МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Факультета Н.А. Драпалюк сооружениз 13 августа 2018 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Физика»

Специальность 21.03.01 НЕФТЕГАЗОВОЕ ДЕЛО

Профиль «Проектирование, строительство и эксплуатация газонефтепроводов и газонефтехранилищ»

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 4 года и 11 м

Форма обучения очная / заочная

Год начала подготовки <u>2018</u>

Автор программы

/Никишина А.И./

Заведующий кафедрой физики

Руководитель ОПОП

/Тураева Т.Л./

/Мелькумов В.Н./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Целью освоения курса физики является ознакомление студентов с основными законами физики и возможностями их применения при решении задач, возникающих в их последующей профессиональной деятельности. Цели преподавания дисциплины связаны с возрастающей ролью фундаментальных наук в подготовке специалиста. Внедрение высоких технологий в инженерную практику предполагает основательное знакомство, как с классическими, так и с новейшими методами и результатами физических исследований. При этом специалист должен получить не только физические знания, но и навыки их дальнейшего пополнения, научиться пользоваться современной литературой, в том числе электронной.

Физика создает универсальную базу для изучения общепрофессиональных и специальных дисциплин, закладывает фундамент последующего обучения в магистратуре, аспирантуре. Она даёт цельное представление о физических законах окружающего мира в их единстве и взаимосвязи, вооружает специалистов необходимыми знаниями для решения научно-технических задач. Именно эта дисциплина позволяет познакомить студентов с научными методами познания, научить их отличать гипотезу от теории, теорию от эксперимента. Физика должна провести демаркацию между научным и антинаучным подходом в изучении окружающего мира, научить строить физические модели происходящего и устанавливать связь между явлениями, привить понимание причинно-следственной связи между явлениями. Обладая стройностью опираясь экспериментальные логической И на факты, дисциплина «Физика» является идеальной для решения этой задачи, формируя у студентов подлинно научное мировоззрение.

В результате освоения дисциплины «Физика» студент должен изучить физические явления и законы физики, границы их применимости, применение важнейших практических приложениях; познакомиться с законов основными физическими величинами, знать их определение, смысл, способы и единицы их измерения; представлять себе фундаментальные физические опыты и их роль в развитии науки; знать назначение и принципы действия важнейших физических приборов. Кроме того, студент должен приобрести навыки работы с приборами и оборудованием современной технической лаборатории; навыки использования различных методик физических измерений и обработки экспериментальных данных; навыки проведения физического и математического моделирования, адекватного а также физико-математического применения методов анализа решению конкретных естественнонаучных и технических проблем.

1.2. Задачи освоения дисциплины

- изучение законов окружающего мира в их взаимосвязи;
- овладение фундаментальными принципами и методами решения научно-технических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
- формирование у студентов основ естественнонаучной картины мира;
- ознакомление студентов с историей и логикой развития физики и основных её открытий.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Физика» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Физика» направлен на формирование следующих компетенций:

ОПК-2 способность использовать основные законы профессиональной естественнонаучных дисциплин деятельности, применять методы математического анализа моделирования, И теоретического и экспериментального исследования.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-2	Знать:
	• основные физические явления и основные законы
	физики; границы их применимости, особенности
	применение законов в важнейших практических
	приложениях;
	• методы анализа полей опасных факторов пожара
	на основе применения законов физии;
	• основные физические величины и физические
	константы, их определение, смысл, размерность,
	взаимосвязи;
	• фундаментальные физические опыты и их роль в

развитии науки и техники;

• назначение, методы применения и принципы действия важнейших физических приборов.

Уметь:

- объяснить основные наблюдаемые природные и техногенные явления и эффекты на основе фундаментальных физических законов;
- анализировать динамику полей опасных факторов пожара и пожарной ситуации на основе описания физических явлений, лежащих в их основе;
- указать, какие законы описывают данное явление или эффект;
- истолковывать смысл физических величин и понятий;
- записывать уравнения для физических величин в системе СИ и с использованием внесистемных единиц;
- работать с приборами и оборудованием физической и производственной лаборатории;
- использовать различные методики измерений и обработки экспериментальных данных;
- использовать методы адекватного физического и математического моделирования, а также применять методы физико-математического анализа к решению конкретных естественнонаучных и технических проблем.

Владеть:

- навыками использования основных общефизических законов и принципов в важнейших практических приложениях;
- навыками построения полей опасных факторов пожара и пожарной ситуации на основе анализа их физических основ;
- навыками применения основных методов физико-математического анализа для решения естественнонаучных и практических задач;
- навыками правильной эксплуатации основных

	приборов	И	оборудс	вания	современной
	техническ	ой лабо	оратории;		
•	навыками	обј	работки	И	интерпретации
	результато	в эксп	еримента	;	
•	навыками	испол	ьзования	метод	ов физического
	молелиров	вания в	инженер	ной пра	актике.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Физика» составляет 4 з.е. Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Day a sure for extra position as	Всего	Семестры
Виды учебной работы	часов	1
Аудиторные занятия (всего)	90	90
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	54	54
Виды промежуточной аттестации – зачет с оценкой	+	+
Общая трудоемкость:		
академические часы	144	144
зач.ед.	4	4

заочная форма обучения

заочная форма обучения		
Dunia vinofinoŭ poforta	Всего	Семестры
Виды учебной работы	часов	1
Аудиторные занятия (всего)	14	14
В том числе:		
Лекции	6	6
Практические занятия (ПЗ)	4	4
Лабораторные работы (ЛР)	4	4
Самостоятельная работа	126	126
Часы на контроль	4	4
Виды промежуточной аттестации – зачет с		1
оценкой	+	+
Общая трудоемкость:		
академические часы	144	144
зач.ед.	4	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение

трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
		1-й семестр					
1	Кинематика	Кинематика поступательного и					
		вращательного движения. Основные					
		определения. Координатная и					
		векторная формы описания движения					
		материальной точки. Скорость и					
		ускорение материальной точки.					
		Равномерное и равнопеременное	2	1	2	3	8
		движения.					
		Самостоятельное изучение.					
		Элементы релятивистской механики.					
		Постулаты специальной теории					
		относительности (СТО) Эйнштейна.					
		Преобразования Лоренца.					
2	Динамика поступательного	Инерциальные системы отсчета.					
	движения	Законы Ньютона. Уравнение					
		движения материальной точки. Закон	2	1	2	2	O
1		всемирного тяготения.	2	1	2	3	8
		Неинерциальные системы отсчета.					
		Сила. Работа силы, мощность, К.П.Д.					
3	Законы сохранения	Импульс тела. Закон сохранения					
	_	импульса. Работа потенциальной					
		силы и потенциальная энергия					
		частицы. Кинетическая и полная	2	1	2	2	0
		механическая энергия частицы.	2	1	2	3	8
		Консервативные силы. Закон					
		сохранения механической энергии.					
		Удар.					
4	Динамика вращательного	Момент инерции. Кинетическая					
	движения	энергия вращения. Момент силы.					
		Уравнение динамики вращательного	2	1	2	3	8
		движения. Момент импульса.					
		Теорема Штейнера.					
5	Механические колебания	Характеристики свободных					
		гармонических колебаний.					
		Свободные механические колебания.					
		Пружинный, физический,					
		математический маятники.	2	1	2	3	8
1		Самостоятельное изучение.					
1		Сложение колебаний. Фигуры					
1		Лиссажу. Биения.					
6	Молекулярная физика.	Основные понятия и определения.					
1		Молекулярно – кинетическая теория					
		идеальных газов. Изопроцессы.					
		Молекулярно-кинетическая теория					
1		идеального газа. Барометрическая					
1		формула. Распределение Больцмана.	2	1	2	3	8
1		Самостоятельное изучение. Явления				_	
		переноса: диффузия,					
		теплопроводность и вязкость.					
1		Коэффициенты вязкости газов и					
1		жидкостей.					
7.	Термодинамика	Термодинамическое равновесие и					
''		температура. Обратимые и					
		необратимые процессы. Первое	4	2	4	6	16
		начало термодинамики.					
		термодинамики.					

_				1			1
		Теплоемкость. Уравнение Майера.					
		Преобразование теплоты в					
		механическую работу. Цикл Карно и					
		его коэффициент полезного действия.					
		Энтропия. Связь теплоемкости					
		идеального газа с числом степеней					
		свободы молекул.					
8	Электростатика	Электростатика. Основные					
		определения. Закон Кулона.					
		Напряженность электрического поля.					
		Теорема Гаусса для					
		электростатического поля в вакууме.	2	1	2	3	8
		Работа сил электростатического поля.					
		Потенциал. Конденсатор. Энергия.					
		Диэлектрики. Проводники в					
		электростатическом поле.					
9	Постоянный ток	Постоянный электрический ток. Сила					
		и плотность тока. Закон Ома в					
		интегральной и дифференциальной					
		формах. Закон Джоуля-Ленца.					
		Электродвижущая сила источника	2	1	2	3	8
		тока. Правила Кирхгофа.		1	2	3	O
		Самостоятельное изучение.					
		Классическая теория					
		электропроводности металлов.					
10	Магнетизм	Магнитное взаимодействие					
10	IVIAI HUIMSM	, · ·					
		постоянных токов. Вектор магнитной индукции. Закон Ампера. Сила					
		_	2	4	2	2	0
		Лоренца. Движение зарядов в	2	1	2	3	8
		электрических и магнитных полях.					
		Закон Био-Савара-Лапласа. Теорема о					
	-	циркуляции (закон полного тока).					
11	Электромагнитная индукция.	Электромагнитная индукция.					
		Правило Ленца. Самоиндукция.	2	1	2	3	8
		Индуктивность соленоида.					
12	Магнитные свойства вещества	Магнитное поле в веществе. Диа-,					
		пара- и ферромагнетики. Кривая					
		намагничивания. Гистерезис.	2	1	2	3	8
		Остаточная намагниченность. Точка					
		Кюри.					
13	Электромагнитные колебания и	Гармонические электромагнитные					
	волны	колебания. Колебательный контур.	_		_	2	
		Свободные затухающие колебания.	2	1	2	3	8
		Вынужденные колебания.					
14	Волновая оптика	Волны. Длина волны, волновое число,					
-		фазовая скорость. Интерференция волн.					
		Дифракция волн. Поляризация волн.					
		Линейное двулучепреломление.					
		Отражение и преломление света на					
		границе раздела двух диэлектриков.					
		Поглощение и дисперсия волн.					
			2	1	2	3	8
		Применение интерференции.					
		Интерферометры. Многолучевая					
		интерференция. Голография.					
		Получение голограммы и					
		восстановление волнового фронта.					
		Применение дифракции.					
		Электрооптические и					
		магнитооптические эффекты.		I			

15 k	Квантовая физика.	Равновесное излучение. Законы Кирхгофа, Стефана-Больцмана и Вина. Абсолютно черное тело. Гипотеза Планка. Фотоэффект и эффект Комптона. Уравнение Эйнштейна для фотоэффекта. Квантовая механика. Гипотеза де Бройля. Уравнение Шредингера. Самостоятельное изучение. Собственные и примесные полупроводники.	2	1	2	3	8
	Элементы физики атомов и молекул	Основы физики атомного ядра. Состав атомного ядра. Характеристики ядра: заряд, масса, энергия связи нуклонов.	2	1	2	3	8
17 \$	Ядерная физика	Радиоактивность. Виды и законы радиоактивного излучения. Ядерные реакции. Деление ядер. Синтез ядер. Понятие о дозиметрии и защите. Естественная и искусственная радиоактивность. Фундаментальные взаимодействия и основные классы элементарных частиц. Самостоятельное изучение. Современные космологические представления. Достижения наблюдательной астрономии. Революционные изменения в технике и технологиях как следствие научных достижений в области физики.	2	1	2	3	8
		Итого	36	18	36	54	144

заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	СРС	Всего, час
		1-й семестр					
1	Механика	Кинематика поступательного движения. Кинематика вращательного движения. Инерциальные системы отсчета. Законы Ньютона. Закон всемирного тяготения. Сила, работа кинетическая и потенциальная энергии. Консервативные и неконсервативные силы. Законы сохранения импульса и механической энергии. Динамика вращательного движения. Момент импульса тела. Момент инерции. Теорема Штейнера. Элементы релятивистской механики.	0,75	0,5	1	15,75	18
2	Механические колебания	Характеристики свободных гармонических колебаний. Свободные механические колебания. Пружинный, физический, математический маятники. Сложение гармонических колебаний одинакового направления	0,75	0,5	-	15,75	17
3	Молекулярная физика и термодинамика.	Идеальный газ. Первое начало термодинамики. Теплоемкость. Уравнение Майера. Цикл Карно и его коэффициент полезного действия.	0,75	0,5	1	15,75	18

		Уравнение Клапейрона-Клаузиуса. Уравнение Ван-дер-Ваальса.					
4	Электростатика. Постоянный ток.	Электростатика. Постоянный электрический ток. Закон Ома в интегральной и дифференциальной формах.	0,75	0,5	1	15,75	18
5	Электромагнетизм	Закон Джоуля-Ленца. Электродвижущая сила источника тока. Магнитное взаимодействие постоянных токов. Закон Ампера. Сила Лоренца. Электромагнитная индукция. Правило Ленца. Самоиндукция.	0,75	0,5	1	15,75	18
6	Электромагнитные колебания	Гармонические электромагнитные колебания. Колебательный контур. Свободные затухающие колебания. Вынужденные колебания.	0,75	0,5	-	15,75	17
7	Волновая оптика	Волны. Длина волны, волновое число, фазовая скорость. Интерференция волн. Дифракция волн. Принцип Гюйгенса-Френеля. Дифракционная решетка как спектральный прибор. Поляризация волн. Получение и анализ линейно-поляризованного света. Отражение и преломление света на границе раздела двух диэлектриков. Поглощение и дисперсия волн.	0,75	0,5	-	15,75	17
8	Квантовая физика. Ядерная физика и элементарные частицы.	Равновесное излучение. Законы Кирхгофа, Стефана-Больцмана и Вина. Абсолютно черное тело. Фотоэффект и эффект Комптона. Уравнение Эйнштейна для фотоэффекта. Квантовая механика. Основы физики атомного ядра. Состав атомного ядра. Характеристики ядра: заряд, масса, энергия связи нуклонов. Радиоактивность. Виды и законы радиоактивного излучения. Ядерные реакции. Основные классы элементарных частиц.	0,75	0,5	-	15,75	17
		Итого	6	4	4	126	140

5.2 Перечень лабораторных работ

1 семестр.

Студенты выполняют 10 лабораторных работ (очная форма обучения) и 4 лабораторных (заочная форма обучения) из нижеперечисленных в соответствии с индивидуальным планом.

Механика

- № 1. Расчет погрешностей при измерении объема цилиндра.
- № 2. а. Определение момента инерции крестообразного маятника.
- № 2 б. Определение момента инерции крестообразного маятника (установка с электроникой).
 - № 3. Определение момента инерции маховика и момента сил трения.
- № 4. Определение момента инерции тел с помощью трифилярного подвеса.
 - № 5. Определение момента инерции металлических колец при помощи

маятника Максвелла (установка с электроникой).

- № 6. Определение скорости полета пули с помощью баллистического маятника.
- № 7. Изучения законов сохранения импульса и механической энергии на модели копра.

Механические колебания и волны

- № 8. Определение модуля сдвига стальной проволоки методом крутильных колебаний.
 - № 9. Определение вязкости жидкости.
 - № 10. Определение скорости звука в воздухе методом стоячей волны.
 - № 11. Определение скорости звука методом сдвига фаз.

Молекулярная физика и термодинамика.

№ 12. Определение отношения теплоемкостей воздуха при постоянном давлении и постоянном объеме.

Электростатика и постоянный ток.

- № 13. Исследование электростатического поля.
- № 14. Исследование релаксационных процессов при зарядке и разрядке конденсаторов.
- № 15. Определение сопротивления проводника с помощью мостика Уитстона.
 - № 16. Определение удельного сопротивления проводников.
 - № 17. Определение ЭДС источника методом компенсации.

Магнетизм

- № 18. Изучение магнитного поля соленоида.
- № 19. Снятие кривой намагничивания и петли гистерезиса с помощью осциллографа
 - № 20. Определение точки Кюри ферромагнетика.
 - № 21. Исследование затухающих электромагнитных колебаний.
 - № 22. Исследование вынужденных электромагнитных колебаний

<u>Волновая оптика</u>

- № 23. Изучение явления дифракции.
- № 24. Изучение поляризованного света.

<u>Квантовая физика.</u>

- № 25. Определение температуры оптическим пирометром .
- № 26. Исследование внешнего фотоэффекта.
- № 27. Изучение спектра атома водорода.
- № 28. Дифракция микрочастиц на щели.
- № 29. Определение энергии активации примеси в полупроводнике.
- № 30. Изучение явления испускания света полупроводниками.
- № 31. Изучение фотопроводимости в полупроводниках.
- № 32. Изучение свойств полупроводниковых диодов

<u>Ядерная физика.</u>

- № 33. Исследование поглощения β частиц в различных материалах
- № 34. Определение длины пробега α -частиц в воздухе.
- № 35. Определение интенсивности потока частиц радиоактивного

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-2	Знать:		Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь:объяснить основные	Отчет лабораторных работ, решение задач.	Выполнение работ в срок, предусмотренный	Невыполнение работ в срок, предусмотренный

~	Т		~
наблюдаемые природные и		в рабочих	в рабочих
техногенные явления и		программах	программах
эффекты на основе			
фундаментальных			
физических законов;			
• анализировать динамику			
полей опасных факторов			
пожара и пожарной ситуации			
на основе описания			
физических явлений,			
лежащих в их основе;			
• указать, какие законы			
описывают данное явление			
или эффект;			
• истолковывать смысл			
физических величин и			
понятий;			
• записывать уравнения для			
физических величин в			
системе СИ и с			
использованием			
внесистемных единиц;			
• работать с приборами и			
оборудованием физической и			
производственной			
лаборатории;			
• использовать различные			
методики измерений и			
обработки			
экспериментальных данных;			
использовать методы			
адекватного физического и			
математического			
моделирования, а также			
применять методы			
физико-математического анализа к решению			
конкретных			
естественнонаучных и			
технических проблем.			
Владеть:	Отчет лабораторных	Выполнение работ	Невыполнение
• навыками использования	работ, решение задач.	в срок,	работ в срок,
основных общефизических		предусмотренный	предусмотренный
законов и принципов в		в рабочих программах	в рабочих программах
важнейших практических		программах	npor paiviviax
приложениях;			
• навыками построения			
полей опасных факторов			
пожара и пожарной ситуации			
на основе анализа их			
физических основ;			
• навыками применения			
основных методов			
физико-математического			
анализа для решения			
естественнонаучных и			
•			<u> </u>

практических задач;
• навыками правильной
эксплуатации основных
приборов и оборудования
современной технической
лаборатории;
• навыками обработки и
интерпретации результатов
эксперимента;
навыками использования
методов физического
моделирования в
инженерной практике.

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 1 семестре для очной формы обучения, 1 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
OПК-2	 Знать: • основные физические явления и основные законы физики; границы их применимости, особенности применение законов в важнейших практических приложениях; • методы анализа полей опасных факторов пожара на основе применения законов физии; • основные физические величины и физические константы, их определение, смысл, размерность, взаимосвязи; • фундаментальные физические опыты и их роль в развитии науки и техники; назначение, методы применения и принципы действия важнейших физических приборов. 	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	Уметь:	Решение	Задачи	Продемонстр	Продемонстр	Задачи не

-		1		I		1
		стандартных	решены в	ирован	ирован верный	решены
		практических задач	полном объеме и	верный ход решения	ход решения в большинстве	
	природные и	Ј ада т	получены	всех, но не	задач	
	техногенные явления и		верные	получен	энди <u>1</u>	
	эффекты на основе		ответы	верный ответ		
	фундаментальных			во всех		
	физических законов;			задачах		
	• анализировать					
	динамику полей опасных					
	факторов пожара и					
	пожарной ситуации на					
	основе описания					
	физических явлений,					
	лежащих в их основе;					
	• указать, какие законы					
	описывают данное					
	явление или эффект;					
	• истолковывать смысл					
	физических величин и					
	понятий;					
	• записывать уравнения					
	для физических величин					
	в системе СИ и с					
	использованием					
	внесистемных единиц;					
	• работать с приборами					
	и оборудованием					
	физической и					
	производственной					
	лаборатории;					
	• использовать					
	различные методики					
	измерений и обработки					
	экспериментальных					
	данных;					
	использовать методы					
	адекватного					
	физического и					
	математического моделирования, а также					
	применять методы					
	физико-математического					
	анализа к решению					
	конкретных					
	естественнонаучных и					
	технических проблем. Владеть:	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
	• навыками	гешение прикладных	эадачи решены в	ирован	продемонстр ирован верный	решены
	навыкамииспользования основных	прикладны <i>х</i> задач	полном	верный ход	ход решения в	Решены
	общефизических		объеме и	решения	большинстве	
	законов и принципов в		получены	всех, но не	задач	
	важнейших		верные	получен		
			ответы	верный ответ		
	практических приложениях;			во всех		
	• навыками построения			задачах		
	полей опасных факторов					
	полеи опасных факторов					

		1	1
пожара и пожарно	á		
ситуации на основ	е		
анализа их физически	K		
основ;			
• навыками применени	म		
основных методо	В		
физико-математическог)		
анализа для решени	a .		
естественнонаучных	1		
практических задач;			
• навыками правильно	á		
эксплуатации основны			
приборов	1		
оборудования			
современной			
технической			
лаборатории;			
• навыками обработки	1		
интерпретации			
результатов			
эксперимента;			
навыками			
использования методов			
физического			
моделирования в			
инженерной практике.			

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- **1.** При прямолинейном равнозамедленном движении выполняются соотношения:
- 1. Тангенциальное ускорение
- 2. Нормальное ускорение

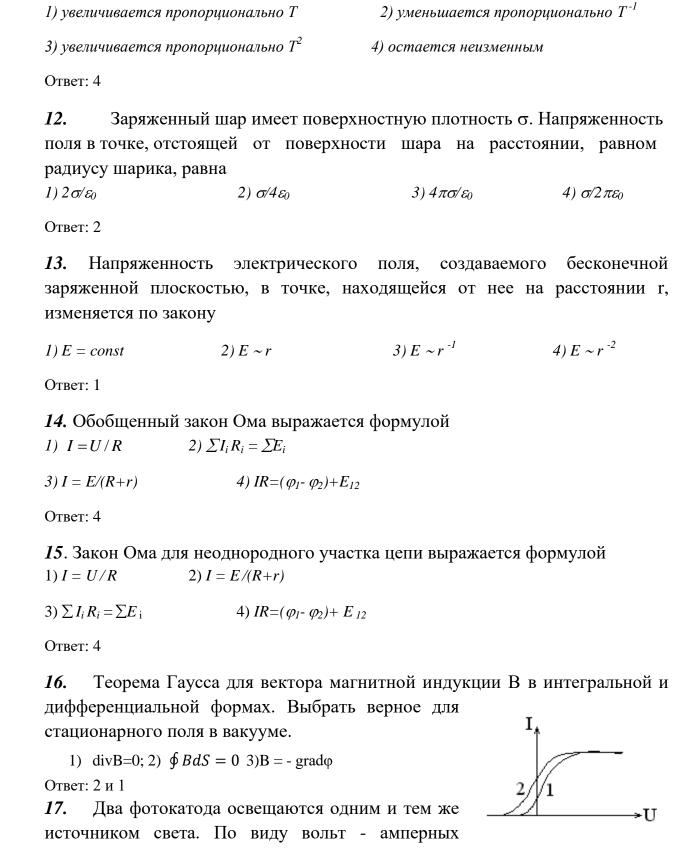
А) не изменяется С) увеличивается со временем

В) равно 0 В) уменьшается со временем

Ответ: 1 - a, 2 - в

- 2. При равномерном движении по окружности выполняются соотношения:
- 1. Нормальное ускорение
- 2. Тангенциальное ускорение

А) не изменяется С) увеличивается со временем


В) равно 0 В) уменьшается со временем

1) прямолинейным равноускоренным	2) равномерным движения по окружности
3) равномерным криволинейным	4) прямолинейным равномерным
Ответ: 2	
4. Твердое тело вращается по за1) 0 2) 1Ответ: 4	кону $\varphi = 3t$. Модуль угловой скорости тела 3) 2 4) 3
5. Твердое тело вращается по за2) 0 2) 0,25Ответ: 3	кону ω =0,5 t . Модуль углового ускорения тела 3) 0,5 4) 1
-	относительно неподвижной оси с угловым
	он изменения угловой скорости.
1) $\omega = 2t^3$ 2) $\omega = \frac{2}{3}t^3$ 3) $\omega = 4$	$4) \omega = 3t^3$
Ответ: 2	
2) Возрастание амплитуды колебани частоте собственных колебаний меха	і силы, с частотой собственных колебаний; й в интервале частот вынуждающей силы, близки: нической системы; бания при совпадении частоты вынуждающей силы з
9. Тело, совершающее гармоничот среднего положения до крайн	еское колебание с периодом T , проходит пути его за время, равное
1) $\frac{T}{4}$ 2) $\frac{T}{6}$) $\frac{T}{8}$ 4) $\frac{T}{12}$
Ответ: 1	
	а идеального газа, если уменьшить его объем оцесса, в котором давление и объем связань

3. Если тангенциальная и нормальная составляющая ускорения равны: а $_{\tau}$ =0,

Ответ: 1 - a, 2 - в

a_n=const, то движение является

В газовом процессе, для которого плотность $\rho \sim T^{-1}$, с увеличением

3) увеличится в 2 раза 4) уменьшится в 2 раза

Ответ: 3

температуры давление

11.

характеристик сравните работы выхода электронов из металлов

- 1) $A_1 = A_2$
- 2) $A_1 > A_2$
- 3) $A_1 < A_2$
- 4) сделать заключение невозможно

Ответ: 2

18. Если частицы имеют одинаковую длину волны де Бройля, то наименьшей скоростью обладает

- 1) позитрон
- 2) протон 3) α частицы
- 4) нейтрон

Ответ: 3

19. Атом водорода обладает наименьшим орбитальным моментом импульса в квантовом состоянии

1) n=3, $\ell=1$

2) n=3, $\ell=2$

3) n=2, $\ell=1$

4) n=3, $\ell=0$

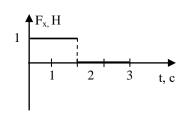
Ответ: 3

20. Носители электромагнитного взаимодействия:

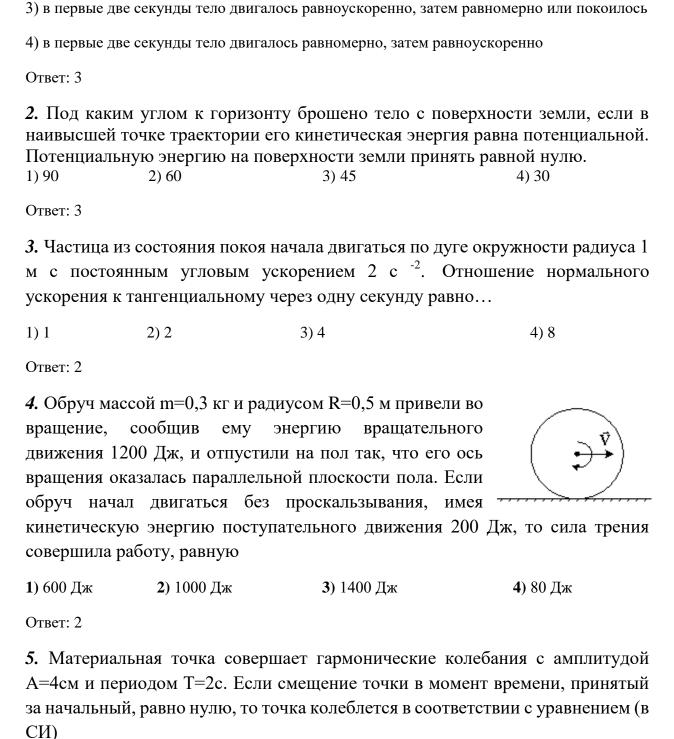
1) фотоны

2) промежуточные бозоны

3) глюоны


4) π-мезоны

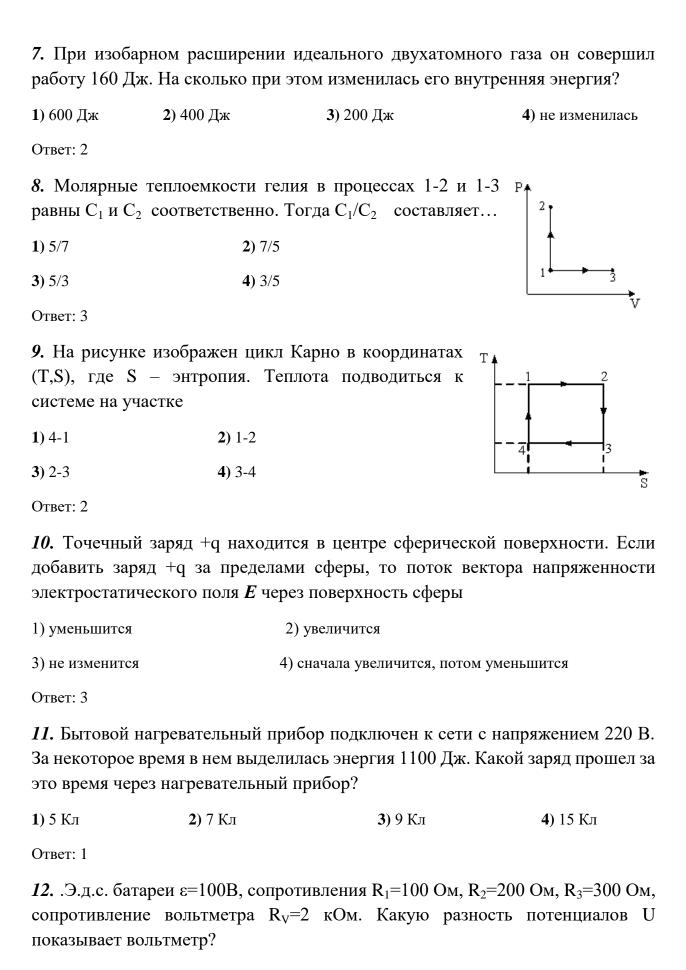
Ответ: 1


7.2.2 Примерный перечень заданий для решения стандартных задач

1-й семестр

1. На рисунке представлена зависимость проекции силы, действующей на некоторое тело, от времени. Можно утверждать, что

- 1) в первые две секунды тело двигалось равномерно, затем равноускоренно
- 2) в первые две секунды тело двигалось равномерно, затем покоилось

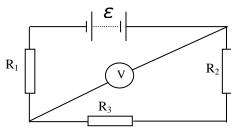


1) $x = 0.04\cos 2t$ 2) $x = 0.04\cos \pi t$ 3) $x = 0.04\sin 2t$ 4) $x = 0.04\sin \pi t$ Other: 4

6. Складываются два гармонических колебания одного направления с одинаковыми периодами и равными амплитудами A_0 . При разности фаз $\Delta \phi = 3\pi/2$ амплитуда результирующего колебания равна

1) 0 2) $2A_0$ 3) $1,4 A_0$ 4) $5/2A_0$

Ответ: 3


1) 60 B

- 2) 70 B 4) 90 B
- 3)

80 B

Ответ: 3

13. На рисунке изображены сечения двух параллельных прямолинейных длинных

проводников с противоположно направленными токами, причем $J_1=2J_2$. Индукция \vec{R} результирующего магнитного поля равна нулю в некоторой точке интервала

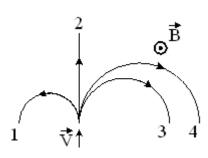
1) *b*

2) *c*

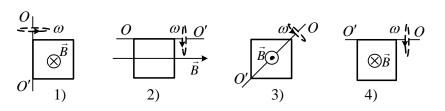
3) *a*

4) d

Ответ: 4


- **14.** На рисунке показан длинный проводник с током, около которого находится небольшая проводящая рамка. При выключении в проводнике тока заданного направления, в рамке
- 1) индукционного тока не возникнет
- 2) возникнет индукционный ток в направлении 4-3-2-1

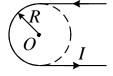
- 3) возникнет индукционный ток в направлении 1-2-3-4
- 4) возникнет индукционный ток в направлении 1-3-2-4


15. На рисунке указаны траектории заряженных частиц, имеющих одинаковую скорость и влетающих в однородное магнитное поле, перпендикулярное плоскости чертежа. При этом для частицы 1

- 1) q > 0
- 2) q < 0
- 3) q = 0
- 4) 1 > q > 0

Ответ: 1

16. На рисунке изображены плоские рамки, вращающиеся в однородном поле вокруг неподвижных осей ОО'. Укажите, в какой из рамок ЭДС индукции в любой момент времени равна нулю.

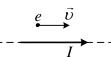


Ответ: 2

17. Магнитная индукция в точке О равна

 $1) \ \frac{\mu_0 I}{4R}$

 $2) \frac{\mu_0 I(\pi+1)}{2\pi R}$



 $3) \frac{\mu_0 I(\pi - 1)}{2\pi R}$

4) $\frac{\mu_0 I(\pi + 2)}{4\pi R}$

Ответ: 3

18. Вектор силы, действующей на движущийся электрон вблизи бесконечного прямого провода с током, направлен

1)↓

2) ↑

 $3) \rightarrow$

4) ←

Ответ: 2

19. Какая формула является законом Брюстера?

1) $tg \alpha = n_{21}$

2) $I_A = I_{\Pi} cos^2 \alpha$

3) $F=BIlsin \alpha$

4) $\sin \alpha / \sin \beta = n_{21}$

Ответ: 1

20. На узкую щель падает нормально монохроматический свет с длинной волны λ . Если угол отклонения света, соответствующий второй световой дифракционной полосе, равен 30° , то ширина щели равна

1) 3*λ*

2) 4λ

3) 5λ

4) 4λ

Ответ: 4

21. На пути естественного света помещены две пластинки турмалина. После прохождения пластинки **1** свет полностью поляризован. Если J_1 и J_2 – интенсивности света, прошедшего пластинки **1** и **2** соответственно, и $J_2 = \frac{J_1}{4}$, тогда угол между направлениями ОО и О'O' равен

1) 45^0

 $2) 30^{0}$

 $3) 60^0$

4) 90^{0}

Ответ: 3

22. При прохождении белого света через трехгранную призму наблюдается его разложение в спектр. Это явление объясняется

1) интерференцией света

2) дифракцией света

3) поляризацией света

4) дисперсией света

Ответ: 4

- 23. Установить соответствие квантовых чисел, определяющих волновую функцию электрона в атоме водорода, их физическому смыслу
- 1. n А. определяет ориентации электронного облака в пространстве
- 2. l Б. определяет форму электронного облака
- 3. т В. определяет размеры электронного облака
- 4. Г. собственный механический момент

1) 1-Γ, 2-Б, 3-A

2) 1-A, 2-Б, 3-В

3) 1-В, 2-Б, 3-А

4) 1-B, 2-A, 3-Γ

24. На рисунке показаны направления падающего фотона (γ), рассеянного фотона (γ) и электрона отдачи (е). Угол рассеяния 90^{0} , направление движения электрона отдачи составляет с направлением падающего фотона угол ϕ = 30^{0} . Если импульс с падающего фотона 3 (МэВ·с)/м, то импульс с рассеянного фотона (в тех же единицах) равен...

1) 1.5 $\sqrt{3}$

2) $2\sqrt{3}$

3) 1,5

4) $\sqrt{3}$

Ответ: 4

7.2.3 Примерный перечень заданий для решения прикладных задач

1 семестр

1. Мяч, брошенный со скоростью $\upsilon_0 = 10$ м/с под углом $\alpha = 45^0$ к горизонту ударяется о стенку, находящуюся на расстоянии l=3 м от места бросания. Найти скорость υ мяча в момент удара.

Ответ: 27,43 км/ч.

2. Невесомый блок укреплен в вершине наклонной плоскости, образующей с горизонтом угол α =30 0 . Гири 1 и 2 одинаковой массы: m_{1} = m_{2} =1 кг соединены нитью и перекинуты через блок. Найти ускорение, с которым движутся гири, и силу натяжения нити T, при условии, что коэффициент трения гири 2 о наклонную плоскость μ =0,1.

Ответ: $2,45 \text{ м/c}^2$, 7,35 H

3. Диск массой m=2 кг катится без скольжения по горизонтальной плоскости со скоростью $\upsilon=4$ м/с. Найти кинетическую энергию диска.

Ответ: 24 Дж

4. Шарик, прикрепленный к пружине, совершает на гладкой горизонтальной плоскости гармонические колебания амплитудой 10 см. На сколько сместится

шарик от положения равновесия за время, в течение которого его кинетическая энергия уменьшится вдвое?

Ответ: 8,7 см

5. Масса m=12 г газа занимает объём V=4 л при температуре t_1 =7 0 С. После нагревания газа при постоянном давлении его плотность стала равной ρ =0,6 кг/м³. До какой температуры t_2 нагрели газ?

Ответ: 1400 К

6. Найти поверхностную плотность заряда на пластинах плоского конденсатора, разделенных слоем стекла толщиной 4 мм, если на конденсатор подано напряжение 3,8 кВ.

Ответ: 59 мкКл/м^2 .

7. Какую долю э.д.с. элемента ε составляет разность потенциалов U на его зажимах, если сопротивление элемента r в n=0.1 раз меньше внешнего сопротивления R?

Ответ: 91%

8. Частица, несущая один элементарный заряд, влетела в однородное магнитное поле с индукцией B=0,5 $T\pi$. Определите момент импульса, которым обладала частица при движении в магнитном поле, если ее траектория представляла дугу окружности радиусом R=0,2 cm.

Ответ: $3,2 \cdot 10^{-25} \text{кг} \cdot \text{м}^2/\text{c}$.

9. В идеальном колебательном контуре происходят гармонические колебания. Сравните энергию магнитного поля катушки W_1 и энергию электрического поля конденсатора W_2 , в тот момент, когда сила тока в контуре равна половине от действующего значения.

<u>Ответ:</u> 7

10. На дифракционную решетку падает нормально свет длиной волны 664 нм. Определить угол между направлениями на максимумы первого и второго порядка. Постоянная дифракционной решетки *3,3 мкм*.

Ответ: 12

11. Угол Брюстера при падении света из воздуха на поверхность кристалла каменой соли равен 57^0 . Определить предельный угол полного отражения света на границе этого кристалла с воздухом.

Ответ: 40,50

12. При облучении металлической пластинки фотоэффект возникает только в том случае, если импульс падающих на нее фотонов превышает $9 \cdot 10^{-28}$ кг·м/с. С какой максимальной скоростью будут покидать пластинку электроны, если облучать ее светом, частота которого вдвое больше?

Ответ: 774 км/с

13. За время t=8суток распалось 3/4 начального количества ядер радиоактивного изотопа. Чему равен период полураспада данного изотопа? Ответ: 4 сут.

7.2.4 Примерный перечень вопросов для подготовки к зачету 1-й семестр (зачет с оценкой)

- 1. Предмет физики. Физическая модель. Классическая механика. Кинематика. Система отсчета. Методы задания положения материальной точки в пространстве. Связь координатного и векторного методов. Описание движения тела в классической механике.
- 2. Криволинейное движение. Средняя и мгновенная скорость. Равнопеременное движение.
- 3. Неравномерное криволинейное движение. Радиус кривизны. Тангенциальное и нормальное ускорения.
- 4. Силы в механики. Правило сложения сил, действующих на материальную точку.
- 5. Инерция тел. Мера инертности тела. Законы Ньютона. Импульс тела. Импульс силы.
- 6. Механическая система. Внутренние и внешние силы. Закон сохранения импульса механической системы.
- 7. Центр масс механической системы и закон его движения.
- 8. Инерциальные системы отсчета. Преобразование координат Галилея. Инвариантность законов Ньютона. Механический принцип относительности.
- 9. Неинерциальные системы отсчета. Силы инерции.
- 10. Элементы теории относительности. Постулаты Эйнштейна. Преобразования Лоренца.
- 11. Следствия из преобразований Лоренца. Интервал времени между двумя событиями. Длина отрезка.
- 12. Релятивистский импульс. Основной закон динамики в специальной теории относительности. Взаимосвязь массы и энергии.
- 13. Работа и мощность.
- 14. Работа упругой и гравитационной сил. Консервативные силы.
- 15. Работа однородной силы тяжести. Потенциальная энергия.
- 16. Связь потенциальной энергии с консервативной силой, действующей на материальную точку.
- 17. Кинетическая энергия поступательного движения и ее связь с работой внешних и внутренних сил.
- 18. Полная энергия механической системы. Закон сохранения механической энергии.
- 19. Диссипативные силы. Работа диссипативных сил. Закон сохранения и превращения энергии.
- 20. Абсолютно упругий и неупругий удар.
- 21. Абсолютно твердое тело физическая модель. Поступательное и вращательное движение твердого тела. Угловая скорость и угловое ускорение. Связь угловых и линейных величин.

- 22. Момент инерции материальной точки относительно оси вращения мера инертности во вращательном движении.
- 23. Определение момента инерции однородного стержня относительно оси, проходящей через центр масс.
- 24. Теорема Штейнера.
- 25. Работа и кинетическая энергия вращательного движения.
- 26. Равнодействующая сила. Момент силы. Вывод основного закона динамики вращательного движения.
- 27. Момент импульса. Закон сохранения момента импульса механической системы.
- 28. Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний. Пружинный маятник.
- 29. Физический и математический маятники.
- 30. Затухающие механические колебания.
- 31. Стационарное течение вязкой жидкости.
- 32. Статистический и термодинамический методы изучения строения вещества. Термодинамическая система. Термодинамические параметры. Молярная масса. Число Авогадро. Равновесные состояния и квазиравновесные процессы.
- 33. Идеальный газ физическая модель. Уравнение Клапейрона-Менделеева. Изопроцессы. Закон Дальтона.
- 34. Основное уравнение молекулярно- кинетической теории идеальных газов. Связь давления и температуры. Физический смысл давления и температуры.
- 35. Распределение молекул газа по скоростям и энергия теплового движения. Опыт Штерна.
- 36. Распределение молекул в поле силы тяжести. Барометрическая формула.
- 37. Средняя длина свободного пробега молекул. Эффективный диаметр молекулы.
- 38. Явление переноса: теплопроводность, вязкость и диффузия.
- 39. Коэффициенты диффузии, внутреннего трения и теплопроводности в газе.
- 40. Число степеней свободы молекулы. Распределение энергии по степеням свободы молекулы. Внутренняя энергия идеального газа.
- 41. Количество теплоты. Теплоемкость газа. Работа газа при изменении его объема.
- 42. Первое начало термодинамики. Невозможность создания вечного двигателя первого рода.
- 43. Применение первого начала термодинамики для изохорического процесса. Молярная и удельная теплоемкость при V = const.
- 44. Применение первого начала термодинамики для изобарического процесса. Молярная и удельная теплоемкость при p = const. Уравнение Майера.
- 45. Применение первого начала термодинамики для изотермического процесса. Работа газа при изотермическом процессе.
- 46. Адиабатический процесс. Уравнение Пуассона.

- 47. Круговые процессы. Тепловая машина, КПД. Холодильная машина.
- 48. Цикл Карно и его КПД. Пути повышения КПД тепловых машин.
- 49. Энтропия. Ее статистический смысл.
- 50. Изменение энтропии при квазиравновесных процессах.
- 51. Второе начало термодинамики. Невозможность создания вечного двигателя второго рода.
- 52. Третье начало термодинамики. Теорема Нернста.
- 53. Силы и потенциальная энергия межмолекулярного взаимодействия. Внутренняя энергия реального газа.
- 54. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реального газа. Фазовые переходы первого и второго рода.
- 55. Условия равновесия фаз, фазовые диаграммы.
- 56. Характеристика жидкого состояния веществ. Граница раздела фаз. Поверхностное натяжение. Явление адсорбции.
- 57. Давление под изогнутой поверхностью жидкости. Формула Лапласа.
- 58. Закон Кулона. Напряженность и потенциал электростатического поля.
- 59. Теорема о циркуляции электростатического поля.
- 60. Диэлектрики в электрическом поле. Электрическое поле диполя, заряженной сферы, нити и объемно заряженного шара.
- 61. Сегнетоэлектрики.
- 62. Теорема Гаусса в интегральной форме и ее применение для расчета электрических полей.
- 63. Постоянный электрический ток. Сила и плотность тока. Закон Ома в интегральной и дифференциальной формах. Законы Кирхгофа.
- 64. Магнитное взаимодействие постоянных токов. Закон Ампера. Сила Лоренца.
- 65. Движение зарядов в электрических и магнитных полях.
- 66. Магнитное поле в веществе. Магнитное поле и магнитный дипольный момент кругового тока.
- 67. Классификация магнетиков. Доменная структура ферромагнетиков.
- 68. Электрический колебательный контур. Незатухающие электромагнитные колебания.
- 69. Энергия гармонических колебаний.
- 70. Затухающие электромагнитные колебания.
- 71. Волны. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Уравнение бегущей волны. Характеристики волны.
- 72. Волновое уравнение. Фазовая скорость и дисперсия волн.
- 73. Энергия волны. Интенсивность звуковой волны. Акустическое давление. Уровень интенсивности.
- 74. Поглощение волн. Закон Бугера. Физические причины поглощения звука в среде.
- 75. Интерференция волн. Образование стоячих волн. Уравнение стоячей волны и его анализ.

- 76. Характеристики звуковых ощущений в физиологической акустике. Высота, тембр и громкость звука.
- 77. Отражение и преломление волн на границе раздела сред. Коэффициент отражения и коэффициент прохождения. Акустические резонаторы. Акустика помещений.
- 78. Энергия волны. Интенсивность звуковой волны. Акустическое давление. Уровень интенсивности.
- 79. Электромагнитные волны, их основные свойства. Энергия электромагнитных волн. Поток энергии, вектор Умова-Пойнтинга. Излучение диполя.
- 80. Двойное лучепреломление. Поляроиды и поляризационные призмы. Закон Малюса. Искусственная оптическая анизотропия.
- 81. Нелинейные колебания.
- 82. Понятие о голографии. Практическое применение голографии
- 83. Дифракция рентгеновских лучей на кристаллической решетке. Исследование структуры кристаллов.
- 84. Световые волны. Интерференция света. Геометрическая и оптическая разность хода. Условия максимума и минимума интерференций. Интерферометры.
- 85. Интерференция при отражении и прохождении света через тонкую пленку или пластинку.
- 86. Волновое уравнение. Фазовая скорость и дисперсия волн.
- 87. Распространение звука в газах и жидкостях. Скорость распространения. Акустическое сопротивление.
- 88. Естественный и поляризованный свет. Поляризация света при отражении. Закон Брюстера.
- 89. Экспериментальные предпосылки возникновения квантовой теории.
- 90. Законы излучения нагретых тел.
- 91. Формула Планка. Фотоны.
- 92. Эффект Комптона.
- 93. Волна де Бройля.
- 94. Уравнение Шредингера.
- 95. Движение квантовой частицы в прямоугольной потенциальной яме.
- 96. Вешний фотоэффект и его законы. Фотоны. Уравнение Эйнштейна.
- 97. Квантовая гипотеза и формула Планка.
- 98. Тепловое излучение. Закон Кирхгофа. Распределение энергии в спектре абсолютно черного тела. Закон Стефана-Больцмана. Закон смещения Вина. Оптическая пирометрия.
- 99. Волновое уравнение. Фазовая скорость и дисперсия волн.
- 100. Состав атомного ядра. Характеристики ядра: заряд, масса, энергия связи нуклонов. Радиоактивность.
- 101. Виды и законы радиоактивного излучения. Ядерные реакции. Деление ядер. Синтез ядер. Детектирование ядерных излучений.
- 102. Понятие о дозиметрии и защите. Естественная и искусственная

радиоактивность.

- 103. Элементарные частицы. Фундаментальные взаимодействия и основные классы элементарных частиц.
- 104. Частицы и античастицы. Лептоны и адроны. Кварки. Электрослабое взаимодействие.
- 105. Гипотеза де Бройля. Принцип неопределенности Гейзенберга.
- 106. Квантово-механическое описание атомов.
- 107. Структура энергетических зон в металлах, полупроводниках и диэлектриках. Проводимость металлов.
- 108. Основы физики атомного ядра.

7.2.5. Примерный перечень заданий для решения прикладных задач Экзамен не предусмотрен учебным планом.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 12 задач с вариантами ответов. Каждая задача оценивается в 1 балл (0,5 балла верное решение и 0,5 баллов за верный ответ). Максимальное количество набранных баллов – 12.

Зачет с оценкой:

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 4 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 4 до 6 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 7 до 9 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 10 до 12 баллов.

7.2.7. Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Кинематика	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
2	Динамика поступательного движения	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
3	Законы сохранения	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
4	Динамика вращательного движения	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
5	Механические колебания	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.

6	Молекулярная физика.	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
7	Термодинамика	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
8	Электростатика	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
9	Постоянный ток	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
10	Магнетизм	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
11	Электромагнитная индукция.	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
12	Магнитные свойства вещества	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
13	Электромагнитные колебания и волны	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
14	Волновая оптика	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
15	Квантовая физика.	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
16	Элементы физики атомов и молекул	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.
17	Ядерная физика	ОПК-2	Тест, контрольная работа, защита лабораторных работ, зачет с оценкой.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности Тестирование осуществляется, либо при помощи компьютерной системы

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 60 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 60 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи

компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 60 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Основная литература:

1. Курбачев, Ю. Ф.

Физика: Учебное пособие / Курбачев Ю. Ф. - Москва: Евразийский открытый институт, 2011. - 216 с. - ISBN 978-5-374-00523-3.

URL: http://www.iprbookshop.ru/11106.html

2. Михайлов, В. К.

Физика: Учебное пособие / Михайлов В. К. - Москва: Московский государственный строительный университет, ЭБС АСВ, 2013. - 120 с. - ISBN 978-5-7264-0679-4.

URL: http://www.iprbookshop.ru/23753.html

3. Алпатов, А. В.

Физика. Электричество : Учебное пособие / Алпатов А. В. - Волгоград : Волгоградский институт бизнеса, Вузовское образование, 2013. - 103 с. - ISBN 978-5-9061-7252-5.

URL: http://www.iprbookshop.ru/11359.html

Дополнительная литература:

1. Никеров, В. А.

Физика для вузов : механика и молекулярная физика; учебник / В.А. Никеров. - Москва : Издательско-торговая корпорация «Дашков и К°», 2017. - 136 с. - ISBN 978-5-394-00691-3.

URL: http://biblioclub.ru/index.php?page=book&id=450772

2. Никишина, А. И.

Физика. Теоретический материал для подготовки к лабораторным работам [Электронный ресурс] : Учебное пособие / А. И. Никишина, А. К. Тарханов. - Воронеж : Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, 2016. - 139 с. - ISBN 978-5-89040-637-8.

URL: http://www.iprbookshop.ru/72952.html

3. Купцов, П. В.

Элементарная вычислительная физика. Компьютерная обработка данных на практических и лабораторных занятиях [Электронный ресурс] : Учебное пособие / П. В. Купцов, А. В. Купцова. - Саратов : Саратовский государственный технический университет имени Ю.А. Гагарина, ЭБС АСВ, 2015. - 36 с. - ISBN 978-5-7433-2880-2.

URL: http://www.iprbookshop.ru/76536.html

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное программное обеспечение

- Microsoft Office Word 2013/2007;
- Microsoft Office Excel 2013/2007;
- Microsoft Office Power Point 2013/2007;
- Гранд-Смета;
- Acrobat Professional 11.0 MLP;
- Maple v18;
- AutoCAD;
- -7zip;
- PDF24 Creator;
- Программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат.ВУЗ»

Ресурсы информационно-телекоммуникационной сети «Интернет»

- Российское образование. Федеральный образовательный портал: учреждения, программы, стандарты, Вузы, ... код доступа: http://www.edu.ru/
- Образовательный портал ВГТУ, код доступа: https://old.education.cchgeu.ru

Информационные справочные системы

- Бесплатная электронная библиотека онлайн «Единое окно к образовательным ресурсам», код доступа: http://window.edu.ru;
- ВГТУ: wiki, код доступа: https://wiki.cchgeu.ru/;
- Университетская библиотека онлайн, код доступа: http://biblioclub.ru/;
- ЭБС Издательства «ЛАНЬ», код доступа http://e.lanbook.com/;
- ЭБС IPRbooks, код доступа: http://www.iprbookshop.ru;
- научная электронная библиотека eLIBRARY.RU, код доступа: http://elibrary.ru/

Современные профессиональные базы данных

- East View, код доступа: https://dlib.eastview.com/
- Academic Search Complete, код доступа: http://search.ebscohost.com/
- Нефтегаз.ру, код доступа: https://neftegaz.ru/
- «Геологическая библиотека» интернет-портал специализированной литературы, код доступа: http://www.geokniga.org/maps/1296
- Электронная библиотека «Горное дело», код доступа: http://www.bibl.gorobr.ru/

- «ГОРНОПРОМЫШЛЕННИК» международный отраслевой ресурс, код доступа: http://www.gornoprom.ru/
- MINING INTELLIGENCE & TECHNOLOGY -

Информационно-аналитический портал, код доступа: http://www.infomine.com/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Материально-техническая база включает:

- Специализированные лекционные аудитории, оснащенные оборудованием для лекционных демонстраций и проектором, стационарным экраном.
- Учебные аудитории, оснащенные необходимым оборудованием. Аудитории для проведения практических занятий, оборудованные проекторами, стационарными экранами и интерактивными досками.
- Помещения для самостоятельной работы студентов, оснащенные компьютерной техникой с выходом в сеть "Интернет".
- Библиотечный электронный читальный зал с доступом к электронным ресурсам библиотеки и доступом в образовательный портал ВГТУ.

3 Комплект приборов для измерения физических величин (Линейка 1м.штангенциркуль7шт, микрометр 1 шт.)
1. Комплект приборов для измерения физических величин
* * * *
 Установка для определения момента инерции моховика и момента сил трения Маятник Максвелла для измерения момента инерции металлических колец. Трифилярный подвес. Баллистический маятник. Установка для исследования движения тел в жидкости. Установка для исследования Ср/Сv воздуха. Установка для определения скорости звука в воздухе методом стоячей волны. Установка для определения скорости звука в воздухе методом сдвига фаз. Измерение модуля сдвига проволоки методом крутильных колебаний. Установка для исследования электростатического поля. Установка для определения удельного сопротивления проводников с помощью мостика Уитстона Установка для исследования релаксационных процессов

2.	Электромагнетизма	1. Стенд для изучения вынужденных электромагнитных
۷.	и волновой оптики	колебаний.
	(318/1)	2. Установка для изучения внешнего фотоэффекта.
	(310/1)	3. Установка для пределения горизонтальной
		составляющей магнитного поля Земли.
		4. Установка для измерения вращающего момента рамки с
		током в магнитном поле.
		5. Установка для проверки закона Био-Савара-Лапласа для
		кругового тока (6 экз).
		6. Установка для определения точки Кюри ферромагнетика.
		7. Кольца Ньютона.
		8. Установка для исследования поляризации света (2 экз)
		9. Установка для изучения дисперсии света (2 экз).
		10. Установка для изучения дифракции света (2 экз).
3.	Специализированные	Оборудование для лекционных демонстраций, проектор,
	лекционные	стационарный экран.
	аудитории,	
	аудитории для	
	проведения	
	практических	
	занятий.	
	(учебный корпус,	
	расположенный по адресу: Московский	
	пр., 14)	
4.	Помещения для	
٦.	самостоятельной	
	работы студентов:	
	ауд. 324 (учебный	
	корпус,	
	расположенный по	
	адресу: Московский	
	пр., 14);	
	- библиотечный зал	
	(учебный корпус,	
	расположенный по	
	адресу: Московский	
	пр., 14);	
	- читальный зал	
	(учебный корпус,	
	расположенный по	
	адресу: Московский	
5.	пр., 14, ауд. 203)	
).	Помещения для	
	хранения и обслуживания	
	оборудования: ауд.	
	316 (учебный корпус,	
	расположенный по	
	адресу: Московский	
	пр., 14)	
	r·'' - '/	

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Физика» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на детализирование знаний, полученных на лекциях в обобщенной форме. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных	п
занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо
	сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не

	T				
аттестации	позднее,	чем за	месяц-полтора	до промежуточной	аттестации.
	Данные п	еред зач	етом, экзаменом	, экзаменом три дня	эффективнее
	всего испо	ользоват	ь для повторения	я и систематизации м	атериала.

лист регистрации изменений

			Подпись
No		Дата	заведующего
п/п	Перечень вносимых изменений	внесения	кафедрой,
11/11		изменений	ответственной за
			реализацию ОПОП
1	Актуализирован раздел 8.2 в	31.08.2019	
	части состава используемого		
	лицензионного программного		0
	обеспечения, современных		Or
*	профессиональных баз данных и		,
	справочных информационных		
	систем		
2	Актуализирован раздел 8.2 в	31.08.2020	
	части состава используемого		Λ
	лицензионного программного		31
	обеспечения, современных		41)
	профессиональных баз данных и		
	справочных информационных		
	систем		
3	Актуализирован раздел 8.2 в	31.08.2021	
	части состава используемого		
	лицензионного программного		Che D
	обеспечения, современных		July 1
	профессиональных баз данных и		V
	справочных информационных		- e
*	систем		