МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

РАБОЧАЯ ПРОГРАММА дисциплины «Физика»

Направление подготовки <u>11.03.03</u> <u>Конструирование и технология электронных средств</u>

Профиль Проектирование и технология радиоэлектронных средств

Квалификация выпускника бакалавр

Нормативный период обучения <u>4 года /4 года 11 м.</u>

Форма обучения очная / заочная

Год начала подготовки 2022 г.

Автор программы О.С. Хабарова

Заведующий кафедрой физики Т.Л. Тураева

Руководитель ОПОП А.А. Пирогов

Воронеж 2022

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1 Цели дисциплины формирование у обучающихся методологической грамотности и системных знаний в области физики, позволяющих ориентироваться в потоке научно - технической информации, самостоятельно расширять свой физико-технический кругозор и успешно решать профессиональные задачи.

1.2 Задачи освоения дисциплины:

- формирование у обучающихся научного мировоззрения путем демонстрации теоретических и экспериментальных возможностей физики в познании окружающего мира;
- ознакомление с историей физики и ее развитием, а также с основными направлениями и тенденциями развития современной физики;
- раскрытие связи физики с техникой, формирование представления об опережающей роли науки на современном этапе развития техники;
- формирование представлений о модельном характере физической науки, о границах применимости физических законов и теорий;
- формирование умения соотносить явления в природе и технике с законами классической и современной физики;
- формирование навыков решения физических задач из разных областей физики, помогающих студентам в дальнейшем решать инженерные задачи;
- формирование навыков проведения экспериментальных исследований физических явлений, математической обработки результатов и грамотной их интерпретации.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина <u>«Физика»</u> относится к дисциплинам <u>обязательной части</u> блока Б.1 учебного плана.

3 ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИС-ЦИПЛИНЕ

Процесс изучения дисциплины «Физика» направлен на формирование следующих компетенций:

ОПК-1 - Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-1	знать физические модели, законы, теории; границы их применимости; сущность теоретического и экспериментального методов исследования; единицы измерения физических величин и принципы действия важнейших физических приборов
	уметь использовать физические понятия и законы для решения задач и анализа технических проблем, самостоятельно работать с источниками физико-технической информации, расширять свои физические познания
	владеть навыками физического моделирования, проведения физического эксперимента, обработки и интерпретации результатов измерений

4 ОБЪЕМ ДИСЦИПЛИНЫ Общая трудоемкость дисциплины «Физика» составляет 15 зачётных единиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего	C	еместри	Ы
	часов	2	3	4
Аудиторные занятия (всего)	306	90	108	108
В том числе:				
Лекции	108	36	36	36
Практические занятия (ПЗ)	90	18	36	36
Лабораторные работы (ЛР)	108	36	36	36
Самостоятельная работа	171	99	36	36
Курсовой проект (работа)				
Контрольная работа				
Вид промежуточной аттестации – экзамен,		27		36
зачет с оценкой, экзамен	63	21	_	30
Общая трудоемкость час	540	216	144	180
зач. ед.	15	6	4	5

Заочная форма обучения

	<i>J</i>			
Вид учебной работы	Всего	Семестры		Ы
		2	3	4
Аудиторные занятия (всего)	52	16	18	18
В том числе:				
Лекции	12	4	4	4
Практические занятия (ПЗ)	16	4	6	6
Лабораторные работы (ЛР)	20	4	8	8

Самостоятельная работа	470	159	158	153
Курсовой проект (работа)				
Контрольная работа				
Вид промежуточной аттестации – экзамен, зачет с оценкой, экзамен	22	9	4	9
Общая трудоемкость час	540	180	180	180
зач. ед.	15	5	5	5

5 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

Очная форма обучения

3.2		О тал форма обутения			п -		D
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
		2 семестр					
1	Физические основы механики	Кинематика поступательного и вращательного движений. Динамика материальной точки и системы материальных точек. Работа и механическая энергия. Закон сохранения энергии. Механика твердого тела. Тяготение. Неинерциальные системы отсчета. Силы инерции. Механика упругих тел. Элементы специальной теории относительности.	12	10	20	33	75
2	Механические коле- бания и волны	Кинематика и динамика гармонических колебаний. Собственные, затухающие, вынужденные колебания осциллятора. Сложение гармонических колебаний. Механические волны. Уравнение бегущей волны. Стоячие волны. Эффект Доплера в акустике.	12	4	10	33	59
3	Молекулярная физика и термодинамика		12	4	6	33	55
		3 семестр					
4	Электромагнетизм	Электрическое поле в вакууме и его характеристики. Теорема Гаусса и применение ее для расчета электростатических полей. Электрическое поле в диэлектрике и проводнике. Электрический ток: сила тока, плотность тока. Законы постоянного электрического тока. Правила Кирхгофа. Электрический ток в различных средах. Вектор индукции магнитного поля. Закон Био-Савара-Лапласа. Линии магнитной индукции. Поле прямого тока. Поле на оси кругового тока. Магнитный момент контура с током. Магнитный момент контура с током. Магнитное поле проводника с током. Закон Био-Савара-Лапласа и его использование для расчета магнитных полей. Магнитное поле движущегося заряда. Действие магнитного поля на движущийся заряд. Ускорители частиц. Эффект Холла. Магнитное поле в веществе. Диа- пара- и ферромагнетики.	18	20	20	18	76

				1	T	1	
		Электромагнитная индукция. Самоиндукция.					
		Взаимная индукция.			1		
		Колебательный контур. Свободные, затухаю-					
		щие и вынужденные колебания. Усилители и авто-					
		генераторы электромагнитных колебаний.					
		Переменный ток. Мощность переменного тока.					
5	0	Электромагнитная теория Максвелла.			+		
3	Оптика	Свет как электромагнитная волна. Фотометрия. Энергетические и фотометрические величины и					
		единицы их измерения.					
		Интерференция света. Когерентность. Расчет					
		интерференционной картины от двух когерентных					
		источников. Интерференция многих волн. Интер-					
		ферометры. Просветление оптики.					
		Дифракция света. Принцип Гюйгенса-Френеля.					
		Метод зон Френеля. Прямолинейное распростра-					
		нение света. Дифракция Френеля на круглом от-					
		верстии и диске. Дифракция Фраунгофера на щели					
		и на дифракционной решетке. Дифракционная ре-			1		
		шетка как спектральный прибор. Дифракция рент-			1		
		геновских лучей. Понятие о голографии.			1		
		Поляризация света при отражении. Закон Брю-			1		
		стера. Двойное лучепреломление. Поляризаторы.			1		
		Закон Малюса.					
		Дисперсия света. Фазовая и групповая скорости					
		света. Электронная теория дисперсии.	10	16	1.0	10	C 0
		Геометрическая оптика как предельный случай	18	16	16	18	68
		волновой. Основные законы оптики. Принцип					
		Ферма. Преломление и отражение света на сфери-					
		ческой границе. Сферическое и плоское зеркало.					
		Тонкая линза. Формула линзы. Построение изо-					
		бражений в тонких линзах и сферических зеркалах.					
		Оптические инструменты.					
		Квантовая природа излучения. Тепловое излу-					
		чение тел и его характеристики. Равновесное излу-					
		чение. Закон Кирхгофа. Абсолютно черное тело.					
		Законы Стефана - Больцмана и Вина. Оптическая					
		пирометрия.					
		Трудности классической физики в объяснении					
		закономерностей равновесного излучения. Кван-			1		
		товая гипотеза и формула Планка.			1		
		Внешний фотоэффект. Фотоны. Энергия и импульс фотона. Давление света. Эффект Комптона.					
					1		
		Единство корпускулярных и волновых свойств					
		электромагнитного излучения. 4 семестр		<u> </u>	1		
6	Основы квантовой	Волновые свойства частиц. Формула де Бройля.					
	механики	Дифракция микрочастиц. Электронная микроско-					1
	MOAGIIIIM	пия. Соотношение неопределенностей Гейзенберга.					
		Принцип дополнительности. Волновая функция и					
		ее статистический смысл. Принцип причинности в					
		квантовой механике. Уравнение Шредингера. Ста-	12	12	12	12	48
		ционарное уравнение Шредингера.			- -		
		Простейшие задачи квантовой механики. Сво-					
		бодная частица, частица в одномерной «потенци-					
		альной яме», туннельный эффект, линейный гар-					
		монический осциллятор.					
		-					

атома и твердого тела Пирические закономерности в атомных спектрах. Квантово-механическая модель атома водорода. Магнитный момент атома. Спин электрона. Тонкая структура спектральных линий. Принцип неразличимости тождественных частиц. Фермионы и бозоны. Принцип Паули. Электронные конфигурации атомов. Элементы зонной теории. Классификация кристаллов на основе зонной теории. Собственная и примесная проводимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики ядра и элементарных частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.	7	Элементы физики	Постулаты Бора. Опыт Франка и Герца. Эм-					
Квантово-механическая модель атома водорода. Магнитный момент атома. Спин электрона. Тонкая структура спектральных линий. Принцип неразличимости тождественных частиц. Фермионы и бозоны. Принцип Паули. Электронные конфигурации атомов. Элементы зонной теории. Собственная и примесная проводимости полупроводников. Фотопроводимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики ядра и элементарных частиц Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая (структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.		-						
Магнитный момент атома. Спин электрона. Тонкая структура спектральных линий. Принцип неразличимости тождественных частиц. Фермионы и бозоны. Принцип Паули. Электронные конфигурации атомов. Элементы зонной теории. Классификация кристаллов на основе зонной теории. Собственная и примесная проводимости полупроводников. Фотопроводимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики ядра и элементарных частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивность. Виды радиоактивность излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.		•						
структура спектральных линий. Принцип неразличимости тождественных частиц. Фермионы и бозоны. Принцип Паули. Электронные конфигурации атомов. Элементы зонной теории. Классификация кристаллов на основе зонной теории. Собственная и примесная проводимость полупроводников. Фотопроводнимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики ядра и элементарных частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.				я				
Принцип неразличимости тождественных частиц. Фермионы и бозоны. Принцип Паули. Электронные конфигурации атомов. Элементы зонной теории. Классификация кристаллов на основе зонной теории. Собственная и примесная проводимости полупроводников. Фотопроводимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики ядра и элементарных частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.								
частиц. Фермионы и бозоны. Принцип Паули. Электронные конфигурации атомов. Элементы зонной теории. Классификация кристаллов на основе зонной теории. Собственная и примесная проводимосты полупроводников. Фотопроводимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивность и характеристики элементарных частиц. Общие свойства и характеристики элементарных частиц. Общие свойства и характеристики элементарных частиц. Кварковая классификация элементарных частиц. Кварковая (2) 12 12 12 12 12 12 12 12 12 12 12 12 12								
Электронные конфигурации атомов. Элементы зонной теории. Классификация кристаллов на основе зонной теории. Собственная и примесная проводимость контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики ядра и элементарных частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая 12 12 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.				10	10	10	10	40
Элементы зонной теории. Классификация кристаллов на основе зонной теории. Собственная и примесная проводимости полупроводников. Фотопроводимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики ядра и элементарных частиц Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивность излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая класификация элементарных частиц. Кварковая и характеристики элементарных частиц. Кварковая и характеристики элементарных частиц. Современные космологические представления. Достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.				12	12	12	12	48
сталлов на основе зонной теории. Собственная и примесная проводимости полупроводников. Фотопроводимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивность. Виды радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая 12 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.								
примесная проводимости полупроводников. Фото- проводимость. Контакт двух металлов. Электрон- но-дырочный переход и его вольт-амперная харак- теристика. Опыты Резерфорда по рассеянию аль- фа-частиц. Ядерная модель атома. Состав и харак- теристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактив- ность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элемен- тарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая Классификация элементарных частиц. Кварковая образическая картина мира. Основные дос- тижения и проблемы субъядерной физики. Со- временные космологические представления. Достижения наблюдательной астрономии. Тео- ретические космологические модели.								
проводимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики ядра и элементарных частиц Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая классификация элементарных частиц. Кварковая общиниствения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.								
но-дырочный переход и его вольт-амперная характеристика. 8 Элементы физики ядра и элементарных частиц Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.								
8 Элементы физики ядра и элементарных частиц Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая 12 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.								
фа-частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая Классификация элементарных частиц. Кварковая 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.			теристика.					
частиц теристики атомного ядра. Свойства стабильных ядер. Модели ядра.	8	Элементы физики	Опыты Резерфорда по рассеянию аль-					
ядер. Модели ядра.		ядра и элементарных	фа-частиц. Ядерная модель атома. Состав и харак-					
Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.		частиц	теристики атомного ядра. Свойства стабильных					
ность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.			ядер. Модели ядра.					
реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая 12 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.			Естественная и искусственная радиоактив-					
Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая 12 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.			ность. Виды радиоактивного излучения. Ядерные					
тарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая 12 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.			реакции.					
Классификация элементарных частиц. Кварковая 12 12 12 12 структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.			Общие свойства и характеристики элемен-					
структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.			тарных частиц. Фундаментальны взаимодействия.					
Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.			Классификация элементарных частиц. Кварковая	12	12	12	12	48
тижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели.			структура адронов.					
временные космологические представления. Достижения наблюдательной астрономии. Тео- ретические космологические модели.			Физическая картина мира. Основные дос-					
Достижения наблюдательной астрономии. Тео- ретические космологические модели.			тижения и проблемы субъядерной физики. Со-					
ретические космологические модели.			временные космологические представления.					
			Достижения наблюдательной астрономии. Тео-					
D			ретические космологические модели.					
Революционные изменения в технике и			Революционные изменения в технике и					
технологиях как следствие научных достижений в			· · · · · · · · · · · · · · · · · · ·					
области физики.			области физики.					
Итого 108 90 108 171			Итого	108	90	108	171	477

Заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
		1 курс /летняя сессия					
1	Физические основы механики	Кинематика поступательного и вращательного движений. Динамика материальной точки и системы материальных точек. Работа и механическая энергия. Закон сохранения энергии. Механика твердого тела. Тяготение. Неинерциальные системы отсчета. Силы инерции. Механика упругих тел. Элементы специальной теории относительности.	2	2	4	53	61
2	Механические коле- бания и волны	Кинематика и динамика гармонических коле- баний. Собственные, затухающие, вынужденные колебания осциллятора. Сложение гармонических колебаний. Механические волны. Уравнение бегущей волны. Стоячие волны. Эффект Доплера в акустике.	1	1	2	53	57
3	Молекулярная физика и термодинамика	Макросистемы и методы их описания. Основные положения МКТ и их обоснование. Идеальный газ, газовые законы, уравнение состояния. Основное уравнение МКТ. Распределение Максвелла. Идеальный газ во внешнем потенциальном поле. Распределение Больцмана. Явления переноса в неравновесных термодинамических системах. Термодинамические параметры. Функции состояния и процесса. Внутренняя энергия, работа, теплота. Первое начало термодинамики. Применение первого начала к изопроцессам. Энтропия. Второе начало термодинамики. Реальный газ. Свойства жидкого состояния вещества. Аморфные и кристаллические тела.	1	1	4	53	59
		2 курс / зимняя сессия			•		

					T	,	1
4	Электромагнетизм	Электрическое поле в вакууме и его характеристики. Теорема Гаусса и применение ее для расчета электростатических полей. Электрическое поле в диэлектрике и проводнике. Электрический ток: сила тока, плотность тока. Законы постоянного электрического тока. Правила Кирхгофа. Электрический ток в различных средах. Вектор индукции магнитного поля. Закон Био-Савара-Лапласа. Линии магнитной индукции. Поле прямого тока. Поле на оси кругового тока. Магнитный момент контура с током. Магнитный момент контура с током. Закон Био-Савара-Лапласа и его использование для расчета магнитных полей. Магнитное поле движущегося заряда. Действие магнитного поля на движущийся заряд. Ускорители частиц. Эффект Холла. Магнитное поле в веществе. Диа- пара- и ферромагнетики. Электромагнитная индукция. Самоиндукция. Взаимная индукция. Колебательный контур. Свободные, затухающие и вынужденные колебания. Усилители и автогенераторы электромагнитных колебаний. Переменный ток. Мощность переменного тока. Электромагнитная теория Максвелла.	2	3	4	79	88
5	Оптика	Свет как электромагнитная волна. Фотометрия. Энергетические и фотометрические величины и единицы их измерения. Интерференция света. Когерентность. Расчет интерференционной картины от двух когерентных источников. Интерференция многих волн. Интерферометры. Просветление оптики. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света. Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера на щели и на дифракционной решетке. Дифракционная решетка как спектральный прибор. Дифракция рентгеновских лучей. Понятие о голографии. Поляризация света при отражении. Закон Брюстера. Двойное лучепреломление. Поляризаторы. Закон Малюса. Дисперсия света. Фазовая и групповая скорости света. Электронная теория дисперсии. Геометрическая оптика как предельный случай волновой. Основные законы оптики. Принцип Ферма. Преломление и отражение света на сферической границе. Сферическое и плоское зеркало. Тонкая линза. Формула линзы. Построение изображений в тонких линзах и сферических зеркалах. Оптические инструменты. Квантовая природа излучения. Тепловое излучение тел и его характеристики. Равновесное излучение. Закон Кирхгофа. Абсолютно черное тело. Законы Стефана - Больцмана и Вина. Оптическая пирометрия. Трудности классической физики в объяснении закономерностей равновесного излучения. Квантовая гипотеза и формула Планка. Внешний фотоэффект. Фотоны. Энергия и импульс фотона. Давление света. Эффект Комптона. Единство корпускулярных и волновых свойств электромагнитного излучения.	2	3	4	79	88
		2 курс / летняя сессия			•		
6	Основы квантовой механики	Волновые свойства частиц. Формула де Бройля. Дифракция микрочастиц. Электронная микроскопия. Соотношение неопределенностей Гейзенберга. Принцип дополнительности. Волновая функция и ее статистический смысл. Принцип причинности в	1	2	2	51	56

		квантовой механике. Уравнение Шредингера. Стационарное уравнение Шредингера. Простейшие задачи квантовой механики. Свободная частица, частица в одномерной «потенциальной яме», туннельный эффект, линейный гармонический осциллятор.					
7		Постулаты Бора. Опыт Франка и Герца. Эмпирические закономерности в атомных спектрах. Квантово-механическая модель атома водорода. Магнитный момент атома. Спин электрона. Тонкая структура спектральных линий. Принцип неразличимости тождественных частиц. Фермионы и бозоны. Принцип Паули. Электронные конфигурации атомов. Элементы зонной теории. Классификация кристаллов на основе зонной теории. Собственная и примесная проводимости полупроводников. Фотопроводимость. Контакт двух металлов. Электронно-дырочный переход и его вольт-амперная характеристика.	2	2	4	51	59
8	Элементы физики ядра и элементарных частиц	Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Состав и характеристики атомного ядра. Свойства стабильных ядер. Модели ядра. Естественная и искусственная радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Общие свойства и характеристики элементарных частиц. Фундаментальны взаимодействия. Классификация элементарных частиц. Кварковая структура адронов. Физическая картина мира. Основные достижения и проблемы субъядерной физики. Современные космологические представления. Достижения наблюдательной астрономии. Теоретические космологические модели. Революционные изменения в технике и технологиях как следствие научных достижений в области физики.	1	2	-	51	54
		Итого	12	16	20	470	518

Практическая подготовка при освоении дисциплины учебным планом не предусмотрена.

5.2 Перечень лабораторных работ

- 1.1. Изучение погрешностей измерения ускорения свободного падения с помощью математи ческого маятника
- 1.2. Определение коэффициента вязкости жидкости методом Стокса.
- 1.3. Изучение законов вращательного движения на маятнике Обербека.
- 1.4. Определение моментов инерции твердых тел методом трифилярного подвеса.
- 2.1. Изучение свободных и затухающих колебаний пружинного маятника.
- 2.2. Определение скорости звука методом стоячих волн.
- 2.3. Определение частоты вынужденных колебаний методом резонанса.
- 3.1. Определение коэффициента вязкости воздуха
- 3.2. Определение отношения теплоемкостей газа методом адиабатического расширения.
- 3.3. Определение абсолютной и относительной влажности воздуха.
- 4.1. Изучение закона Ома.
- 4.2. Исследование электростатического поля.
- 4.3. Определение горизонтальной составляющей индукции магнитного поля Земли.

- 4.4. Изучение магнитного поля проводников с током.
- 4.5. Изучение магнитных свойств ферромагнетиков.
- 4.6. Определение удельного заряда электрона методом магнитной фокусировки.
- 4.7. Изучение затухающих электромагнитных колебаний
- 5.1. Интерференция света. Опыт Юнга
- 5.2. Изучение дифракции света на одиночной щели и дифракционной решетке.
- 5.3. Изучение законов теплового излучения с помощью яркостного пирометра.
- 5.4. Изучение законов фотометрии.
- 5.5. Измерение температуры с помощью яркостного пирометра.
- 5.6. Изучение законов внешнего фотоэффекта.
- 7.1. Изучение оптических спектров излучения атома водорода.
- 7.2. Изучение свойств полупроводников.
- 7.2. Изучение закона радиоактивного распада.

6 ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) и контрольных работ.

7 ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	молели. законы.	даний. Ответы на теоретические вопросы при защите лабораторных работ	предусмотренный в рабочих программах. Количество правильных ответов в тестовых заданиях более 40%. Подготовлены ответы на теоретические	Невыполнение работ в срок, предусмотренный в рабочих программах. Количество правильных ответов в тестовых заданиях менее 40%. Отсутствие отчетов о выполнении лабораторных работ, нарушение графика защит.
	физические понятия и законы для решения задач и анализа технических проблем, самостоятель-	тических и лабораторных занятиях. Выполнение индивидуальный заданий по решению задач. Подготовка реферата или презентации на заданную тему. Выполнение лабораторных работ.	предусмотренный в рабочих программах. Индивидуальные задания выполнены, представлены решения 60% и более задач. Представлен реферат (презентация) на заданную тему.	менее 60% задач в индиви- дуальных заданиях. Не представлен реферат (пре- зентация). Выполнены не все лабораторные работы,

формации, расши-		ренные рабочей програм- мой.	программой.
рять свои физиче- ские познания			
физического моде- лирования, прове- ления физического	тических и лабораторных занятиях. Оформление отчетов и защита лабораторных работ	предусмотренный в рабочих программах. Посещение практических и лабораторных занятий. Своевременное оформление отчетов и защита лабораторных работ.	Невыполнение работ в срок, предусмотренный в рабочих программах. Частичное посещение или отсутствие на практических и лабораторных занятиях. Отсутствие отчетов о выполнении лабораторных работ, нарушение графика защит.

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 2, 3, 4 семестре для очной и заочной форм обучения по системе:

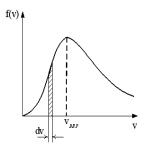
«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность ком- петенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-1	Знать физические модели, законы, теории; границы их применимости; сущность теоретического и экспериментального методов исследования; единицы измерения физических величин и принципы действия важнейших физических приборов	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 60- 80%	В тесте менее 60% праправильных ответов
	Уметь использовать физические понятия и законы для решения задач и анализа технических проблем, самостоятельно работать с источниками физико-технической информации, расширять свои физические познания	стандартных практических	шены в пол- ном объеме и получены	ирован верный	ирован верный ход решения в большинстве	Задачи не решены
	римента, обработки и	прикладных задач в кон- кретной	шены в пол- ном объеме и получены	ирован верный	ирован верный ход решения в большинстве	Задачи не решены


7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. Сплошной и полый цилиндры, имеющие одинаковые массы и радиусы, вкатываются без

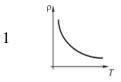
проскальзывания на горку. Если начальные скорости тел одинаковы, то...

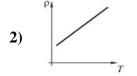
- 1) выше поднимется полый цилиндр;
- 2) выше поднимется сплошной цилиндр;
- 3) оба поднимутся на одну и ту же высоту.
- 2. Физические явления в одинаковых условиях протекают одинаково во всех инерциальных системах отсчета это принцип ...
 - 1) относительности;
 - 2) соответствия;
 - 3) независимости;
 - 4) дополнительности.

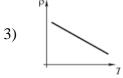
3.На рисунке представлен график функции распределения молекул идеального газа по скоростям (распределение Максвелла), где f(v)=dN/(Ndv) — доля молекул, скорости которых заключены в интервале скоростей от v до v+dv в расчете на единицу этого интервала. Для этой функции верным утверждением является...

- 1) с увеличением температуры величина максимума уменьшается;
- 2) при изменении температуры площадь под кривой не изме-

няется;


- 3) при изменении температуры положение максимума не изменяется.
- 4. При адиабатическом расширении идеального газа...
 - 1) температура понижается, энтропия не изменяется;
 - 2) температура понижается, энтропия возрастает;
 - 3) температура и энтропия не изменяются;
 - 4) температура и энтропия возрастают.
- 5.Вектор напряженности электростатического поля всегда направлен
 - 1) в сторону возрастания потенциала,
 - 2) в сторону убывания потенциала,
 - 3) в сторону возрастания либо убывания потенциала.
- 6. Теорема Гаусса для электростатического поля в вакууме утверждает, что
- 1) поток вектора напряженности сквозь произвольную замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности,
- 2) поток вектора напряженности сквозь произвольную замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, деленной на диэлектрическую проницаемость среды \mathcal{E} ,
- 3) поток вектора напряженности сквозь произвольную замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, деленной на электрическую постоянную \mathcal{E}_0 .
- 7. Выберите верное утверждение
- 1) диэлектрическая проницаемость вещества \mathcal{E} равна его диэлектрической воспри-имчивости,
- 2) диэлектрическая проницаемость вещества \mathcal{E} показывает, во сколько раз напряженность поля в диэлектрике больше, чем в вакууме,
 - 3) диэлектрическая проницаемость вещества $\, {\it \mathcal{E}} \,$ показывает, во сколько раз


напряженность поля в диэлектрике меньше, чем в вакууме.

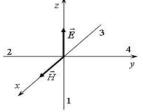

8. Если воздушный конденсатор отключить от источника, а затем заполнить диэлектриком, то

1) напряжение между обкладками не изменится, заряд на обкладках увеличится;

- 2) емкость увеличится, напряжение между обкладками не изменится;
- 3) емкость уменьшится, заряд на обкладках увеличится;
- 4) емкость увеличится, заряд на обкладках не изменится.
- 9. Зависимость удельного сопротивления металлического проводника от температуры соответствует графику...

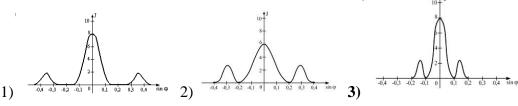
10. На рисунке показана зависимость магнитной проницаемости μ от напряженности внешнего магнитного поля H для ...

- 1) диамагентика;
- 2) любого магнетика;
- 3) парамагнетика;
- 4) ферромагнетика.



11. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид $\zeta = 0.01 \sin \left(10^3 t - 2x\right)$. Укажите единицу измерения волнового числа.

- 1) c;
- 2) 1/M;
- 3) 1/c;
- 4) M.


12. На рисунке показана ориентация векторов напряженности электрического и магнитного полей в электромагнитной волне. Вектор плотности потока энергии электромагнитного поля ориентирован в направлении... z^{\uparrow}

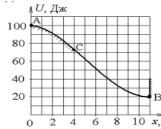
- 1) 1
- 2) 2
- 3) 3
- **4) 4**

13. Одна и та же дифракционная решетка освещается различными монохроматическими излучениями с разными интенсивностями.

Какой рисунок соответствует случаю освещения светом с наименьшей длиной волны? (I – интенсивность света, ϕ – угол дифракции)

14. Длина волны, соответствующая максимуму испускательной способности абсолютно черного тела при изменении температуры уменьшилась в 2 раза. Как изменилась интегральная энергетическая светимость абсолютно черного тела?

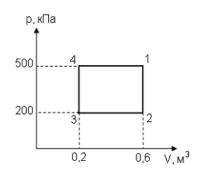
- 1) уменьшилась в 8 раз;
- 2) увеличилась в 8 раз;


- 3) уменьшилась в 16 раз;
- 4) увеличилась в 16 раз.
- 15. Квадрат модуля волновой функции описывает
 - 1) распределение плотности вещества в пространстве;
 - 2) распределение вероятности обнаружения микрообъекта;
 - 3) распределение интенсивности излучения;
 - 4) среди приведенных ответов нет правильного
- 16. Уравнение Шредингера в общем случае имеет вид $\nabla \psi + \frac{2m}{\hbar^2} (E U) \psi = 0$, где U-потенциальная энергия микрочастицы. Линейному гармоническому осциллятору соответствует уравнение ...

1)
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{2m}{\hbar^2} \left(E - \frac{m \omega^2 x^2}{2} \right) \psi = 0$$
2)
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{2m}{\hbar^2} E \psi = 0$$
3)
$$\forall \psi + \frac{2m}{\hbar^2} E \psi = 0$$
4)
$$\forall \psi + \frac{2m}{\hbar^2} \left(E + \frac{ze^2}{4\pi \varepsilon_0 r} \right) \psi = 0$$

- 17. Расположите в порядке убывания относительной силы четыре типа фундаментальных взаимодействий: а) слабое; б) сильное; в) гравитационное; г) электромагнитное.
 - 1) бгав; 2) абвг; 3) вбга; 4) гвба.

7.2.2 Примерный перечень заданий для решения стандартных задач


- 1. На наклонной плоскости покоится брусок. Если постепенно увеличивать угол между плоскостью и горизонтом, то при величине этого угла, равной 30° брусок начинает скользить. Коэффициент трения скольжения при этом равен...
 - 1) $\sqrt{3}$; 2) $\frac{\sqrt{3}}{2}$; 3) $1/\sqrt{3}$; 4) 0,5.
- 2. На неподвижный бильярдный шар налетел другой такой же со скоростью v=1v/c. После удара шары разлетелись под углом 90° так, что импульс одного шара $P_1=0,3$ кгм/с, а другого $P_2=0,4$ кгм/с. Массы шаров равны...
 - 1) 0,2 kg; 2) 1 kg, 3) 0,1 kg; 4) 0,5 kg.
- 3. С ледяной горки с небольшим шероховатым участком AC из точки A без начальной скорости скатывается тело. Сопротивление воздуха пренебрежимо мало. Зависимость потенциальной энергии шайбы от координаты x изображена на графике U(x). При движении сила трения совершила работу 20 Дж. После абсолютно неупругого удара тела со стеной в точке B выделилось...

- 1) 80 Дж тепла;
- 2) 60 Дж тепла;
- 3) 100 Дж тепла;
- 4) 120 Дж тепла.
- 4. Диаграмма циклического процесса идеального одноатомного газа представлена на рисунке. Отношение работы за весь цикл к работе при охлаждении газа равно...

- 2) 5;
- 3) 3;
- 4) 2,5.
- 5. В процессе изотермического сообщения тепла постоянной массе идеального газа его энтропия ...

- 1) увеличивается;
- 2) уменьшается;
- 3) не меняется.
- 6. В электростатическом поле электрон переместился из точки с потенциалом 100 В в точку с потенциалом 101 В. Какую работу при этом совершило электростатическое поле?
- 1) 1 Дж.
- 2) $1.6 \cdot 10^{-19}$ Дж, 3) $1.6 \cdot 10^{-19}$ Дж.

7. Через контур, индуктивность которого L=0.02 Гн, течет ток, изменяющийся по закону $I=0.5 \sin 500t$. Амплитудное значение ЭДС самоиндукции, возникающей в контуре, равно ...

- 1) 0,5 B;
- 2) 500 B;
- 3) 0,01 B;
- 4) 5 B.
- 8. Складываются два гармонических колебания одного направления с одинаковыми частотами и равными амплитудами A_0 . При разности фаз $\Delta \varphi = \frac{\pi}{2}$ амплитуда результирующего колебания равна ...
 - 1) $2A_0$;
 - 2) $A_0\sqrt{2}$;
 - 3) 0;
 - 4) $A_0\sqrt{3}$.
- 9. На рисунке показана кривая зависимости спектральной плотности энергетической светимости абсолютно черного тела от длины волны при Т=6000 К. Если температуру тела уменьшить в 4 раза, то длина волны, соответствующая максимуму излучения абсолютно черного тела, ...
 - 1) увеличится в 2 раза
 - 2) увеличится в 4 раза
 - 3) уменьшится в 2 раза
 - 4) уменьшится в 4 раза
- 10. Красная граница фотоэффекта для лития находится в видимой области спектра и составляет примерно 0,52 мкм. Какова работа выхода электрона из этого металла?
 - 1) $4,2 \ni B;$
 - 2) 2,4 3B;
 - 3) 1,2 ³B;
 - 4) 8,4 3B.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Два колеса начинают вращаться одновременно. Через t=10 с второе опережает первое на полный оборот. Определите угловое ускорение второго колеса, если угловое ускорение первого равно $\varepsilon_1 = 0.1 \text{ c}^{-2}$. Сколько оборотов сделает каждое колесо за t = 20 c? Ответ: $\varepsilon_2 = 0.2256$ c^{-2} , $n_1 = 3$, $n_2 = 7$.
- 2. Вагон массой 40 т движется на упор со скоростью 0,1 м/с. При полном торможении вагона буферные пружины сжимаются на 10 см. Определить максимальную силу сжатия буферных

пружин и продолжительность торможения. Ответ: F = 4000 H, t = 1,57 c.

- 3. В баллонах вместимостью $V_1 = 20$ л и $V_2 = 44$ л содержится газ. Давление в первом баллоне $p_1 = 2,4$ МПа, во втором $p_2 = 1,6$ МПа. Определить общее давление р и парциальные давления p_1 и p_2 после соединения баллонов, если температура газа осталась прежней. *Ответ*: p = 1,85 МПа, $p_1 = 0,75$ МПа, $p_2 = 1,1$ МПа.
- 4. Определить давление воздуха (в мм рт. ст.) в воздушном пузырьке диаметром d=0,01 мм, находящемся на глубине h=20 см под поверхностью воды. Внешнее давление принять равным p_1 =765 мм рт. ст.

Ответ: *p*=999 мм рт. ст.

- 5. На пластинах плоского конденсатора находится заряд 10 μ Kл. Площадь каждой пластины конденсатора равна $100~\rm cm^2$, диэлектрик воздух. Определить силу, с которой притягиваются пластины. Поле между пластинами считать однородным. *Ответ*: Сила, с которой притягиваются пластины $F=565\mu$ KH.
- 6. На схеме, представленной на рис.2, $R_1 = R$, $R_2 = 2R$, $R_3 = 3R$, $R_4 = 4R$. Емкость конденсатора равна C. Определить заряд на конденсаторе, если напряжение на батарее U_0 . Ответ: Заряд на конденсаторе $q = \frac{17}{29}U_0C$.
- R_1 R_2 R_4 U_0
- 7. В однородном магнитном поле B=0,1 Тл равномерно с частотой n=10об/с вращается рамка, содержащая N=1000 витков, плотно прилегающих друг к другу. Пло-

щадь рамки S = 150 см². Определить мгновенное значение ЭДС индукции, соответствующее углу поворота рамки в 30°. Ответ: $E_i = 47,1$ В.

- 8. Колебательный контур имеет емкость C = 1,1 нФ и индуктивность L = 5 мГн. Логарифмический декремент затухания равен 0,005. За какое время вследствие затухания потеряется 99 % энергии колебаний в контуре? Ответ: t = 6,8 мс.
- 9. В колебательном контуре, ёмкость конденсатора которого равна 20 мкФ, происходят собственные электромагнитные колебания. Зависимость напряжения на конденсаторе от времени для этого колебательного контура имеет вид $U = U_0 \cdot \cos(500t)$ где все величины выражены в единицах СИ. Какова индуктивность катушки в этом колебательном контуре? Ответ: $L = 0.2\Gamma$ н.
- 10. В просветленной оптике для устранения отражения света на поверхность линзы наносится тонкая пленка вещества с показателем преломления (n=1,26) меньшим, чем у стекла. При какой наименьшей толщине пленки отражение света от линзы не будет наблюдаться? Длина волны падающего света 0,55 мкм, угол падения 30^{0} . Ответ: $d_{\min} = 0,117$ мкм.
- 11. Мощность излучения лазерной указки с длиной волны λ = 600 нм равна P=2 мВт. Определите число фотонов, излучаемых указкой за 1 с. Ответ: $6*10^{15}$ фотонов.
- 12. Давление света от Солнца, который падает перпендикулярно на абсолютно черную по-

верхность, на орбите Земли составляет примерно $p = 5 \cdot 10^{-6}$ Па. Оцените концентрацию фотонов в солнечном излучении, если их длина волны $\lambda = 500$ нм. Ответ: $n = 1.3 \cdot 10^{13}$ м $^{-1}$.

- 13. Фотокатод облучают светом с длиной волны 300 нм. Красная граница фотоэффекта фотокатода 450 нм. Вычислите запирающее напряжение U между анодом и катодом. Ответ: $U \approx$ вет: $U \approx 1.4~B$
- 14. В образце, содержащем большое количество атомов висмута $^{212}_{83}Bi$ через 1 час останется половина начального количества атомов. Каков период полураспада ядер атомов висмута? (Ответ дать в часах.) Ответ: 1 час.

7.2.4 Примерный перечень вопросов для подготовки к зачету с оценкой

3-й семестр

- 1. Электростатика, закон Кулона, напряженность и потенциал электрического поля. Работа поля по перемещению электрического заряда. Потенциальный характер электростатического поля.
- 2. Поток вектора напряженности электростатического поля. Теорема Гаусса для электростатического поля в вакууме и ее применения для расчета напряженности поля.
- 3. Диэлектрики в электрическом поле. Диэлектрическая восприимчивость и проницаемость диэлектрика. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике.
- 4. Проводники в электрическом поле, электроемкость, соединение конденсаторов. Энергия электростатического поля.
- **5.** Постоянный электрический ток. Сила и плотность тока. Закон Ома. Закон Джоуля-Ленца. Мощность тока.
- **6.** Классическая электронная теория проводимости металлов. Закон Ома в дифференциальной форме. Зависимость сопротивления металлического проводника от температуры. Явление сверхпроводимости.
- 7. Магнитное поле. Магнитная индукция. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей. Магнитные поля прямого и кругового токов.
- 8. Магнитный поток. Теорема Гаусса для магнитного поля в вакууме.
- 9. Закон Ампера. Сила Лоренца. Движение заряженной частицы в однородном магнитном поле. Эффект Холла.
- 10. Магнитное поле в веществе. Типы магнетиков. Диамагнетизм и парамагнетизм. Ферромагнетизм. Магнитный гистерезис. Домены. Точка Кюри. Антиферромагнетики и ферриты.
- 11. Электромагнитная индукция. Закон Фарадея. Правило Ленца. Самоиндукция. Индуктивность соленоида. Взаимная индукция. Принцип работы трансформатора и его применение. Энергия магнитного поля.
- 12. Индукционный ток в неподвижных проводниках. Вихревое электрическое поле. Электромагнитное поле.
- 13. Токи смещения. Система уравнений Максвелла для электромагнитного поля.
- 14. Дифференциальное уравнение затухающих электрических колебаний. Вид его решения. Добротность электрического контура.
- 15. Дифференциальное уравнение вынужденных электрических колебаний. Вид решения.
- 16. Электромагнитные волны. Шкала электромагнитных волн.
- 17. Свет как электромагнитная волна. Интерференция света. Условия максимума и минимума интерференции. Способы получения когерентных световых волн.

- 18. Интерференция в тонких плёнках. Кольца Ньютона.
- 19. Дифракция света. Дифракция Френеля. Прямолинейность распространения света.
- 20. Дифракция Фраунгофера на щели.
- 21. Дифракционная решётка.
- 22. Дифракция рентгеновских лучей на кристаллах.
- 23. Поляризация света. Закон Малюса. Поляризация света при отражении и преломлении на границе раздела изотропных диэлектриков. Закон Брюстера.
- 24. Двойное лучепреломление, его физическое объяснение. Призма Николя.
- 25. Тепловое излучение, его характеристики. Закон Кирхгофа. Абсолютно черное тело. Экспериментальные законы теплового излучения. Несостоятельность классической теории излучения. Гипотеза Планка. Формула Планка для испускательной способности абсолютно черного тела.
- 26. Виды фотоэффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна. Применение фотоэффекта.
- 27. Фотон. Масса и импульс фотона. Давление света и его объяснение с квантовых позиший.
- 28. Эффект Комптона как подтверждение квантовой природы света. Дуализм света.

7.2.5 Примерный перечень вопросов для подготовки к экзамену 2 семестр

- 1. Инерциальные системы отсчета. Кинематика поступательного и вращательного движений материальной точки. Перемещение, скорость и ускорение, нормальное и тангенциальное ускорение.
- 2. Законы Ньютона. Силы в механике. Закон сохранения импульса.
- 3. Механическая работа. Работа и изменение кинетической энергии. Потенциальная энергия. Консервативные и неконсервативные силы. Закон сохранения энергии в механике.
- 4. Абсолютно твердое тело, угловые перемещения, скорость, ускорение. Связь характеристик вращательного и поступательного движения.
- 5. Момент инерции. Теорема Штейнера. Моменты инерции тел правильной формы.
- 6. Моменты силы относительно точки и относительно оси. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси.
- 7. Моменты импульса относительно неподвижной точки и неподвижной оси. Закон сохранения момента импульса.
- 8. Закон всемирного тяготения. Сила тяжести и вес тела. Поле тяготения. Напряженность и потенциал поля тяготения. Космические скорости.
- 9. Неинерциальные системы отсчета, силы инерции.
- 10. Специальная теория относительности, преобразования Лоренца, следствия из преобразований Лоренца. Релятивистский закон сложения скоростей, импульс. Взаимосвязь массы и энергии.
- 11. Колебания. Периодические колебания. Смещение и амплитуда колебания. Гармонические колебания. Дифференциальное уравнение гармонического колебания. Физический и математический маятники.
- 12. Идеальный электрический контур. Формула Томсона. Энергия гармонического колебания.
- 13. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- 14. Дифференциальное уравнение затухающих колебаний и его решение. Характеристики затухающих колебаний. Апериодическое движение.
- 15. Дифференциальное уравнение вынужденных механических колебаний. Вид решения. Амплитуда и начальная фаза вынужденных колебаний. Явление механического резонанса.

- 16. Волновое движение. Волны поперечные и продольные. Длина волны и скорость распространения волн. Уравнение плоской бегущей монохроматической волны. Дифференциальное уравнение волны.
- 17. Интерференция механических волн.
- 18. Звуковые волны. Эффект Доплера в акустике.
- 19. Идеальный газ. Основное уравнение МКТ. Уравнение состояния идеального газа. Законы идеального газа.
- 20. Энергия молекулы идеального газа, распределение энергии по степеням свободы. Распределение молекул идеального газа по скоростям (распределение Максвелла). Распределение Больцмана.
- 21. Длина свободного пробега. Теплопроводность, диффузия, вязкость (внутреннее трение).
- 22. Внутренняя энергия термодинамической системы. Работа газа при изменении объема. Количество теплоты.
- 23. Первое начало термодинамики и его применение для различных термодинамических процессов. Уравнение адиабаты.
- 24. Политропические процессы. Показатель политропы.
- 25. Тепловые машины, их термический к.п.д. Принцип Карно, идеальная тепловая машина. Теоремы Карно.
- 26. Второе начало термодинамики. Энтропия, ее статистический характер.
- 27. Реальные газы, уравнение Ван-дер-Ваальса. Внутренняя энергия реального газа. Эффект Джоуля-Томсона. Сжижение газов.
- 28. Фазовые переходы. Уравнение Клапейрона-Клаузиуса.

4-й семестр

- 1. Корпускулярно-волновой дуализм свойств вещества. Длина волн де Бройля. Практическое применение волновых свойств частиц.
- 2. Соотношение неопределённостей Гейзенберга. Принцип дополнительности Бора.
- 3. Полуклассическая теория атома Бора, ее ограниченность. Излучение энергии атомом. Излучательные серии атома водорода.
- 4. Волновая функция, её свойства. Общее и стационарное уравнения Шредингера.
- 5. Движение свободной частицы. Частица в одномерной потенциальной яме с бесконечно высокими стенками.
- 6. Туннельный эффект.
- 7. Квантовомеханическая модель линейного гармонического осциллятора.
- 8. Стационарное уравнение Шредингера для атома водорода и водородоподобных ионов. Спектр энергий электрона в атоме водорода. Квантовые числа. Правила отбора.
- 9. Опыты Штерна и Герлаха. Спин электрона.
- 10. Принцип неразличимости тождественных частиц. Фермионы и бозоны. Принцип Паули.
- 11. Электронные конфигурации атомов. Периодичность свойств химических элементов.
- 12. Рентгеновские лучи. Сплошной спектр и характеристическое излучение. Закон Мозли.
- 13. Элементы квантовой статистики. Квантовые статистики Ферми Дирака и Бозе Эйнштейна.
- 14. Зонная теория твердого тела. Уравнение Шредингера для кристалла. Энергетический спектр кристалла.
- 15. Классификация кристаллов на основе зонной теории. Проводники, диэлектрики и полупроводники.
- 16. Собственная и примесная проводимость полупроводников.
- 17. Электронно-дырочный переход и его вольтамперная характеристика.
- 18. Оптические свойства полупроводников. Светодиоды.

- 19. Атомное ядро. Составные элементы ядер. Строение ядра и внутриядерные силы.
- 20. Энергия связи атомного ядра. Дефект массы. Удельная энергия связи. Способы высвобождения внутриядерной энергии.
- 21. Модели ядра. Капельная модель ядра. Формула Вайцзеккера.
- 22. Естественная радиоактивность. Виды радиоактивного распада и свойства α -, β -, γ лучей. Правила смещения радиоактивных элементов.
- 23. Статистический закон радиоактивного распада. Период полураспада. Единицы радиоактивности.
- 24. Искусственная радиоактивность. Ядерные реакции.
- 25. Виды фундаментальных взаимодействий.
- 26. Общие свойства и характеристики элементарных частиц.
- 27. Классификация элементарных частиц. Частицы и античастицы.
- 28. Кварковая структура адронов.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и две задачи. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задачи оцениваются максимально в 4 и 6 баллов. Максимальное количество набранных баллов -20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Физические основы механики	ОПК-1	Тест, контрольная работа, защита лабораторных работ, вопросы к экзамену
2	Механические колебания и волны	ОПК-1	Тест, контрольная работа, защита лабораторных работ, вопросы к экзамену
3	Молекулярная физика и тер- модинамика	ОПК-1	Тест, контрольная работа, защита лабораторных работ, вопросы к экзамену
4	Электромагнетизм	ОПК-1	Тест, контрольная работа, защита лабораторных работ, вопросы к экзамену
5	Оптика	ОПК-1	Тест, контрольная работа, защита лабораторных работ, вопросы к экзамену
6	Основы квантовой механики	ОПК-1	Тест, контрольная работа, защита лабораторных работ, вопросы к экзамену

7	Элементы физики атома и твердого тела	Тест, контрольная работа, защита лабораторных работ, вопросы к экзамену
8	Элементы физики ядра и элементарных частиц	Тест, контрольная работа, защита лабораторных работ, вопросы к
	1	экзамену

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование (по теме или итоговое) осуществляется, либо при помощи компьютерной системы тестирования (в семестре), либо с использованием тест-заданий на бумажном носителе. Время тестирования 60 минут. Затем осуществляется проверка теста (автоматически программой) или экзаменатором и выставляется оценка согласно приведенным выше критериям. Тесты содержат задачи различных уровней сложности.

К каждой лабораторной работе предложены контрольные вопросы и задачи по соответствующему разделу программы. Ответы на контрольные вопросы и решения задач студент должен подготовить дома. На занятии ведется устный опрос по теоретическим вопросам и решениям задач.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Волькенштейн В.С. Сборник задач по общему курсу физики. СПб. : Книжный мир, 2005. 328 с.
- 2. Савельев И.В. Курс общей физики : В 5 кн.: Учеб. пособие. Кн.1 : Механика. М. : Астрель: АСТ, 2005. 336 с. : ил. ISBN 5-17-002963-2.
- 3. Савельев И.В. Курс общей физики : В 5 кн.: Учеб. пособие. Кн. 3 : Молекулярная физика и термодинамика. М. : Астрель: АСТ, 2005. 208 с. : ил . ISBN 5-17-004585-9.
- 4. Савельев И.В. Курс общей физики : В 5 кн.: Учеб. пособие. Кн.2 : Электричество и магнетизм. М. : Астрель: АСТ, 2005. 336 с. : ил. ISBN 5-17-003760-0.
- 5. Савельев И.В. Курс общей физики : В 5 кн.: Учеб. пособие. Кн.4 : Волны. Оптика. М. : Астрель: АСТ, 2005. 256 с. : ил. ISBN 5-17-004586-7.
- 6. Савельев И.В. Курс общей физики: В 5 кн.: Учеб. пособие. Кн. 5: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. М.: Астрель: АСТ, 2005. 368 с. ISBN 5-17-004587-5.
- 7. Трофимова, Т.И. Курс физики : учеб. пособие. 8-е изд., стереотип. М. : Высш. шк., 2004. 544 с. : ил. ISBN 5-06-003634-0
- 8. Механика. Молекулярная физика и термодинамика. Электричество и магнетизм. Колебания и волны. Оптика. Элементы квантовой механики, атомной и ядерной физики [Электронный ресурс]: метод. указ. и контр.

- задания по физике для студ. всех спец. фак. дистанц. обучения : в 2 ч. Ч. 1, 2 / Воронеж. гос. архит. строит. ун-т ; сост. : А. К. Тарханов, А. И. Ни-кишина, Ю. С. Золототрубов. Воронеж: [б. и.], 2011. 1 электронно-опт. диск.
- 9. Механика: методические указания к выполнению лабораторных работ по дисциплине «Физика» для бакалавров машиностроительных и других тех-нических направлений очной и заочной форм обучения [Электронный ресурс]/ Т. В. Зульфикарова; Борисоглебск: Филиал ФГБОУ ВО «Воронежский государственный техниче-ский университет»; сост.: Т. В. Зульфикарова. Воронеж: Изд-во ВГТУ, 2021. 29 с.— Режим доступа: 453-2021 Механика
- 10. Молекулярная физика и термодинамика: методические указания к вы-полнению лабораторных работ по дисциплине «Физика» для студентов техни-ческих направлений очной и заочной форм обучения [Электронный ресурс]/ Т. В. Зульфикарова, Л. И. Матвеева; Борисоглебск: Филиал ФГБОУ ВО «Воронежский государственный технический университет», сост.: Т. В. Зульфикарова, Л. И. Матвеева. Воро-неж: Изд-во ВГТУ, 2021. 29 с.— Режим доступа: 455-2021 Молекулярная физика и термодинамика
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Перечень ПО, включая перечень лицензионного программного обеспечения:

OC Windows 7 Pro;

Google Chrome:

Microsoft Office 64-bit

Ресурсы информационно-телекоммуникационной сети «Интернет»:

http://window.edu.ru – единое окно доступа к информационным ресурсам;http://www.edu.ru/ – федеральный портал «Российское образование»;

Образовательный портал ВГТУ;

<u>http://www.iprbookshop.ru/</u> – электронная библиотечная система IPRbooks;
<u>www.elibrary.ru</u> – научная электронная библиотека

Профессиональные базы данных, информационные справочные системы: https://studopedia.ru — информационный сайт для студентов разных предметных областей

<u>https://www.osa.org/en-us/home/</u> – информационный веб-сайт по оптике и фотонике

<u>http://elib.biblioatom.ru/</u> – электронная библиотека «История Росатома» https://www.electrical4u.com/ – Electrical 4U – информационно-обучающий сайт «Изучайте электротехнику» (содержит обучающие материалы по разделу «Квантовая физика»)

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебная аудитория для проведения учебных занятий (лекционных и практических занятий), оснащенная следующим оборудованием:

- персональный компьютер с установленным ПО, подключенный к сети Интернет;
 - мультимедийный проектор;
 - экран переносной;
 - магнитно-маркерная доска;
- учебно-наглядные пособия, обеспечивающие тематические иллюстрации.

Учебная аудитория для проведения учебных занятий (лабораторных занятий), оснащенная следующим оборудованием:

- персональные компьютеры с установленным ПО, подключенные к сети Интернет 15 шт.;
 - мультимедийный проектор;
 - экран настенный;
 - магнитно-маркерная доска;
 - штативы с держателями;
 - штангенциркули;
 - микрометры;
 - секундомеры механические и электронные;
 - машина Атвуда;
 - маятники: нитяной, Максвелла, Обербека;
 - установка для определения вязкости жидкости методом Стокса;
 - трифилярный подвес с набором дисков;
 - гироскоп;
 - физический и упругий маятники;
 - звуковые генераторы;
- стенды для выполнения лабораторного практикума по молекулярной физике и термодинамике;
 - насос Камовского;
 - калориметры;
 - барометр-анероид;
 - психрометры;
 - амперметры;
 - мультиметры;
 - прибор электроизмерительный многофункциональный 43101;
 - ваттметр;
 - магазины сопротивлений измерительные;
 - блоки питания ИЭПП-2;

- стенд для измерения тока зарядки/разрядки конденсатора;
- мостик Соти;
- стенд для исследования параметров простейших электрических цепей;
 - набор катушек индуктивности;
 - осциллографы двухканальные МЕГЕОН 15022;
 - стенд для исследования электромагнитных колебаний;
- типовой комплект учебного оборудования «Полупроводниковые приборы» ПП-MP;
 - измеритель освещенности ДТ-1301;
 - источники света;
 - установка для наблюдения колец Ньютона;
- установка для наблюдения дифракции света на дифракционной решетке;
 - поляризаторы;
 - оптический пирометр;
 - стенд для исследования внутреннего и внешнего фотоэффекта;
 - спектрометр;
 - стенд для исследования явления радиоактивности;
 - прибор электроизмерительный многофункциональный 43101

Помещение (Читальный зал) для самостоятельной работы с выходом в сеть «Интернет» и доступом в электронно-библиотечные системы и электронно-информационную среду, укомплектованное следующим оборудованием:

- персональные компьютеры с установленным ПО, подключенные к сети Интернет 10 шт.;
 - принтер;
 - магнитно-маркерная доска;
 - переносные колонки;
 - переносной микрофон.

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

По дисциплине «Физика» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков решения задач. Занятия проводятся путем решения конкретных задач в аудитории. Рассматриваются основные типы задач и методы их решения.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных	Подтоли из от от от от от
занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое	Практические занятия направлены на приобретение практических
занятие	навыков решения задач. Занятия проводятся путем решения конкретных примеров задач в аудитории. Рассматриваются основные типы задач и методики их решений.
Лабораторная	Лабораторные работы направлены на приобретение навыков прове-
работа	дения физического эксперимента, обработки результатов, оценки погреш-
	ности измерений. На занятиях лабораторного практикума идет практически индивидуальная работа с каждым студентом. Студенты получают экспериментальные подтверждения изучаемых физических законов. Обсуждаются и анализируются полученные результаты. В ряде случаев проводятся исследования физических явлений с использованием компьютерного моделирования. Перед выполнением работы проверяется готовность студента к ее выполнению, а после оформления работы проводится ее защита.
Самостоятельная	Самостоятельная работа студентов способствует глубокому ус-
работа	воения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом, зачетом с оценкой, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1			
2			
3			