацией смещения	2	
	нуля.		
	11. Сигма-дельта-модулятора первого порядка.		
	12. 1-битный сигма-дельта-АЦП.		
	13. Микросхема АЦП КР 572ПВЗ.		
	Практическое занятие № 16: Исследование цифро-аналогового	4	
	преобразователя.		
	Практическое занятие № 17: Исследование аналого-цифрового	4	
	преобразователя.		
Тема 7.3. Интерфейсы	Содержание лекций:	2	У1, У5, У6,
ЦАП и АЦП.	1. ЦАП и АЦП с параллельным интерфейсом.		У10, 31, 32, 35,
	2. ЦАП и АЦП с последовательным интерфейсом.		$\Pi 1, \Pi 2, \Pi 3, \Pi 4$
	Самостоятельная работа обучающегося.		
	работа с дополнительной литературой	1	
	подготовка к практическим занятиям	1	
Раздел 8.	Интерфейсы современных микропроцессорных систем и ЭВМ.		

Тема 8.1.	Содержание лекций:	2	У1, У5, У6,
Параллельный	1. Сигналы интерфейса "Centronix".		У10, 31, 32, 35
интерфейс LPT.	2. Временная диаграмма обмена информацией по интерфейсу "Centronix".		
	3. Разъемы и кабели интерфейса "Centronix".		
	4. Стандарт IEEE 1284.		
	5. Режимы работы интерфейса "Centronix".		
Тема 8.2.	Содержание лекций:		У1, У5, У6,
Последовательный	1. Формат асинхронного обмена данными.	2	У10, 31, 32, 35
интерфейс RS-	2. Стандарты последовательных интерфейсов.	2	
232.	3. Соединение устройств при помощи интерфейса RS-232.		
	4. Микросхема МАХ232С.		
	5. Назначение контактов СОМ-порта.		
	6. Временная диаграмма обмена информацией по интерфейсу RS-232.		
Тема 8.3.	Содержание лекций:	2	У1, У5, У6,
Последовательный	1. Назначение и принцип действия интерфейса RS-485.		У10, 31, 32, 35
интерфейс RS-485.	2. Характеристики интерфейса RS-485.		
	3. Временная диаграмма сигнала передатчика интерфейса RS-485.		
	4. Соединение устройств по интерфейсу RS-485.		
	5. Микросхема МАХ485.		
Тема 8.4.	Содержание лекций:		У1, У5, У6,
Последовательный	1. Назначение и принцип действия интерфейса RS-422.	2	У10, 31, 32, 35
интерфейс RS-422.	2. Характеристики интерфейса RS-422.	2	
	3. Кабели интерфейса RS-422.		
	4. Микросхема МАХ-422.		
Тема 8.5.	Содержание лекций:		У1, У5, У6,
Последовательный	1. Назначение и преимущества интерфейса USB.		У10, 31, 32, 35
интерфейс USB.	2. Взаимодействие компонентов интерфейса USB.	2	
	3. Типы разъемов и назначение контактов разъемов интерфейса USB.		
	4. Принцип действия интерфейса USB.		
	5. Спецификации интерфейса USB.		
	Самостоятельная работа обучающегося.		
	подготовка к практическим занятиям	1	

Раздел 9.	Программируемые логические контроллеры.		
Тема 9.1. Обзор	Содержание лекции:	2	У1, У4, У5,
программируемых	1. Определение и назначение программируемых логических контроллеров.		У6, У10, 31,
логических	2. ПЛК "Selec".		32, 35, 36, П11,
контроллеров.	3. ПЛК "TDM ELECTRIC ПЛК12A230".		ПК1.3
	4. ПЛК "Segnetics Pixel".		
	5. ПЛК "Segnetics Trim5".		
	6. ПЛК "ОВЕН ПЛК 100 24.Р-L".		
	7. ПЛК "Болид М3000-Т Инсат".		
	8. ПЛК "Siemens EM 241".		
	9. ПЛК "ОВЕН ПЛК160".		
	10. ПЛК "Siemens SIMATIC TD 200/TD 200C".		
Тема 9.2. Конструкция,	Содержание лекции:		У1, У4, У5,
типы, характеристики	1. Обобщенная структура ПЛК.		У6, У10, 31,
и назначение модулей.	2. Состав микропроцессорной структуры ПЛК.		32, 35, 36, П11,
	3. Принцип действия ПЛК.		ПК1.3
	4. Рабочий цикл ПЛК.		
Тема 9.3. Стандарт	Содержание лекции:	2	У1, У4, У5,
МЭК 61131-3.	1. Части стандарта МЭК 61131-3.		У6, У10, 31,
	2. Языки программирования, входящие в стандарт МЭК 61131-3.		32, 35, 36, П11
Тема 9.4. Интерфейс	Содержание лекции:		У1, У4, У5,
KNX.	1. Назначение и история интерфейса KNX.		У6, У10, 31,
	2. Соединения устройств по интерфейсу KNX.		$32, 35, 36, \Pi11,$
	3. Преимущества стандарта KNX.		ПК1.3
	4. Центральные контроллеры для стандарта KNX.		
	5. Топология соединения устройств по стандарту KNX.		
	6. Адресация устройств по стандарту KNX.		
	7. Протокол обмена информацией по стандарту KNX.	_	
Тема 9.5. Контроллеры	Содержание лекции:		У1, У4, У5,
семейства "LOGO".	1. Функции и характеристики ПЛК семейства "LOGO".		У6, У10, 31,
Аппаратный комплекс	2. Аппаратный комплекс модулей ПЛК "LOGO".		32, 35, 36, П11,
модулей ПЛК.			ПК1.3

Тема 9.6. Модули	Содержание лекции:	2	У1, У4, У5,
расширения.	1. Модуль дискретных сигналов DM.		У6, У10, 31,
	2. Модуль аналоговых сигналов АМ.		32, 35, 36, П11,
	3. Модуль сетевых интерфейсов СМ.		ПК1.3
	4. Выносной дисплей человеко-машинного интерфейса TD.		
Тема 9.7. Модули	Содержание лекции:		У1, У4, У5,
связи с оператором.	Выносная текстовая панель "LOGO! TD".	2	У6, У10, 31,
		2	32, 35, 36, П11
Тема 9. 8. Модули	Содержание лекции:		У1, У4, У5,
сетевых интерфейсов.	1. Коммуникационный модуль "LOGO! CM EIB/KNX".		У6, У10, 31,
	2. Коммуникационный модуль "LOGO! CM AS-I".		32, 35, 36, П11,
	3. Модули неуправляемого коммутатора "Ethernet" "LOGO! CSM".		ПК1.3
Тема 9.9. Сетевые	Содержание лекции:		У1, У4, У5,
структуры ПЛК.	1. Стандарт AS-i.		У6, У10, 31,
	2. Характеристики AS-интерфейса.		$32, 35, 36, \Pi11,$
	3. Пример структуры сети KNX/EIB.		ПК1.3
	4. Пример структуры сети Ethernet. Режим работы "Master-Slave".		
	5. Коммуникационные модули "LOGO! CM LON".		
Раздел 10.	Инструментальная среда разработки программ для промышленных контроллеров		
	"Logo SoftComfort".		
Тема 10.1.	Содержание лекции:	2	У1, У2, У3,
Пользовательский	1. Панели инструментов.		У4, У5, У6,
интерфейс.	2. Строка состояния.		У7, У8, У9,
	3. Окно информации.		У10, 31, 32, 33,
	4. Стандартная панель инструментов.		35, 36, П12,
	5. Панель инструментов эмуляции.		ПК1.3
	6. Ввод и редактирование функциональных блок-схем.		
	7. Типы создаваемых файлов.		
Тема 10.2. Создание и	Содержание лекции:	2	У1, У2, У3,У4,
запись программ.	1. Особенности создания и записи программ на языках функциональных блок-		У5, У6, У7,
	схем и релейно-контактных схем.		У8, У9, У10,
	2. Этапы записи коммутационной программы.		31, 32, 33, 35,

	3. Создание блок-схемы программы.		36, П12, ПК1.3
Тема 10.3. Принципы	Содержание лекции:		У1, У2, У3,
разработки программ.	1. Принцип решения задач автоматизации на этапе разработки прикладных		У4, У5, У6,
	ограмм для ПЛК.		У7, У8, У9,
	2. Реализация схемы программы.		У10, 31, 32, 33,
			35, 36, П12
Тема 10.4. Методы	Содержание лекции:		У1, У2, У3,
разработки алгоритмов	1. Этапы получения кода исходной программы.		У4, У5, У6,
и программ.	2. Последовательность разработки БСА.		У7, У8, У9,
	3. Примеры алгоритмов и программ автоматизации.		У10, 31, 32, 33,
			35, 36, П12
Тема 10.5. Эмуляция	Содержание лекции:		У1, У2, У3,
работы программы.	Режимы и последовательность эмуляции работы программы.		У4, У5, У6,
	Практическая работа № 18: Изучение инструментальной среды разработки	2	У7, У8, У9,
	программ для ПЛК "Logo SoftComfort".		У10, 31, 32, 33,
			35, 36, П12
Раздел 11.	Язык функциональных блоковых диаграмм		
Тема 11.1.	Содержание лекции:	2	У1, У2, У3,
Постоянные,	1. Входные и выходные блоки языка ФБД.		У4, У5, У6,
соединители и	2. Блоки флагов языка ФБД.		У7, У8, У9,
интерфейс языка ФБД.			У10, 31, 32, 33,
			35, 36, П12
Тема 11.2. Базовые и	Содержание лекции:		У1, У2, У3,
специальные функции	1. Базовые логические функции языка ФБД.		У4, У5, У6,
языка ФБД.	2. Задачи и характеристики специальных функций языка ФБД.		У7, У8, У9,
			У10, 31, 32, 33,
			35, 36, П12
Тема 11.3. Счетчики в	Содержание лекции:	2	У1, У2, У3,У4,
языке ФБД.	1. Реверсивный счетчик в языке ФБД.		У5, У6, У7,
	2. Счетчик рабочего времени в языке ФБД.		У8, У9, У10,
	3. Пороговый выключатель в языке ФБД.		31, 32, 33, 35,
			36, П12, ПК1.3

Тема 11.4. Аналоговые	Содержание лекции:		У1, У2, У3,
функции в языке ФБД.	1. Аналоговый пороговый выключатель в языке ФБД.		У4, У5, У6,
47	2. Дифференциальный выключатель в языке ФБД.		У7, У8, У9,
	3. Интервальное реле с импульсным выходом в языке ФБД.		У10, 31, 32, 33,
	4. Блок контроля аналоговых значений в языке ФБД.		35, 36, П12,
	5. Аналоговый усилитель в языке ФБД.		ПК1.3
	6. Аналоговый мультиплексор в языке ФБД.		
	7. Широтно-импульсный преобразователь в языке ФБД.		
	8. Блок аналоговых вычислений в языке ФБД.		
Тема 11.5. Обработка	Содержание лекции:		У1, У2, У3,
аналоговых сигналов в	1. Последовательность обработки аналоговых сигналов.		У4, У5, У6,
языке ФБД.	2. Структурная схема обработки аналоговых сигналов.		У7, У8, У9,
			У10, 31, 32, 33,
			35, 36, П12
Тема 11.6. Функции	Содержание лекции:		У1, У2, У3,
управления и	1. Управление без обратной связи.		У4, У5, У6,
регулирования в языке	2. Управление с обратной связью.	2	У7, У8, У9,
ФБД.	3. Структура системы автоматического регулирования.		У10, 31, 32, 33,
	4. Структурная схема регулятора.		35, 36, ПК1.3
	5. Типы регуляторов.		
	6. Пропорциональный регулятор в языке ФБД.		
	7. Регулятор линейно нарастающего сигнала в языке ФБД.		
Тема 11.7.	Содержание лекции:		У1, У2, У3,
Специальные функции	1. RS-тригтер в языке ФБД.		У4, У5, У6,
в языке ФБД.	2. Импульсное реле в языке ФБД.		У7, У8, У9,
	3. Блок отображение текстовых сообщений на дисплее в языке ФБД.		У10, 31, 32, 33,
	4. Блок программного выключателя в языке ФБД.		35, 36, П12,
	5. Блок регистра сдвига в языке ФБД.		ПК1.3
	6. Блок обнаружения ошибок аналоговых вычислений в языке ФБД.		
Тема 11.8. Контроль	Содержание лекции:		У1, У2, У3,
памяти программ и	1. Объемы памяти, занимаемые каждым из блоков.		У4, У5, У6,
данных в языке ФБД.	2. Допустимый объем памяти для программы.		У7, У8, У9,

	Практическая работа № 19: Разработка и отладка программы для ПЛК на языке ФБД.	2	У10, 31, 32, 33, 35, 36, П12
Раздел 12.	Язык релейно-контактных схем.		
Тема 12.1. Содержание лекции:		2	У1, У2, У3,
	1. Характеристики языка релейно-контактных схем.		У4, У5, У6,
	2. Блоки языка релейно-контактных схем.		У7, У8, У9,
	3. Создание схемы программы на языке релейно-контактных схем.		У10, 31, 32, 33,
Практическая работа № 20: Разработка и отладка программы для ПЛК на		2	35, 36, П12,
	языке LAD.		ПК1.3
	Практическая работа № 21: Программирование мехатронной системы	4	
	методом обучения.		
	Самостоятельная работа обучающегося.		
	подготовка к промежуточной аттестации	3	
Курсовой проект на те	ему "Разработка программного обеспечения микропроцессорного устройства".	18	
Консультации		1	
Промежуточная аттест	гация	12	
Всего:		182	

З УСЛОВИЯ РЕАЛИЗАЦИИ МЕЖДИСЦИПЛИНАРНОГО КУРСА

3.1 Требования к материально-техническому обеспечению

Реализация междисциплинарного курса требует наличия учебного кабинета для проведения лекций, лаборатории робототехнических систем, лаборатории вычислительной техники.

Оборудование учебного кабинета: ПЭВМ типа IBM PC/AT, мультимедиа проектор.

Технические средства обучения:

- ПЭВМ типа ІВМ РС/АТ;
- мультимедиа проектор.

Оборудование лабораторий и рабочих мест лабораторий:

- контрольно-измерительные приборы: мультиметры; цифровые и аналоговые осциллографы; ваттметры; частотометры; генераторы сигналов; источники постоянного и переменного напряжения;
 - ПЭВМ типа IBM PC/AT;
- отладочные стенд (отладочные комплекты) для отладки программ микроконтроллеров;
 - программаторы для программирования микроконтроллеров;
 - стенд (стенды) с промышленным(и) контроллером(ами).

3.2 Перечень нормативных правовых документов, основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Юревич Е.И. Основы робототехники. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2018. 415 с.: ил.
- 2. Воротников С.А. Информационные устройства робототехнических систем Учеб. пособие М.: Изд-во МГТУ нм Н.Э. Баумана, 2019. 384 с.; ил.
- 3. Борисов А.М. Программируемые устройства автоматизации: учебное пособие / А.М. Борисов, А.С. Нестеров, Н.А. Логинова. Челябинск: Издательский центр ЮУрГУ, 2018. 186 с.
- 4. Максимычев О.И. Программирование логических контроллеров (PLC): учеб. пособие / О.И. Максимычев, А.В. Любенко, В.А. Виноградов. М.: МАДИ, 2019. 188 с.

Дополнительная литература:

- 5. Рыбалев А.Н. Программируемые логические контроллеры и аппаратура управления: лабораторный практикум. Часть 1. Siemens S7-200. Учебное пособие. Благовещенск: Амурский гос. ун-т. 2019.
- 3.3 Перечень программного обеспечения, профессиональных баз данных, информационных справочных систем ресурсов информационно-телекоммуникационной сети «Интернет», необходимых

для освоения дисциплины

- 1. операционная система "Windows 7";
- 2. пакет программ "BasCom AVR";
- 3. пакет программ "Proteus VSM";
- 4. пакет программ "Logo SoftComfort".
- 5. URL: https://www.biblio-online.ru/

3.4 Особенности реализации дисциплины для обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья

При обучении лиц с ограниченными возможностями здоровья, предусматривается индивидуальный график обучения.

Инвалиды и лица с ограниченными возможностями здоровья обеспечиваются печатными и электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья в каждом случае индивидуально.

Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации обучающихся, создаются фонды оценочных адаптированные для инвалидов И ЛИЦ ограниченными c возможностями здоровья индивидуально, И позволяющие достижение ими запланированных в основной образовательной программе результатов обучения, а также уровень сформированности всех компетенций, заявленных в образовательной программе.

4 КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ МЕЖДИСЦИПЛИНАРНОГО КУРСА

Контроль и оценка результатов освоения междисциплинарного курса осуществляется преподавателем в процессе проведения практических и/или лабораторных занятий, а также выполнения обучающимися самостоятельной работы, индивидуальных заданий, проектов, исследований.

Оценка качества освоения программы дисциплины включает текущий контроль успеваемости, промежуточную аттестацию по результатам освоения дисциплины.

Результаты обучения	Формы контроля результатов			
(умения, знания)	обучения			
1	2			
В результате освоения междисцип	линарного курса обучающийся должен			
уметь:				
У1 – читать и оформлять	- зачет по практической или			
техническую и технологическую	лабораторной работе;			
документацию	- оценка при сдаче экзамена			
У2 - распознавать задачу и/или	- зачет по практической или			
проблему в профессиональном и/или	лабораторной работе;			
социальном контексте	- оценка при сдаче экзамена			
У3 - анализировать задачу и/или	- зачет по практической или			
проблему и выделять её составные	лабораторной работе;			
части	- оценка при сдаче экзамена			
У4 - правильно выявлять и	- зачет по практической или			
эффективно искать информацию,	лабораторной работе;			
необходимую для решения задачи	- оценка при сдаче экзамена			
и/или проблемы				
У5 - определять задачи поиска	- зачет по практической или			
информации	лабораторной работе;			
	- оценка при сдаче экзамена			
У6 - определять необходимые	- зачет по практической или			
источники информации	лабораторной работе;			
	- оценка при сдаче экзамена			
У7 – составлять алгоритмы	- зачет по практической или			
программ	лабораторной работе;			
	- оценка при сдаче экзамена			
У8 – составлять программы на языке	- зачет по практической или			
программирования высокого уровня	лабораторной работе;			
	- оценка при сдаче экзамена			
У9 – вводить и отлаживать	- зачет по практической или			
программы для управления	лабораторной работе;			
мехатронными системами и	- оценка при сдаче экзамена			
технологическим оборудованием				
У10 - определять актуальность	- зачет по практической или			
1	2			
нормативно-правовой документации	лабораторной работе;			
в профессиональной деятельности - оценка при сдаче экзамена				
	В результате освоения дисциплины обучающийся должен знать:			

31 – устройство и принцип действия	- зачет по практической или
микропроцессорных и	лабораторной работе;
микроконтроллерных систем	- оценка при сдаче экзамена
управления	
32 - физические особенности сред	- зачет по практической или
использования мехатронных систем	лабораторной работе;
	- оценка при сдаче экзамена
33 – язык программирования	- зачет по практической или
высокого уровня	лабораторной работе;
	- оценка при сдаче экзамена
34 - правила техники безопасности	- зачет по практической или
при проведении работ по	лабораторной работе;
программированию и отладке	- оценка при сдаче экзамена
программного обеспечения	
35 - современные средства и	- зачет по практической или
устройства информатизации	лабораторной работе;
	- оценка при сдаче экзамена
36 - современное программное	- зачет по практической или
обеспечение в профессиональной	лабораторной работе;
деятельности.	- оценка при сдаче экзамена
В результате освоения междисциплин	нарного курса обучающийся должен иметь
практический опыт:	
П1 – перевода чисел из одной	- зачет по практической или
системы счисления в другую	лабораторной работе;
	- оценка при сдаче экзамена
П2 - преобразования булевых	- зачет по практической или
выражений	лабораторной работе;
	- оценка при сдаче экзамена
П3 – реализации элементарных	- зачет по практической или
логических операций	лабораторной работе;
	- оценка при сдаче экзамена
П4 – моделирования электрической	- зачет по практической или
схемы цифрового устройства	лабораторной работе;
	- оценка при сдаче экзамена
П5 – синтеза электрической схемы	- зачет по практической или
цифрового устройства	лабораторной работе;
	- оценка при сдаче экзамена
П6 – записи информации в	- зачет по практической или
микросхемы памяти при помощи	лабораторной работе;
программатора	- оценка при сдаче экзамена
	-
П7 – записи информации в микро-	- зачет по практической или лабора-
1	2
контроллер при помощи	торной работе;
программатора	- оценка при сдаче экзамена
П8 – работы в редакторе и	- зачет по практической или
компиляторе программ для	лабораторной работе;
микроконтроллера	- оценка при сдаче экзамена
П9 – разработки алгоритма	- зачет по практической или
	- F-:

программы	лабораторной работе;			
	- оценка при сдаче экзамена			
П10 – разработки программы для	- зачет по практической или			
микроконтроллера на языке	лабораторной работе;			
высокого уровня	- оценка при сдаче экзамена			
П11 – включения программируемого	- зачет по практической или			
логического контроллера в состав	лабораторной работе;			
системы управления	- оценка при сдаче экзамена			
П12 – разработки программы для	- зачет по практической или			
программируемого логического	лабораторной работе;			
контроллера в специальной среде	- оценка при сдаче экзамена			
программирования				

Разработчик:

ФГБОУ «ВГТУ» Преподаватель

Коротков В.Н.

Руководитель образовательной программы

Преподаватель первой квалификационной категории

НВ велем Аленькова Н.В.

Эксперт

Главный технолог, ОАО «Тяжмехпресс»

Белопотапов Д.В.

ЛИСТ АКТУАЛИЗАЦИИ рабочей программы дисциплины

№ п/ п	Наименование элемента ОП, раздела, пункта	Пункт в предыдущей редакции	Пункт с внесенными изменениями	Реквизиты заседания, утвердившего внесение изменений