МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УГВЕРЖДАЮ радиотех Декан факультета

В.А. Небольсин

«16» декабря 2022 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

«Б1.В.03 Основы функционального проектирования РЭС»

Направление подготовки (специальность) <u>11.03.03 – Конструирования и</u> <u>технология электронных средств</u>

Профиль (специализация) <u>Проектирование и технология радиоэлектронных</u> средств

Квалификация выпускника <u>Бакалавр</u>
Нормативный период обучения <u>4 года / 4 года 11 месяцев</u>
Форма обучения <u>Очная / Заочная</u>
Год начала подготовки 2023 г.

Автор программы	Lef	/Хорошайлова М.В.
Заведующий кафедрой	про дотгра	
конструирования и произ радиоаппаратуры	водства	/Башкиров А.В./
Руководитель ОПОП	THE STATE OF THE S	/Пирогов А.А./

Воронеж 2022

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Состоит в изучении типовых схемотехнических решений, методов расчета и автоматизированного проектирования электронных узлов и блоков современной электронно-вычислительной аппаратуры.

1.2. Задачи освоения дисциплины

Реализация технологии обучения, нацеленной на индивидуализацию труда студента при выполнении лабораторных работ, при изучении тем, выносимых на самостоятельную работу; использование примеров, фактов, иллюстрирующих достижения и проблемы мировой и отечественной электроники, электромеханики для усиления интереса к изучаемой дисциплине, выбранной специальности; овладение студентами современной научной и технической терминологией в данной области; широкое использование натурных образцов приборов, узлов, элементов

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Основы функционального проектирования РЭС» относится к дисциплинам обязательной части блока Б.1 учебного плана.

В рамках дисциплины студенты изучают элементы, устройства, узлы, принципы организации и функционирования современных РЭС. Важное место в курсе занимают лабораторные работы студентов, в ходе которых исследуются принципы работы современных компонентов РЭС.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Основы функционального проектирования РЭС» направлен на формирование следующих компетенций:

ПК-2 — способен выполнять проектирование радиоэлектронных устройств в соответствии с техническим заданием с использованием средств автоматизации проектирования.

Компетенция	Результаты обучения, характеризующие						
	сформированность компетенции						
ПК-2	знать научно-техническую терминологию; основы по-						
	строения измерительных каналов постоянного и перемен-						
	ного тока аналоговых, аналого-цифровых и цифровых из-						
	мерительных приборов и устройств; физические основы						
	работы составных частей измерительных каналов; влияние						
	различных факторов окружающей среды на работу изме-						
	рительных каналов; перспективы развития схемотехники						
	измерительных устройств и их элементной базы						
	уметь использовать полученные знания при освоении						
	учебного материала последующих дисциплин, выполнении						

курсовых проектов и выпускных квалификационных ра-
бот; эксплуатировать, настраивать, калибровать измери-
тельные устройства; определять требования к отдельным
узлам измерительных устройств; проектировать типовые
усилительные и преобразовательные каскады
владеть современной элементной базой измерительных
устройств; основными принципами обработки измери-
тельной информации

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Основы конструирования электронных средств» составляет 9 зачетных единиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы			Семес	стры
		часов	4	5
Аудиторные занятия (всего)		180	90	90
В том числе:				
Лекции		72	36	36
Практические занятия (ПЗ)		36	18	18
Лабораторные работы (ЛР)		72	36	36
Самостоятельная работа		108	54	54
Контроль		36	-	36
Виды промежуточной аттестации - экзамен с оценкой	і, зачет	+	+	+
Общая трудоемкость час		324	144	180
ЭК	вам. ед.	9	4	5

Заочная форма обучения

Вид учебной работы	Всего	Семестры		
		часов	2	3
Аудиторные занятия (всего)		26	12	14
В том числе:				
Лекции		8	4	4
Практические занятия (ПЗ)		8	1	8
Лабораторные работы (ЛР)		10	8	2
Самостоятельная работа		289	168	121
Контроль		9		9
Виды промежуточной аттестации - экз	вамен, зачет	+	+	+
с оценкой		,	'	1
Общая трудоемкость	час	324	180	144
	зач. ед.	9	5	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

		очная форма обучения					
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час
1	Усилительные устройства (УУ) на транзисторах	Классификация УУ, Основные технические характеристики и показатели УУ, Методы анализа линейных усилительных каскадов в частотной области, активные элементы УУ, Биполярные транзисторы, полевые транзисторы, Усилительный каскад на биполярном транзисторе с ОЭ, термостабилизация режима каскад на биполярном транзисторе, усилительный каскад на биполярном транзисторе с ОБ, усилительный каскад на биполярном транзисторе с ОК, усилительный каскад на полевом транзисторе с ОИ, термостабилизация режима каскада на ПТ. Усилительный каскад на полевом транзисторе с ОС, временные характеристики усилительных каскадов, анализ искажений во временной области, Анализ усилительных каскадов в области малых, времен, анализ усилительных каскадов в области больших времен, связь временных и частотных характеристик, усилительных каскадов, простейшие схемы коррекции АЧХ и ПХ	8	4	8 8	12	32
2	Усилители с обратной связью	Общие сведения, усилители с последовательной ООС по току, усилители с последовательной ООС по напряжению, усилители с параллельной ООС по напряжению, усилители с параллельной ООС по току, Дополнительные сведения по ОС, Комбинированная ООС, Многокаскадные усилители с ООС, Паразитные ОС в многокаскадных усилителях.	8	4	8	12	32
3	Усилители постоянного тока (УПТ) Операционные усилители и УУ на их основе	Общие сведения, способы построения УПТ, дифференциальные усилители (ДУ), схемы включения ДУ, точностные параметры ДУ Общие сведения, основные параметры и характеристики ОУ, инвертирующий усилитель, неинвертирующий усилитель, разновидности УУ на ОУ, коррекция частотных характеристик	8	4	8	12	32
4	Аналоговые устройства различного назначения на основе ОУ Специальные вопросы анализа АЭУ	Регулируемые усилители, усилители диапазона СВЧ, устройства формирования АЧХ, активные фильтры на ОУ, гираторы, регуляторы тембра и эквалайзеры, аналоговые перемножители сигналов, компараторы, генераторы, устройства вторичных источников питания. Оценка нелинейных искажений усилительных каскадов, расчет устойчивости УУ, расчет шумовых характеристик УУ, анализ чувствительности, машинные методы анализа АЭУ.	8	4	8	12	32
5	Генераторы гармонических колебаний	Структурная схема генератора. Условия баланса фаз и амплитуд. Автогенератор с трансформаторной обратной связью. Трехточечные генераторы. Кварцевая стабилизация частоты. Автогенератор с трехзвенной RC-цепью. Автогенератор с мостом Вина. Генератор с независимым возбуждением. Автогенератор на туннельном диоде	8	4	8	12	32
6	Стабилизаторы по- стоянного напряже- ния	Классификация стабилизаторов постоянного напряжения. Параметрический стабилизатор напряжения на кремниевом стабилитроне. Источник опорного напряжения. Компенсационный стабилизатор напряжения. Стабилизатор на операционном усилителе с ограничением выходного тока. Микросхемы стабилизаторов постоянного напряжения	8	4	8	12	32

	Цифро-аналоговые и аналогово-цифровые преобразователи (ЦАП и АЦП)	Элементы схемотехники аналого-цифровых, цифроаналоговых преобразователей сигналов (АЦП и ЦАП). Электронные аналоговые ключи, их особенности, назначение, схемы и принципы действия. Мно-					
7	(LV VI R ALLII)	гоканальные коммутаторы. Схемы выборки хранения аналоговых сигналов. Резистивные матрицы. Построение ЦАП и АЦП. ЦАП с прецизионными резистивными матрицами, безматричные ЦАП. Разрешающая способность, погрешность, дифференциальная нелинейность. Время установления, максимальная частота преобразования. Интегральные схемы ЦАП. АЦП с применением ЦАП и без них. АЦП параллельного, весового и числового типа. АЦП двойного интегрирования. Интегральные схемы АЦП. Нелинейные преобразователи сигналов. Преобразователи фаза -напряжение, частота-напряжение, время-напряжение, температура-напряжение.	8	4	8	12	32
8	Функциональная цифровая схемотехника. Математические основы цифровой электроники	Введение в цифровую схемотехнику. Дискретные и цифровые сигналы. Состояния, кодирование и значения цифровых сигналов. МОП-транзистор. Характеристики и функционирование МОП-транзисторов. Позиционные системы счисления. Таблица истинности. Основные законы булевой алгебры. Диаграммы Венна. Карты Карно. Этапы синтеза цифрового устройства. Примеры синтеза цифровых устройств. Мажоритарный логический элемент	8	4	8	12	32
9	Интегральные логические элементы	ТТЛ-логика. КМОП-инвертор. Передаточный вентиль (Transmission gate). Рекомендации по применению логических элементов ТТЛ. Микросхемы ТТЛ с транзисторами Шоттки Порт ввода с триггером Шмитта. Параметры цифровых сигналов и схем. Транзисторы с диодами Шоттки. Базовый логический элемент ИС К533. Значения напряжений «0» и «1». Помехоустойчивость. Нагрузочная способность. Передний и задние фронты цифрового сигнала. Порты вывода (выходы) цифровых схем. Подтягивающие и понижающие резисторы. Электропитание цифровых схем.	8	4	8	12	32
	•	Итого	72	36	72	108	288

заочная форма обучения

$N_{\underline{0}}$	Наименование темы	Содержание раздела		Прак	Лаб.	CPC	Всего,
Π/Π				зан.	зан.		час
1	Усилительные устройства (УУ) на транзисторах	Классификация УУ, Основные технические характеристики и показатели УУ, Методы анализа линейных усилительных каскадов в частотной области, активные элементы УУ, Биполярные транзисторы, полевые транзисторы, Усилительный каскад на биполярном транзисторе с ОЭ, термостабилизация режима каскада на биполярном транзисторе, усилительный каскад на биполярном транзисторе с ОБ, усилительный каскад на биполярном транзисторе с ОК, усилительный каскад на полевом транзисторе с ОИ, термостабилизация режима каскада на ПТ. Усилительный каскад на полевом транзисторе с ОС, временные характеристики усилительных каскадов, анализ искажений во временной области, Анализ усилительных каскадов в области малых, времен, анализ усилительных и частотных характеристик, усилительных каскадов, простейшие схемы коррекции АЧХ и ПХ	2		4	62	68
2	Усилители с обратной связью	Общие сведения, усилители с последовательной ООС по току, усилители с последовательной ООС по напряжению, усилители с параллельной ООС по напряжению, усилители с параллельной ООС по току, Дополнительные сведения по ОС, Комбинированная ООС, Многокаскадные усилители с ООС, Паразитные ОС в многокаскадных усилителях.	4	1	4	62	71
3	Усилители постоян-	Общие сведения, способы построения УПТ, диффе-	2	1	4	62	69

8	Функциональная цифровая схемотехника. Математические основы цифровой	Нелинейные преобразователи сигналов. Преобразователи фаза -напряжение, частота-напряжение, время-напряжение, температура-напряжение. Введение в цифровую схемотехнику. Дискретные и цифровые сигналы. Состояния, кодирование и значения цифровых сигналов. МОП-транзистор. Характеристики и функционирование МОП-транзисторов. Позиционные					
7	цифро-аналоговые и аналогово-цифровые преобразователи (ЦАП и АЦП)	элементы схемотехники аналого-цифровых, цифро- аналоговых преобразователей сигналов (АЦП и ЦАП). Электронные аналоговые ключи, их особенно- сти, назначение, схемы и принципы действия. Мно- гоканальные коммутаторы. Схемы выборки хранения аналоговых сигналов. Резистивные матрицы. По- строение ЦАП и АЦП. ЦАП с прецизионными рези- стивными матрицами, безматричные ЦАП. Разре- шающая способность, погрешность, дифференциаль- ная нелинейность. Время установления, максималь- ная частота преобразования. Интегральные схемы ЦАП. АЦП с применением ЦАП и без них. АЦП па- раллельного, весового и числового типа. АЦП двой- ного интегрирования. Интегральные схемы АЦП.	2	1	2	62	69
6	Стабилизаторы по- стоянного напряже- ния Цифро-аналоговые и	Классификация стабилизаторов постоянного напряжения. Параметрический стабилизатор напряжения на кремниевом стабилитроне. Источник опорного напряжения. Компенсационный стабилизатор напряжения. Стабилизатор на операционном усилителе с ограничением выходного тока. Микросхемы стабилизаторов постоянного напряжения Элементы схемотехники аналого-цифровых, цифро-	2	2	4	62	70
5	Генераторы гармо- нических колебаний	Структурная схема генератора. Условия баланса фаз и амплитуд. Автогенератор с трансформаторной обратной связью. Трехточечные генераторы. Кварцевая стабилизация частоты. Автогенератор с трехзвенной RC-цепью. Автогенератор с мостом Вина. Генератор с независимым возбуждением. Автогенератор на туннельном диоде	2	1	4	62	69
4	Аналоговые устройства различного назначения на основе ОУ Специальные вопросы анализа АЭУ	Регулируемые усилители, усилители диапазона СВЧ, устройства формирования АЧХ, активные фильтры на ОУ, гираторы, регуляторы тембра и эквалайзеры, аналоговые перемножители сигналов, компараторы, генераторы, устройства вторичных источников питания. Оценка нелинейных искажений усилительных каскадов, расчет устойчивости УУ, расчет шумовых характеристик УУ, анализ чувствительности, машинные методы анализа АЭУ.	2	1	4	62	69
	ного тока (УПТ) Операционные уси- лители и УУ на их основе	ренциальные усилители (ДУ), схемы включения ДУ, точностные параметры ДУ. Общие сведения, основные параметры и характеристики ОУ, инвертирующий усилитель, неинвертирующий усилитель, разновидности УУ на ОУ, коррекция частотных характеристик					

5.2 Перечень лабораторных работ

- Л.Р. №1. Исследование резисторного каскад предварительного усиления.
- Л.Р.№2. Исследование усилителей с обратной связью
- Л.Р.№3. Исследование усилителя с двухтактным выходным каскадом
- Л.Р.№4. Исследование генератора с базовой, эмиттерной и коллекторной амплитудной модуляцией
 - Л.Р.№5. Исследование операционного усилителя
- Л.Р. №6. Исследование мультивибратора и сумматора на базе операционного усилителя
- Л.Р. №7. Исследование интегратора, дифференцирующего и избирательного усилителей
- Л.Р. №8. Исследование фильтров нижних и высоких частот на базе операционного усилителя
 - Л.Р. №9. Исследование схем электронных генераторов. RC генераторы
- Л.Р. №10. Исследование схем генераторов с обратной LC-связью. Генератор Колпитца, генератор Клаппа
 - Л.Р. №11. Исследование транзисторных автогенераторов
 - Л.Р. №12. Исследование импульсных стабилизаторов напряжения
 - Л.Р. №13. Исследование цифровых сигналов и портов
 - Л.Р. №14. Изучение логических элементов на КМОП транзисторах
 - Л.Р. №15. Исследование преобразователей цифровых сигналов
 - Л.Р. №16. Исследование аналого-цифровых преобразователей

5.3 Перечень практических работ

- Пр.р. №1 Расчет усилительного каскада на биполярном транзисторе
- Пр.р. №2 Решение задач по усилительным каскадам на биполярных транзисторах
 - Пр.р. №3 Расчёт h- параметров биполярного транзистора
- Пр.р. №4 Расчет оконечного усилительного каскада на биполярном транзисторе
 - Пр.р. №5 Расчет усилителя низкой частоты на транзисторе
 - Пр.р. №6 Расчет усилителей с частотным разделением каналов
 - Пр.р. №7 Расчет усилительного каскада на полевом транзисторе
 - Пр.р. №8 Расчет усилителя с последовательной ООС по току
 - Пр.р. №9 Расчет генератора постоянного тока
 - Пр.р. №10 Анализ усилительного каскада на операционном усилителе
 - Пр.р. №11 Решение задач по усилителям
 - Пр.р. №12 Решение задач
 - Пр.р. №13 Расчет автогенератора
 - Пр.р. №14 Решение задач по автогенераторам
 - Пр.р. №15 Исследование ключа на биполярном транзисторе
- Пр.р. №16 Построение схем комбинационных цифровых устройств (КЦУ) в заданном базисе

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Курсовая и контрольная работы не предусмотрены.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУ-ТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетенция	Результаты обучения,, харак- теризующие	Критерии оценивания	Аттестован	Не аттестован
	сформированность компетен-	оценивания		
	ции			
ПК-2	знать научно-техническую тер-	Активная работа на	Выполнение	Невыполнение
111(2	минологию; основы построения	лабораторных и прак-	работ в срок,	работ в срок, пре-
	измерительных каналов постоян-	тических занятиях,	предусмот-	дусмотренный в
	ного и переменного тока анало-	ответ не менее чем на	ренный в ра-	рабочих програм-
	говых, аналого-цифровых и циф-	половину заданных в	бочих про-	Max
	ровых измерительных приборов	процессе опроса во-	граммах	
	и устройств; физические основы	просов	1	
	работы составных частей изме-	1		
	рительных каналов; влияние раз-			
	личных факторов окружающей			
	среды на работу измерительных			
	каналов; перспективы развития			
	схемотехники измерительных			
	устройств и их элементной базы			
	уметь использовать получен-	Решение не менее	Выполнение	Невыполнение
	ные знания при освоении учеб-	половины приклад-	работ в	работ в срок,
	ного материала последующих	ных задач в конкрет-	срок, преду-	предусмотренный
	дисциплин, выполнении курсо-	ной предметной об-	смотренный	в рабочих про-
	вых проектов и выпускных ква-	ласти	в рабочих	граммах
	лификационных работ; экс-		программах	
	плуатировать, настраивать, ка-			
	либровать измерительные уст-			
	ройства; определять требования			
	к отдельным узлам измери-			
	тельных устройств; проектиро-			
	вать типовые усилительные и			
	преобразовательные каскады	D	D	T.T.
	владеть современной элемент-	Решение стандартных	Выполнение	Невыполнение
	ной базой измерительных уст-	прикладных задач в	работ в	работ в срок,
	ройств; основными принципа-	конкретной предмет- ной области	срок, преду-	предусмотренный
	ми обработки измерительной	нои ооласти	смотренный	в рабочих про-
	информации		в рабочих	граммах
			программах	

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 4 и 5 семестрах для очной и заочной форм обучения по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компетенция	Результаты обучения, характеризующие сформиро-	Критерии оценивания	Отлично	Хорошо	Удовл	Неудовл
	ванность компетенции	оденивания				
ПК-2	знать научно-техническую терминологию; основы построения измерительных каналов постоянного и переменного тока аналоговых, аналого-цифровых и цифровых измерительных приборов и устройств; физические основы работы составных частей измерительных каналов; влияние различных факторов окружающей среды на работу измерительных каналов; перспективы развития схемотехники измерительных устройств и их элементной базы	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% пра- вильных ответов
	уметь использовать полученные знания при освоении учебного материала последующих дисциплин, выполнении курсовых проектов и выпускных квалификационных работ; эксплуатировать, настраивать, калибровать измерительные устройства; определять требования к отдельным узлам измерительных устройств; проектировать типовые усилительные и преобразовательные каскады	Тест	Выполнение теста на 90-100%	Выпол- нение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	владеть ссовременной элементной базой измерительных устройств; основными принципами обработки измерительной информации	Тест	Выполнение теста на 90- 100%	Выпол- нение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% пра- вильных ответов

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Увеличение глубины отрицательной обратной связи в операционном усилителе приводит к ... полосы(-е) усиливаемых частот:
 - а) увеличению
 - б) сохранению
 - в) уменьшению
- 2. Определение параметров каскада по постоянному току проводится с применением таких характеристик:
 - а) статических выходных
 - б) выходных динамических по постоянному току
 - в) статических входных
- 3. Усилитель электрических колебаний создает на выходе мощность большую, чем на входе, за счет применения:
 - а) резисторов
 - б) конденсаторов
 - в) источника питания
- 4. Регистр сдвига, выполненный на основе триггеров, служит для запоминания (хранения) цифровой информации, записываемой ... кодом:
 - а) последовательным
 - б) параллельно-последовательным
 - в) параллельным
- 5. Схема с резисторно-емкостной транзисторной логикой (РЕТЛ) реализуется включением конденсаторов:
 - а) как элементов связи между логическими элементами
 - б) как элементов связи с нагрузкой
 - в) параллельно выравнивающим резисторам на входах
- 6. Генератор линейно изменяющегося напряжения с компенсирующей обратной связью реализуется введением ... в двухкаскадном резисторном усилителе:
 - а) общей положительной ОС
 - б) общей отрицательной обратной связи (ОС)
 - в) местной отрицательной ОС
- 7. Логарифмический усилитель реализуется включением диода (транзистора) в цепь ... операционного усилителя:

- а) нагрузки
- б) неинвертирующего входа
- в) обратной связи
- 8. Взаимное влияние источников сигналов на входе сумматора практически отсутствует из-за того, что инвертирующий вход операционного усилителя ОУ имеет такой потенциал:
 - а) нулевой +
 - б) постоянный отрицательный
 - в) постоянный положительный
 - 9. Транзисторная логика с резистивной связью (ТЛРС) характеризуется:
 - а) отсутствием гальванической связи между источниками
 - б) увеличением быстродействия схемы
 - в) выравниванием токов в цепях транзисторных ключей
- 10. Применение в усилителе последовательной отрицательной обратной связи (ООС) по напряжению приводит к ... входного сопротивления каскада:
 - а) уменьшению
 - б) увеличению +
 - в) сохранению неизменной величины
- 11. Режиму АВ соответствует положение рабочей точки на ... сквозной динамической характеристики усилительного элемента:
 - а) нижнем изгибе +
 - б) линейном участке
 - в) верхнем изгибе
- 12. В схеме простой ВЧ коррекции увеличение fвч или подъем амплитудно-частотной характеристики (АЧХ) в области верхних частот (ВЧ) обеспечиваются включением ... цепь биполярного транзистора:
 - а) индуктивности в базовую
 - б) индуктивности в коллекторную +
 - в) индуктивности в эмиттерную
- 13. Усилительный каскад на полевом транзисторе, включенном по схеме с общим стоком, изменят фазу входного напряжения на:
 - a) 0°
 - б) 90°
 - B) -000
- 14. Автогенератор с LC колебательной системой в нагрузке формирует такие колебания:
 - а) импульсные
 - б) пилообразные
 - в) гармонические

- 15. В LC-генераторах частота автоколебаний определяется выбором элементов:
 - а) колебательного контура
 - б) цепи фильтра источника питания
 - в) цепи обратной связи ОС
- 16. Комплексное уравнение автогенератора, находящегося в стационарном режиме, имеет вид:
 - a) K $\beta = 0$
 - 6) $K \beta = 1$
 - в) $K \beta < 1$
- 17. Организация частотно-зависимой ООС по переменному току в схеме эмиттерной высокочастотной (ВЧ) коррекции приводит к:
 - а) уменьшению коэффициента усиления в области верхних частот
 - б) увеличению коэффициента усиления в области рабочих частот
 - в) расширению полосы усиливаемых частот

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Ждущий режим мультивибратора на логических элементах характеризуется:
 - а) отсутствием элементов, накапливающих энергию
 - б) наличием цепи запуска
 - в) введением отрицательной обратной связи
- 2. Построение цифро-аналогового преобразователя на основе суммирования напряжений предполагает применение структуры:
 - а) R-4R матрицы
 - б) фильтра нижних частот
 - в) на основе 2nR резисторов
- 3. Усилитель, охваченный обратной связью (OC), устойчив, если его годограф при разомкнутой цепи OC ... на комплексной плоскости точку с координатами (1;j0):
 - а) проходит
 - б) не охватывает
 - в) охватывает
- 4. Включением моста Вина в цепь отрицательной обратной связи операционного усилителя реализуется фильтр:
 - а) полосовой
 - б) режекторный
 - в) верхних частот

- 5. Коррекция амплитудно-частотной характеристики (АЧХ) в области нижних частот (НЧ) проводится за счет введения ... току:
 - а) местной ООС по постоянному
- б) общей частотно-зависимой отрицательной обратной связи (OOC) по переменному
 - в) общей ООС по постоянному
- 6. Оконечный каскад целесообразно реализовывать с трансформаторной связью с нагрузкой, что позволяет:
 - а) снизить линейные искажения
 - б) снизить нелинейные искажения
 - в) повысить КПД каскада
- 7. Достижение входного сопротивления Zвх $\to \infty$ и выходного Zвых ≈ 0 , близкими к параметрам идеального операционного усилителя, обеспечивается применением:
 - а) параллельной ООС по напряжению
 - б) последовательной ООС по напряжению
 - в) параллельной ООС по току
- 8. Усилительный каскад на биполярном транзисторе, включенном по схеме с общим эмиттером, изменяет фазу входного напряжения на:
 - a) 90°
 - б) -90°
 - в) 180°
- 9. На свойства усилительного каскада на биполярном транзисторе, включенном по схеме с общим эмиттером и резистивно-емкостной межкаскадной связью, в области нижних частот на реактивные компоненты схемы оказывают(ет) влияние:
 - а) только разделительные конденсаторы
 - б) цепи межкаскадной связи и цепи температурной стабилизации
 - в) реактивные параметры транзистора
- 10. Физическая П-образная модель биполярного транзистора (схема Джиаколетто) позволяет исследовать свойства усилительного каскада ... частот(е):
 - а) на любой
 - б) только в области верхних
 - в) только на рабочей
- 11. Источник усиливаемого сигнала можно представлять источником ЭДС или источником тока в зависимости от величины его внутреннего сопротивления:
 - а) периодически можно

- б) нет
- в) да
- 12. Составные транзисторы позволяют улучшать технические показатели усилителей вследствие уменьшения паразитных обратных связей внутри УЭ:
 - а) да
 - б) нет
 - в) периодически да
- 13. Транзисторная логика с непосредственной связью (ТЛНС) характеризуется:
- а) четким переходом транзисторного ключа из состояния насыщения в режим отсечки
 - б) сильной зависимостью процессов от характеристик транзистора
 - в) отсутствием гальванической связи между транзисторными ключами

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Логарифмическая АЧХ усилителя постоянного тока имеет наклон - 20дБ/дек вплоть до верхней частоты среза. Определить коэффициент усиления УПТ на частоте 1 МГц, если при подаче на его вход идеального прямо-угольного импульса амплитудой 1 мВ на выходе сформировался импульс амплитудой 1 В со временем установления фронта и спада 1 мкс?

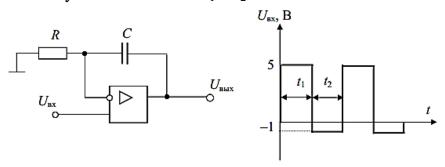
Ответ: К=33

2. Относительный спад вершины импульса длительностью 1 мс при прохождении разделительной цепи составил 5%. На сколько процентов падает амплитуда синусоидального сигнала частотой 8 Гц при прохождении этой цепи?

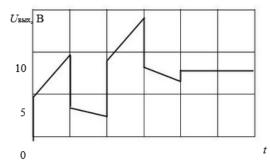
Ответ: на 29 %

3. При выходной мощности 1Вт амплитуды первых четырех гармоник выходного напряжения составили соответственно 10В, 2В, 3В, 1В при подаче на вход усилителя сигнала частотой 1к Γ ц. Для уменьшения искажений в усилитель введена ООС глубиной 20 дБ, а затем с помощью каскада предварительного усиления восстановлен прежний уровень выходной мощности. Определить коэффициент гармоник в % $U_{вых}$?

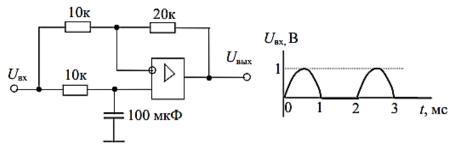
Ответ (3)

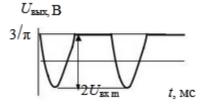

4. Амплитуды первых четырех гармоник выходного тока транзисторного усилителя составили соответственно 20мA, 2мA, 3мA и 1мA. Оценить коэффициент гармоник в % $I_{вых}$?

Ответ {18}


5. Фазовый сдвиг сигнала частотой 1 МГц на выходе УПТ, ЛАЧХ которого идет с наклоном -20 дБ/дек вплоть до частоты среза, составил 45 эл. град. Оценить время установления фронта импульса на выходе усилителя, если на вход подан идеальный прямоугольный импульс.

Ответ: ty = 350 нc


6. Построить Uвых (t) после подачи на вход двух импульсов Uвх (t) . Выполняется условие $\tau = RC = t_1 = t_2$

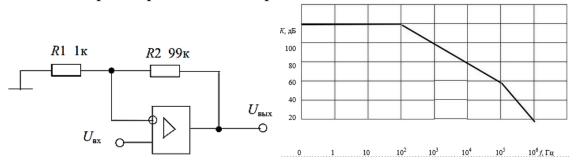


Ответ: За время t1 напряжение на конденсаторе нарастает на 5 B, за время t2 спадает на 1 B. После окончания импульсов напряжение на выходе интегратора не изменяется.

7. Построить временную диаграмму выходного напряжения.

Ответ: t=1000 мс,

8. Параллельный LC-контур с конденсатором емкостью C=1 н Φ настроен на резонансную частоту 1 МГц. При этом полоса пропускания на уровне 3 д Γ составила 10 к Γ ц. Определить сопротивление контура на частоте 500 к Γ ц.


Ответ: 106 Ом

9. Какой глубины ООС нужно ввести в усилитель, чтобы уменьшить погрешность коэффициента усиления до 1%, если температурная нестабиль-

ность $\delta K_{\text{темп}}$ =50%, технологический разброс $\delta K_{\text{техн}}$ =50%, а погрешность коэффициента передачи цепи обратной связи $\delta \gamma$ =0,5 %.

Ответ: А=141,4

10. Оценить запас устойчивости по фазе УПТ, асимптотическая ЛАЧХ (логарифмическая амплитудно-частотная характеристика) операционного усилителя которого приведена на чертеже.

Ответ: запас устойчивости по фазе равен 45°.

11. При подаче входного синусоидального напряжения амплитуды первых четырех гармоник сигнала на выходе двухтактного выходного каскада, работающего в режиме класса *B*, при выходной мощности 10 Вт составили соответственно 10 В, 2 В, 3 В и 1 В. Оценить коэффициент нелинейных искажений усилителя.

Ответ: 37,4 %

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Что называется амплитудной характеристикой усилителя?
- 2. Что называется динамическим диапазоном усилителя, в каких единицах он измеряется?
 - 3. Чем ограничивается динамический диапазон усилителя?
 - 4. Как экспериментально снимается амплитудная характеристика?
 - 5. Что называется амплитудно-частотной характеристикой?
- 6. Какие элементы схемы усилителя и как влияют на амплитудно-частотную характеристику?
 - 7. Что называется фазовой характеристикой?
 - 8. Как экспериментально снимаются АЧХ и ФЧХ?
- 9. Как экспериментально измеряются входное и выходное сопротивления усилителя?
- 10. Что называется частотными искажениями и в каких единицах они измеряются?
- 11. Вывести формулу для коэффициентов усиления по напряжению и по току на средних частотах.
- 12. Какой порядок имеют коэффициенты усиления по току, напряжению, входное и выходное сопротивления каскадов ОЭ, ОК и ОБ?
- 13. Построить эквивалентные схемы каскада ОЭ на нижних, средних и верхних частотах.

- 14. Динамические входные и выходные характеристики, порядок их построения.
- 15. Привести варианты схем подачи на базу транзистора при питании от одного источника.
 - 16. Дать определение нижней и верхней частот рабочего диапазона.
- 17. Как зависят величины входного сопротивления и коэффициентов усиления от положения точки покоя?
- 18. Характерные особенности усилительных каскадов на полевых транзисторах.
- 19. От чего зависит коэффициент усиления напряжению каскада на полевом транзисторе?
 - 20. Способы снятия и введения обратной связи.
- 21. Изобразить принципиальные схемы усилителей с последовательной и параллельной обратной связью по напряжению и по току.
- 22. Как влияет обратная связь на частотную, фазовую и переходную характеристики?
- 23. Как влияет обратная связь различного вида на входное и выходное сопротивление усилителя?
 - 24. Привести примеры использования положительной обратной связи.
 - 25. Что называется самовозбуждением усилителя и в чем его причины?
- 26. Почему в многокаскадных усилителях, охваченных общей отрицательной обратной связью, может возникать самовозбуждение?

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Основные характеристики усилительных устройств. Структурная схема усилительного устройства. Классификация электронных усилителей. Усилительные параметры. Амплитудно-частотная и фазочастотная характеристики.
- 2. Переходная характеристика усилительных устройств. Линейные и нелинейные искажения. Амплитудная характеристика. Способы связи между каскадами. Классы усиления.
- 3. Виды обратных связей. Влияние отрицательной обратной связи (ООС) на стабильность коэффициента усиления. Влияние ООС на нелинейные искажения. Влияние ООС на величину входного и выходного сопротивлений усилителя.
- 4. Амплитудно-частотная характеристика усилителя с ООС. Частотный критерий устойчивости усилителя с обратной связью. Запасы устойчивости по амплитуде и фазе. Пример расчета характеристик усилителя с ООС.
- 5. Способы включения биполярного транзистора. Характеристики транзистора при включении с общей базой и общим эмиттером. Т-образная эквивалентная схема замещения транзистора при включении с общей базой.
- 6. Т-образная эквивалентная схема замещения транзистора при включении с общим эмиттером. Н-параметры транзистора и их связь с параметрами физической эквивалентной схемы. Определение h-параметров по характе-

ристикам транзистора. Типы полевых транзисторов. Характеристики и малосигнальные параметры полевых транзисторов. Эквивалентные схемы замещения полевых транзисторов.

- 7. Принцип работы и назначение элементов простейшего каскада УНЧ по схеме с общим эмиттером. Нагрузочные прямые постоянного и переменного тока.
- 8. Анализ каскада в области средних частот. Анализ каскада в области нижних частот. Анализ каскада в области верхних частот. Результирующие характеристики каскада.
- 9. Цепи смещения с фиксированным током базы и эмиттера. Цепь смещения с эмиттерной стабилизацией рабочей точки. Цепь смещения с комбинированной ООС по постоянному току.
- 10. Каскад по схеме с общим истоком. Анализ каскада в области средних и верхних частот. Каскад с последовательной ООС по току.
- 11. Дифференциальный усилительный каскад. Стабилизаторы тока. Операционный усилитель. Основные параметры и схемы включения операционных усилителей.
- 12. Структурная схема генератора. Условия баланса фаз и амплитуд. Автогенератор с трансформаторной обратной связью. Трехточечные генераторы.
- 13. Кварцевая стабилизация частоты. Автогенератор с трехзвенной RСцепью. Автогенератор с мостом Вина. Генератор с независимым возбуждением. Автогенератор на туннельном диоде.
 - 14. Логические элементы эмиттерно-связанной логики
 - 15. Логические элементы на МОП-транзисторах
 - 16. Цифровые компараторы
- 17. ЦАП. Основные характеристики. Схема с двоичновзвешенными резисторами
- 18. АЦП. Основные характеристики. Схема с последовательным приближением
- 19. АЦП. Основные характеристики. Схема с двоично-взвешенным приближением.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 10 вопросов, 10 стандартных задач и 10 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов -30.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 16 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 16 до 20 баллов.

- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 21 до 25 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 26 до 30 баллов.

7.2.7 Паспорт оценочных материалов

№	Контролируемые разделы (темы) дис-	Код контролируемой	Наиманаранна
Π/Π	циплины	компетенции (или ее	оценочного
		части)	средства
1	Электровакуумных и полупроводнико-	ПК-2	Тест, зачет, уст-
	вых приборах, выпрямители		ный опрос
2	Колебательне системы, усилители, гене-	ПК-2	Тест, зачет, уст-
	раторы электрических сигналы		ный опрос
3	цифровые способы передачи информа-	ПК-2	Тест, зачет, уст-
	ции		ный опрос
4	Общие сведения об элементной базе	ПК-2	Тест, зачет, уст-
	схемотехники (резисторы, конденсато-		ный опрос
	ры, диоды, транзисторы, микросхемы)		
5	Логические элементы и логическое про-	ПК-2	Тест, зачет, уст-
	ектирование в базисах микросхем		ный опрос
6	Функциональные узлы (дешифраторы,	ПК-2	Тест, экзамен,
	шифраторы, мультиплексоры, демуль-		устный опрос
	типлексоры, цифровые компараторы,		
	сумматоры, триггеры, регистры, счет-		
	чики)		
7	Запоминающие устройства на основе	ПК-2	Тест, экзамен,
	БИС/СБИС;		устный опрос
8	Цифро-аналоговые и аналого-цифровые	ПК-2	Тест, экзамен,
	преобразователи		устный опрос

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Шарапов А.В. Аналоговая схемотехника: Учебное пособие. –Томск: ТУСУР, 2006. 193 с.
- 3. Гутников В.С. Интегральная электроника в измерительных устройствах. Л.: Энергоатомиздат, 1988. 304 с.
- 4. Изъюрова Г.И., Королев Г.В., Терехов В.А. и др. Расчет электронных схем. Примеры и задачи. М.: Высшая школа, 1987. 335 с.
- 5. Гусев В.Г., Гусев Ю.М. Электроника: Учеб. пособие для приборостроит. спец. вузов. 2-е изд. М.: Высшая школа, 1991. 622 с.
- 6. Титце У., Шенк К. Полупроводниковая схемотехника: Справочноеруководство: Пер. с нем. – М.: Мир, 1982. – 512 с.
- 7. Воробьев Н.И. Проектирование электронных устройств. М.:Высшая школа, 1989. 223 с.
- 8. Павлов В.Н., Ногин В.Н. Схемотехника аналоговых электронныхустройств: Учебник для вузов. М.: Горячая линия Телеком, 2001. 320 с.
- 9. Денисов Н.П., Шарапов А.В., Шибаев А.А. Электроника и схемотехника. Учебное пособие: в 2 частях Томск, ТМЦ ДО, 2002. Ч.2. –220 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Microsoft Word, Microsoft Excel, Internet Explorer, программный комплекс «Multisim».

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная видеопроектором с экраном и пособиями по профилю.

Компьютерный класс, оснащенная ПЭВМ с установленным программным обеспечением, ауд. 234/3, 226/3.

Видеопроектор с экраном в ауд. 234/3.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Основы функционального проектирования РЭС» читаются лекции, проводятся лабораторные и практические занятия.

Лекции представляет собой систематическое, последовательное изложение учебного материала. Это — одна из важнейших форм учебного процесса и один из основных методов преподавания в вузе. На лекциях от студента требуется не просто внимание, но и самостоятельное оформление конспекта. Качественный конспект должен легко восприниматься зрительно, в эго тексте следует соблюдать абзацы, выделять заголовки, пронумеровать формулы, подчеркнуть термины. В качестве ценного совета рекомендуется записывать не каждое слово лектора (иначе можно потерять мысль и начать писать автоматически, не вникая в смысл), а постараться понять основную мысль лектора, а затем записать, используя понятные сокращения.

- Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:
- работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;
 - выполнение домашних заданий и типовых расчетов;
 - работа над темами для самостоятельного изучения;
 - участие в работе студенческих научных конференций, олимпиад;
 - подготовка к зачетам и экзаменам.

Кроме базовых учебников рекомендуется самостоятельно использовать имеющиеся в библиотеке учебно-методические пособия. Независимо от вида учебника, работа с ним должна происходить в течение всего семестра. Эффективнее работать с учебником не после, а перед лекцией.

При ознакомлении с каким-либо разделом рекомендуется прочитать его целиком, стараясь уловить общую логику изложения темы. При повторном чтении хорошо акцентировать внимание на ключевых вопросах и основных теоремах (формулах). Можно составить их краткий конспект.

Степень усвоения материала проверяется следующими видами контроля:

- текущий (опрос, контрольные работы, типовые расчеты);
- рубежный (коллоквиум);
- промежуточный (курсовая работа, зачет, зачет с оценкой, экзамен).

Коллоквиум – форма итоговой проверки знаний студентов по определенным темам.

Зачет — форма проверки знаний и навыков, полученных на лекционных и практических занятиях. Сдача всех зачетов, предусмотренных учебным планом на данный семестр, является обязательным условием для допуска к экзаменационной сессии.

Экзамен – форма итоговой проверки знаний студентов.

Для успешной сдачи экзамена необходимо выполнить следующие рекомендации —готовиться к экзамену следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяцполтора до экзамена. Данные перед экзаменом три-четыре дня эффективнее всего использовать для повторения.

Вид учебных	Деятельность студента	
занятий		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.	
Лабораторная ра- бота	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.	
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.	
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.	

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вноси- мых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
-----------------	----------------------------------	-------------------------	--