МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

> **УТВЕРЖДАЮ** Декан факультета В.И. Ряжских «31» августа 2018 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Технология изготовления и метрология нитевидных кристаллов»

Направление подготовки 27.04.01 СТАНДАРТИЗАЦИЯ И МЕТРОЛОГИЯ

Профиль Метрология наноструктур и нанотехнологий

Квалификация выпускника магистр

Нормативный период обучения 2 года

Форма обучения очная

Год начала подготовки 2018

/ В.А. Небольсин / Автор программы / В.А. Небольсин / / В.А. Небольсин /

Заведующий кафедрой

Химии

Руководитель ОПОП / В.А. Небольсин /

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Формирование у обучающихся компетенций, заключающихся в способности использовать известные методы, способы и научные результаты для решения новых проблем, исследовать причины появления некачественной продукции на производстве и разрабатывать предложения по предупреждению и устранению причин низкого качества продукции и управлению несоответствующей продукцией.

1.2. Задачи освоения дисциплины

Овладение теоретическими знаниями технологии изготовления и метрология нитевидных кристаллов, методов выращивания и механизмов роста, проблем метрологического обеспечения управляемого синтеза нитевидных нанокристаллов и совместимости технологических процессов с действующими производственными технологиями.

Освоение методов анализа и синтеза информации по технологии изготовления нитевидных нанокристаллов и выработки по ней адекватных решений, выявления причин появления некачественной продукции в технологии изготовления нитевидных нанокристаллов.

Приобретение навыков сбора и обработки необходимых данных по технологии изготовления и метрологии нитевидных нанокристаллов, владения методиками исследования причин появления некачественной продукции.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Технология изготовления и метрология нитевидных кисталлов» относится к дисциплинам вариативной части (дисциплина по выбору) блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Технология изготовления и метрология нитевидных кристаллов» направлен на формирование следующих компетенций:

ПВК-3 - способность использовать известные методы, способы и научные результаты для решения новых проблем

ПВК-5 - исследовать причины появления некачественной продукции на производстве и разрабатывать предложения по предупреждению и устранению причин низкого качества продукции и управлению несоответствующей продукцией

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПВК-3	знать методы выращивания и механизмы роста
	нитевидных нанокристаллов
	уметь анализировать и синтезировать,

	находящуюся в распоряжении исследователя,
	информацию по технологии изготовления
	нитевидных нанокристаллов и принимать на этой
	основе адекватные решения
	владеть навыками сбора и обработки
	необходимых данных по технологии
	изготовления и метрологии нитевидных
	нанокристаллов
ПВК-5	знать проблемы метрологического обеспечения,
	управляемого синтеза нитевидных
	нанокристаллов и совместимости
	технологических процессов с действующими
	производственными технологиями
	уметь выявлять причины появления
	некачественной продукции в технологии
	изготовления нитевидных нанокристаллов
	владеть методиками исследования причин
	появления некачественной продукции при
	получении нитевидных нанокристаллов

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Технология изготовления и метрология нитевидных кисталлов» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий очная форма обучения

Duran nachan pakama	Всего	Семес	стры
Виды учебной работы	часов	3	4
Аудиторные занятия (всего)	75	27	48
В том числе:			
Лекции	21	9	12
Практические занятия (ПЗ)	42	18	24
Лабораторные работы (ЛР)	12	1	12
Самостоятельная работа	105	63	42
Виды промежуточной аттестации - зачет, зачет с оценкой	+	+	+
Общая трудоемкость:			
академические часы	180	90	90
зач.ед.	5	2.5	2.5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п Наименование темы Содержание раздела Лекц Прак Лаб. СРС Всего

				зан.	зан.		час
1	Общие принципы	Базовые термины и понятия.					
	технологии	Нитевидные кристаллы.					
	изготовления	Нитевидные нанокристаллы.					
	нитевидных	Квазиодномерный рост НК					
	кристаллов. Кинетика	как результат проявления					
	газофазного роста	размерного эффекта.					
	1 1	Методы выращивания НК:					
	нитевидных	химическое паровое					
	кристаллов	осаждение,					
		молекулярно-лучевая					
		эпитаксия, лазерная абляция.					
		Катализаторы процесса. Аксиальный и радиальный					
		рост. Технологические					
		схемы процессов					
		изготовления нитевидных					
		кристаллов. Применяемое					
		технологическое и	3	6	2	16	27
		метрологическое	-	-		-	
		оборудование.					
		Газофазный синтез НК					
		кремния, фосфида галлия,					
		карбида кремния, меди и др.					
		Влияние параметров газовой					
		фазы на скорость роста НК					
		(расхода газовой смеси,					
		состава газовой фазы,					
		положения подложки					
		относительно потока,					
		температура газофазного					
		осаждения). Конкуренция в					
		получении питания из					
		газовой фазы. Зоны питания.					
		Влияние катализатора на					
2	Moveyyye z 1	скорость роста НК.					
		Основные модели					
	роста и морфология	механизмов рота НК:					
	нитевидных	дислокационный, диффузионный,					
	кристаллов	диффузионный, дислокационно					
		-диффузионный,					
		пар-жидкость кристалл.					
		Основные нерешенные		_		4.5	
		проблемы и противоречия:	4	6	2	18	30
		рост на начальной стадии,					
		остановка роста, изгибы и					
		ветвления, изменения					
		кристаллической структуры.					
		Получение НК по					
		ПЖК-механизму. Общие					
		сведения о ПЖК-механизме.					

		0					
		Основные проблемы и					
		противоречия					
		представлений о					
		ПЖК-механизме роста НК.					
		Другие аспекты					
		ПЖК-кристаллизации.					
		ПЖК-рост на примере					
		фазовой диаграммы					
		кремний-золото. Роль					
		жидкой фазы.					
		Энергетическая диаграмма					
		фазовых переходов					
		пар-кристалл и пар-					
		жидкость-кристалл.					
		Основные элементарные					
		стадии процесса роста НК.					
		Лимитирующая стадия и					
		режимы роста НК. Роль					
		i* *					
		границ раздела фаз в					
		механизме роста НК.					
		Генерация ступеней роста					
		трехфазной линией.					
		Определение элементарных					
		параметров роста.					
		Одномерные					
		гетероструктуры.					
		Формирование пьедестала и					
		изменение радиуса НК в					
		процессе роста.					
		Определение «угла роста»					
		по параметрам пьедестала					
		НК. Образование выступов					
		на боковой поверхности НК.					
		Рост конусных кристаллов.					
		Монокристаллические нити					
		кремния с нулевой					
		конусностью. Образование					
		изгибов и ветвление НК.					
		Захват двухфазного сплава.					
		ا ا					
		<u> </u>					
		механизму пар-кристалл.					
		Боковое огранение НК.					
		Скелетные формы роста.					
		Образование ленточных					
		кристаллов.	igwdown				
3	Ростовые размерные	Влияние геометрического					
	эффекты в	фактора на рост НК.					
	нитевидных	Размерная зависимость					
	нанокристаллах и	химического потенциала.	4	6	2	18	30
	ростовое легирование	Влияние эффекта					
	- *	Гиббса-Томсона на					
		размерную зависимость					
		ipusmeph yio subhenimee i isi					

				ī			
		скорости роста НК. Ростовой					
		эффект нуклеации на					
		трехфазной линии. Переход					
		от полицентрического к					
		моноцентрическому					
		зарождению. Фазовый					
		размерный эффект роста НК.					
		Размерная зависимость					
		кристаллографического					
		направления роста.					
		Линейное натяжение					
		трехфазной границы					
		пар-жидкость-кристалл.					
		Поверхностная миграция					
		катализатора. Размерная					
		зависимость прочности.					
		Конверсия кристаллической					
		структуры в НК. Размерная					
		модификация периода					
		кристаллической решетки в					
		НК. Релаксация упругих					
		напряжений.					
		Закономерности роста НК в					
		процессе соосаждения					
		примесей. Секториальное					
		распределение примесей в					
		примесные структуры.					
		Взаимное легирование и					
		получение НК твердых					
4		растворов.					
4	Методы	Основные принципы					
	управляемого	управляемого роста.					
	выращивания	Контроль диаметра и					
	нитевидных	скорости роста НК.					
	кристаллов.	Регулирование количества и					
	Изготовление	порядка расположения					
	регулярных систем	центров зарождения.					
	нитевидных	Задание уровня легирования.					
	кристаллов	Получение регулярных					
		систем НК кремния.					
		Электрохимическое	4	8	2	18	32
		осаждение золота на					
		кремниевую пластину.					
		Маскирование поверхности					
		слоем фоторезиста.					
		Технологический маршрут					
		изготовления регулярных					
		систем НК. Создание					
		электронно-дырочных					
		структур. Поперечные и					
		коаксиальные р-п переходы.			L		
		1 1 7					

		Структуры типа p ⁺ -n-p ⁺ . Управление конусностью НК.					
5	Особенности структуры, свойства и метрологическое обеспечение исследований нитевидных кристаллов	Кристаллографическая	4	8	2	18	32
6	Возможности применения нитевидных нанокристаллов	Композиционные материалы на основе НК. Солнечные элементы на гибридном наностержневом полимере. Ячейки памяти. Наностержневые автоэмиссионные катоды. Электрические квантовые провода. Сенсоры на основе НК (тензо- и терморезисторы, термоанемометры, фотодетекторы, многофункциональные датчики).	2	8	2	17	29
		Итого	21	42	12	105	180

5.2 Перечень лабораторных работ

No	Наименование лабораторной работы	Объем
п/п		часов
1	Атомно-силовая микроскопия поверхности нитевидных кристаллов кремния	4

2	Определение коэффициента пропускания и оптической плотности нитевидных кристаллов	4					
3	Синтез нитевидных кристаллов кремния методом химического парового осаждения						
Ито	ого часов	12					

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПВК-3	знать методы выращивания и механизмы роста нитевидных нанокристаллов	Степень осознанности, понимания изученного	Выполнение работ в срок, предусмотренны й в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь анализировать и синтезировать, находящуюся в распоряжении исследователя, информацию по технологии изготовления нитевидных нанокристаллов и принимать на этой основе адекватные решения	Осознанность выполнения действия (умения).	Выполнение работ в срок, предусмотренны й в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками сбора и обработки	Правильность выполнения	Выполнение работ в срок,	Невыполнение работ в срок,

	необходимых	последовательност	предусмотренны	предусмотренн
	данных по	И	й в рабочих	ый в рабочих
	технологии	действий.	программах	программах
	изготовления и			
	метрологии			
	нитевидных			
	нанокристаллов			
ПВК-5	знать проблемы		Выполнение	Невыполнение
	метрологического		работ в срок,	работ в срок,
	обеспечения,		предусмотренны й в рабочих	предусмотренн ый в рабочих
	управляемого		и в раоочих программах	программах
	синтеза	Степень	np or p uninum	nperpuniun
	нитевидных	осознанности,		
	нанокристаллов и	понимания		
	совместимости	изученного		
	технологических	nsy termore		
	процессов с			
	действующими			
	производственным			
	и технологиями			
	уметь выявлять	Осознанность	Выполнение	Невыполнение
	причины	выполнения	работ в срок,	работ в срок,
	появления	действия (умения).	предусмотренны й в рабочих	предусмотренн ый в рабочих
	некачественной		программах	программах
	продукции в			F F
	технологии			
	изготовления			
	нитевидных			
	нанокристаллов			
	владеть	Правильность	Выполнение	Невыполнение
	методиками	выполнения	работ в срок,	работ в срок,
	исследования	последовательност	предусмотренны й в рабочих	предусмотренн ый в рабочих
	причин появления	И	и в раоочих программах	программах
	некачественной	действий.	1 1	1 1
	продукции при			
	получении			
	нитевидных			
	нанокристаллов			

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 3, 4 семестре для очной формы обучения по двух/четырехбалльной системе: «зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ПВК-3	знать методы выращивания и механизмы роста нитевидных нанокристаллов	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь анализировать и	Решение стандартных	Продемонстриро	Задачи не

	синтезировать, находящуюся в распоряжении исследователя, информацию по технологии изготовления нитевидных нанокристаллов и принимать на этой основе адекватные	практических задач	ва н верный ход решения в большинстве задач	решены
	решения владеть навыками сбора и обработки необходимых данных по технологии изготовления и метрологии нитевидных нанокристаллов	Решение прикладных задач в конкретной предметной области	Продемонстриро ва н верный ход решения в большинстве задач	Задачи не решены
ПВК-5	знать проблемы метрологического обеспечения, управляемого синтеза нитевидных нанокристаллов и совместимости технологических процессов с действующими производственными технологиями	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь выявлять причины появления некачественной продукции в технологии изготовления нитевидных нанокристаллов	Решение стандартных практических задач	Продемонстриро ва н верный ход решения в большинстве задач	Задачи не решены
	владеть методиками исследования причин появления некачественной продукции при получении нитевидных нанокристаллов	Решение прикладных задач в конкретной предметной области	Продемонстриро ва н верный ход решения в большинстве задач	Задачи не решены

ИЛИ

«отлично»;

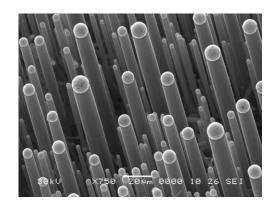
«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие	Критерии	Отлично	Хорошо	Удовл.	Неудовл.
--------	---	----------	---------	--------	--------	----------

тенция	сформированность компетенции	оценивани я				
ПВК-3	знать методы выращивания и механизмы роста нитевидных нанокристаллов	Тест	Выполнен ие теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правильны х ответов
	уметь анализировать и синтезировать, находящуюся в распоряжении исследователя, информацию по технологии изготовления нитевидных нанокристаллов и принимать на этой основе адекватные решения	Решение стандартны х практическ их задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	владеть навыками сбора и обработки необходимых данных по технологии изготовления и метрологии нитевидных нанокристаллов		Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
ПВК-5	знать проблемы метрологического обеспечения, управляемого синтеза нитевидных нанокристаллов и совместимости технологических процессов с действующими производственны ми технологиями	Тест	Выполнен ие теста на 90- 100%	90%	Выполнение теста на 70-80%	В тесте менее 70% правильны х ответов
	уметь выявлять причины появления некачественной продукции в технологии изготовления нитевидных	Решение стандартны х практическ их задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены


нан	нокристаллов					
вла	адеть	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
мет	тодиками	прикладных	решены в	ирован верный	ирован	решены
		задач в	полном	ход решения	верный ход	
	' '	конкретной	объеме и	всех, но не	решения в	
	ичин появления	предметной	получены	получен	большинстве	
нек	качественной	области	верные	верный ответ	задач	
про	одукции при		ответы	во всех		
пол	лучении			задачах		
нит	тевидных					
нан	нокристаллов					

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Чем определяется перспектива применения нитевидных нанокристаллов кремния в фотоэлементах:
 - а) возможностью повысить надежность работы фотоэлементов,
- б) возможностью увеличить коэффициент отражения солнечного излучения,
- в) возможностью понизить коэффициент отражения солнечного излучения.
 - 2. С уменьшением размера скорость роста НК:
 - а) увеличивается,
 - б) уменьшается,
 - в) не изменяется,
- г) для разных кристаллизуемых материалов и разных методов выращивания может увеличиваться, уменьшаться или сохраняться неизменной.
 - 3. Какие структуры называются квазиодномерными?
- а) структуры, в которых линейные размеры в одном из пространственных направлений существенно превышают линейные размеры в других направлениях,
- б) структуры, в которых размеры объекта хотя бы по одной из координат менее 100 нм,
- в) структуры, в которых размеры объекта сравнимы с длиной волны де-Бройля носителей заряда.
- 4. Выражение $V_L = h\pi R^2 I F(\alpha_K)$, где $\alpha_K = \pi R^3 I / v$ безразмерный параметр, описывает переход от моноцентрического к полицентрическому режиму нуклеации при увеличении размера грани НК. При $\alpha_K \le 1$ (малый размер грани) осуществляется переход:
 - а) к полицентрическому зарождению,
 - б) к моноцентрическому зарождению,
 - в) параметр α_K не влияет на режим зародышеобразования под каплей

- 5. При уменьшении радиуса капли катализатора происходит смещение линий предельных концентраций на диаграммах состояния золото-кремний:
 - а) в сторону больших значений,
 - б) в сторону меньших значений.
- 6. Чем можно объяснить смещение линий фазовых равновесий на диаграммах состояния двойных систем в сторону легкоплавкого компонента с увеличением дисперсности двухфазных частиц катализатора на вершине НК?
- а) повышением величины избыточного лапласовского давления при увеличении кривизны поверхности частицы
- б) увеличением реакционной способности вещества с увеличением его дисперсности
- в) с увеличением дисперсности двухфазных наноразмерных частиц линии фазовых равновесий на диаграммах состояния не смещаются.
 - 7. Конверсия кристаллической структуры при росте нано-НК означает:
 - а) переход от кубической структуры решетки к гексагональной и наоборот,
 - б) переход от моноцентрического зародышеобразования к полицентрическому,
 - в) переход от одного кристаллографического направления роста к другому направления .
- 8. Каким из указанных способов нельзя синтезировать нанокристаллические полупроводниковые материалы:
 - а) химическое осаждение на подложку
 - б) осаждение из коллоидных растворов
 - в) лазерная абляция
 - г) вытягиванием из расплава.
- 9. Высокие перспективы применения нитевидных нанокристаллов определяются (выбрать неправильный ответ):
 - а) востребованностью применения наноматериалов в наноэлектронике
- б) развитием технической экспериментальной базы для работы с нанообъектами
- в) необходимостью решения проблем в экологической и военной сферах
 - г) особыми свойствами материалов в наноразмерном диапазоне.
 - 10. На РЭМ-изображении показана:

- а) эпитаксиальная система регулярных НК
- б) неэпитаксиальная система регулярных НК
- в) эпитаксиальная система нерегулярных НК
- г) неэпитаксиальная система нерегулярных НК.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Во сколько раз увеличится свободная поверхностная энергия капель жидкого золота со средним диаметром 40 нм по сравнению с ее не дисперсным массивным состоянием с площадью поверхности 6 см²? Плотность жидкого золота $17 \cdot 10^3$ кг/м³.
- 2. Оцените число атомов в сферической наночастице золота диаметром 3 нм. Радиус атома золота составляет 0,144 нм:
 - a) 10^2 ;
 - б) 10^3 ;
 - $^{\circ}$ $^{\circ}$
 - Γ) 10⁵.
- 3. Чему равно внутреннее давление капель жидкости диаметром 35 нм на вершине НК. Межфазное поверхностное натяжение жидкости равно 55 мДж/м 2 .
- 4. Чему равно приращение энергии Гиббса капель жидкости диаметром 10 нм на вершине НК. Межфазное поверхностное натяжение жидкости равно 55 мДж/м². Объем, занимаемый одним молем жидкости, равен 0,2 м³/моль.
- 5. Вычислите работу образования кристалличской нанопроволоки Si из газовой фазы диаметром 50 нм и длиной 500 нм. Свободная поверхностная энергия Si α_S =1,25 Дж/м². Удельный объем, занимаемый одним атомом Si, Ω =2·10⁻²⁹ м⁻³. Изменение химического потенциала Si при переходе из газовой фазы в твердую равно $\Delta\mu$ =2·10⁻²⁰ Дж.
- 6. Для нитевидных нанокристаллов Si существенное (более чем в три раза) увеличение ширины запрещенной зоны с 1,1 эВ до 3,5 эВ происходит при:
 - а) увеличении диаметра с 7,0 нм до 1,3 нм
 - б) уменьшении диаметра со 100,0 нм до 7,0 нм
 - в) уменьшении диаметра с 7,0 нм до 1,3 нм.
 - 7. Температура фазового перехода твердое тело-жидкость

макроскопического образца Au равна 1064 °C. Температура плавления наночастиц Au на вершине НК с характерным размером 2 нм равна:

- а) более 1100 °С
- б) равна 920 °С
- в) менее 400 °C
- г) равна 1064 °C.
- 8. В нитевидных нанокристаллах аспектное отношение длина/диаметр составляет:
 - а) 2 и менее;
 - б) 10 и менее;
 - в) 100 и менее;
 - г) 10 и более.
- 9. Нуклеация на трехфазной линии термодинамически выгодна, когда выполняется условие :
 - a) $\alpha_S \alpha_L \cos \varphi \ll \alpha_{LS}$,
 - 6) $\alpha_S \alpha_L \cos \varphi \gg \alpha_{LS}$,
 - B) $\alpha_S \alpha_L \cos \varphi \approx \alpha_{LS}$.
 - 10. Префикс «нано» означает (в метрах): (ПВК-2)
 - a) 10^{-3} ,
 - б) 10-6,
 - в) 10⁻⁹,
 - Γ) 10⁻¹⁰.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Сколько атомов легирующей примеси будет содержаться в НК кремния диаметром 10 нм и длиной 100 нм, если уровень легирования кристалла составляет $1 \cdot 10^{18}$ см⁻³?
 - 1) $10, 2) 10^2, 3) 10^3, 4) 10^6$.
- 2. Чему равно внутреннее давление и приращение энергии Гиббса для капель жидкой фазы металла-катализатора на вершине НК диаметром 35 мкм? Межфазное поверхностное натяжение металла 55 мДж/м 2 , мольный объем вещества 0.19 м^2 /моль.
 - 1) 10,23 кДж/моль, 2) 9,11 кДж/моль, 3) 1,19 кДж/моль, 4) 0,23 кДж/моль
- 3. Сколько времени потребуется для выращивания монокристаллических нитей кремния с нулевой конусностью диаметром 2 мкм, если диаметр НК в основании составляет 10 мкм, а средняя скорость роста кристалла 0,1 мкм/с?
 - 1) 20 суток, 2) 20 часов, 3) 20 минут, 4) 20 секунд.
- 4. Вычислите число атомов в сферической каталитической наночастице олова диаметром 3 нм. Радиус атома олова составляет 140 пм.
 - 1) 10^2 , 2) 10^3 , 3) 10^4 , 4) 10^5 .
- 5. Во сколько раз возрастает удельная поверхность НК углерода диаметром 50 мкм и длиной 1 мм при уменьшении диаметра до 100 нм, если

его удельная поверхность равна 3,2·10⁵ м²/кг, а плотность углерода 0,47·10³ мг/м³

- 1) в 5 раз, 2) в 50 раз, 3) в 500 раз, 4) другое.
- 6. Перечислите основные компоненты газовой фазы, образующиеся в результате протекания химической реакции водородного восстановления кремния из его тетрахлорида $SiCl_4 + 2H_2 = Si + 4HCl$ при выращивании НК Si при T=1273 K.
 - 1) SiCl₄, SiCl₂, 2) SiCl₂, H₂, HCl, 3) Si, HCl, SiCl₄ 4) HCl, SiCl₄.
- 7. Чему будет равно отношение свободной межфазной энергии границ раздела кристалл/жидкость и жидкость/пар, если отношение радиуса НК к радиусу капли катализатора на его вершине равно 1,25?
 - 1) 0,5, 2) 0,6, 3) 0,8, 4) 0,9.
- 8. Рассчитайте толщину пленки золота, осаждаемой в отверстия фоторезиста, для выращивания НК кремния с диаметром 100 нм. Диаметр отверстия фоторезиста 250 нм. Объемное содержание Si в капле Au при температуре роста НК 1370 К составляет 60 % (объемн.) Принять величину контактного угла капли Au- Si на вершине НК 110⁰.
 - 1) 5 нм, 2) 10 нм, 3) 12 нм, 4) 15 нм.
- 9. Температура фазового перехода твердое тело→жидкость макроскопического образца золота равна 1064 °C. Чему равна температура плавления сферических каталитических наночастиц Au размером 5 нм?
 - 1) 200 °C, 2) 400 °C, 3) 800 °C, 4) 1064 °C.
- 10. Определите внутреннее давление полусферических капель Си-катализатора на вершине нитевидного кристалла диаметром 50 нм. Межфазное поверхностное натяжение жидкости равно 1300 мДж/м²?
 - 1) 5,2·10⁴ кПа, 2) 6,3 кПа, 3) 1,19·10² кПа, 4) 0,2 кПа.

7.2.4 Примерный перечень вопросов для подготовки к зачету и зачету оценкой

- 1. Перечислить и охарактеризовать основные методы выращивания нитевидных кристаллов.
- 2. Использование НК в качестве элементной базы микроэлектроники.
- 3. ПЖК-механизм роста НК.
- 4. Основные методы выращивания полупроводниковых НК.
- 5. Зависимость скорости роста НК от расхода газовой смеси, температуры и состава газовой фазы.
- 6. Основные проблемы и противоречия представлений о ПЖК-механизме роста НК.
- 7. Методика выращивания нано-НК.
- 8. Эпитаксиальный рост НК кремния.
- 9. Конкуренция в получении питания НК из газовой фазы..

- 10. Зоны питания НК.
- 11. Лимитирующая стадия и режимы процесса роста НК.
- 12. Роль каталитических частиц в росте НК.
- 13. Роль поверхностной энергии границ раздела фаз в росте НК.
- 17. Генерация ступеней роста трехфазной линией.
- 18. Влияние геометрического фактора на рост НК.
- 19. Радиальная периодическая неустойчивость роста НК кремния.
- 20. Влияние эффекта Гиббса-Томсона на кинетику роста НК.
- 21. Вклад свободной линейной энергии границы раздела трех фаз в равновесие капли катализатора на вершине НК.
- 22. Образование планарных НК.
- 23. Образование "отрицательных" НК по КЖП-механизму.
- 24. Получение НК методом лазерной абляции.
- 25. Особенности проявления фазового размерного эффекта при росте НК.
- 26. Методы ростового легирования НК из газовой фазы.
- 27. Методы формирования электронно-дырочных структур НК.
- 28. Получение поперечных и коаксиальных р-п переходов в НК.
- 29. Закономерности роста НК в процессе соосаждения примесей.
- 30. Получение НК твердых растворов.
- 31. Радиальный рост НК.
- 32. Причины невоспроизводимого роста НК.
- 33. Механизм капиллярной устойчивости роста НК.
- 34. Образование изгибов и ветвление НК.
- 35. Захват двухфазного сплава фронтом кристаллизации НК.
- 36. Конверсия кристаллической структуры в процессе роста НК.
- 37. Регулярные системы НК кремния.
- 38. Контроль диаметра и скорости роста НК.
- 39. Рост конусных НК.
- 40. Применение НК в солнечных батареях, ячейках памяти, автоэмиссионных холодных катодах.
- 41. Термо- и тензорезисторы на основе НК.
- 42. Технологический маршрут изготовления регулярных систем НК кремния.
- 43. Способы управления конусностью НК.
- 44. Регулирование количества и порядка расположения центров зарождения НК.
- 45. Влияние электронного строения металлов-катализаторов на каталитические свойства для роста НК.
- 46. Влияние размера частиц вещества на параметры кристаллической решетки. Возможные объяснения данного явления.
- 47. Зависимость температуры фазовых переходов от размера НК.
- 48. "Угол роста" НК и доказательства его постоянства в процессе стационарного роста НК.
- 49. Образование боковых граней НК по ПЖК-механизму.
- 50. Три ступени управляемости роста НК и выбор оптимальных условий кристализации.

- 51. Зондовая микроскопия НК. Использование сканирующего туннельного микроскопа (СТМ) и сканирующего атомно-силового микроскопа для изучения структурных свойств НК.
- 52. Какую информацию об НК можно получить, используя метод рентгеновской дифракции?
- 53. Измерение геометрических параметров НК.
- 54. Термометрические измерения характеристик и параметров НК.
- 55. Определение элементарных параметров роста НК.
- 56. Проблемы управления пространственной ориентацией НК.
- 57. Нестабильность технологических условий выращивания НК.
- 58. Временная нестабильность скорости роста НК.
- 59. Проблемы воспроизводимого легирования НК.
- 60. Проблемы воспроизводимого выращивания гетероструктурных НК.

7.2.5 Примерный перечень заданий для решения прикладных задач

- 1. Квазиодномерный рост НК как результат проявления размерного эффекта.
 - 2. Конверсия кристаллической структуры НК.
 - 3. Выращивание НК методом молекулярно-лучевой эпитаксии.
 - 4. Размерная зависимость кристаллографического направления роста.
 - 5. Выращивание НК методом химического парового осаждения.
 - 6. Технологический маршрут изготовления регулярных систем НК.
 - 7. Выращивание НК методом лазерной абляции.
 - 8. Ростовой эффект нуклеации на трехфазной линии.
- 9. Формирование пьедестала и изменение радиуса НК в процессе роста. Рост бесконусных НК.
- 10. Влияние эффекта Гиббса-Томсона на размерную зависимость скорости роста НК.
- 11. Основные принципы управляемого роста. Контроль диаметра и скорости роста НК.
- 12. Создание электронно-дырочных структур в НК. Поперечные и коаксиальные p-n переходы.
- 13. Радиальный рост по механизму пар-кристалл. Боковое огранение НК. Скелетные формы роста.
 - 14. Влияние геометрического фактора на рост НК.
- 15. НК как армирующие материалы в нанокомпозитах и их прочностные свойства.
- 16. Подготовка ростовых подложек для выращивания НК. Электрохимическое осаждение золота на кремниевую пластину. Маскирование поверхности слоем фоторезиста.
 - 17. Образование изгибов и ветвление НК в процессе роста.
- 18. Метрологические измерения концентрации легирующих примесей в НК.
 - 19. Электронные и транспортные свойства НК.
 - 20. КЖП-механизм. Образование «отрицательных» нитевидных

кристаллов.

- 21. ПЖК-механизм роста НК и его нерешенные проблемы.
- 22. Закономерности роста НК в процессе соосаждения примесей. Секториальное распределение примесей в НК. Коаксиальные примесные структуры.
- 23. Технология изготовления монокристаллических нитей кремния с нулевой конусностью.
- 24. Метрологическое обеспечение исследований нитевидных кристаллов.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 10 вопросов. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов — 10.

- 1. «Не зачтено» ставится в случае, если студент набрал менее 6 баллов.
- 2. «Зачтено» ставится в случае, если студент набрал от 6 до 10 баллов.

Зачет с оценкой для проверки знаний и умений проводится по билетам, каждый из которых содержит 3 вопроса из примерного перечня вопросов и задач для подготовки к зачету и зачету с оценкой.

- 3. Оценка «Неудовлетворительно» ставится в случае, если студент ответил неправильно на все вопросы экзаменационного билета.
- 4. Оценка «Удовлетворительно» ставится в случае, если студент ответил правильно только на 1 вопрос экзаменационного билета.
- 5. Оценка «Хорошо» ставится в случае, если студент ответил правильно только на 2 вопроса экзаменационного билета.
- 6. Оценка «Отлично» ставится, если студент ответил правильно на все 3 вопроса экзаменационного билета.

Проверка навыков проводится по сданным отчетам лабораторных работ. Оценка «Удовлетворительно» ставится, если сданы отчеты по всем лабораторным работам с нарушением графика сдачи и (или) исправлением ошибок., оценка «Хорошо» - если сданы отчеты по всем лабораторным работам с выполнением графика сдачи и без ошибок, оценка «Отлично» - если отчеты сданы в соответствии с графиком и без ошибок., оценка «Неудовлетворительно» - если отчеты по лабораторным работам не сданы, либо сданы частично.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (т	емы) Код	Наименование

	дисциплины	контролируемой	оценочного средства
		компетенции	
1	Общие принципы технологии изготовления нитевидных кристаллов. Кинетика газофазного роста нитевидных кристаллов	ПВК-3, ПВК-5	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
2	Механизмы, формы роста и морфология нитевидных кристаллов	ПВК-3, ПВК-5	Тест, контрольная работа, защита лабораторных работ, защита раферата, требования к курсовому проекту
3	Ростовые размерные эффекты в нитевидных нанокристаллах и ростовое легирование	ПВК-3, ПВК-5	Тест, контрольная работа, защита лабораторных работ, защита работ, требования к курсовому проекту
4	Методы управляемого выращивания нитевидных кристаллов. Изготовление регулярных систем нитевидных кристаллов	ПВК-3, ПВК-5	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
5	Особенности структуры, свойства и метрологическое обеспечение исследований нитевидных кристаллов	ПВК-3, ПВК-5	Тест, контрольная работа, защита лабораторных работ, защита работ, требования к курсовому проекту
6	Возможности применения нитевидных нанокристаллов	ПВК-3, ПВК-5	Тест, контрольная работа, защита лабораторных работ, защита раферата, требования к курсовому проекту

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно

методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
- 1. Раков Э.Г. Неорганические наноматериалы: учебное пособие. М.: БИНОМ, 2014.-477 с.
- 2. Небольсин В.А., Щетинин А.А. Рост нитевидных кристаллов. Воронеж: ВГУ, 2003. 604 с.
- 3. Рыжонков, Д.И. / Д. И. Рыжонков, В. В. Лёвина, Э. Л. Дзидзигури. Наноматериалы: Учеб. пособие 2-е изд. М.: Бином. Лаборатория знаний, 2012. 365 с.
 - 7. Сайт о нанотехнологиях в России http://www.nanonewsnet.ru/
 - 8. Российский электронный наножурнал http://www.nanojornal.ru/
 - 9. Журнал «Российские нанотехнологии» http://www.nanorf.ru/
- 10. Учебники, учебные пособия, методические указания в виде электронных версий и презентаций в сети кафедры химии и химической технологии материалов http://eios.vorstu.ru/, ЭБС Лайн и др.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Microsoft Word, Microsoft Excel, Internet Explorer, Сайт о нанотехнологиях в России (http://www.nanonewsnet.ru/)

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима специализированная лекционная аудитория, оснащенная мультимедийным проектором, наличие в аудитории экрана, доски, ноутбука (ауд. 327/1). Лабораторные занятия в ауд. 303/1, 027/1, 031/1, 023/1.

Атомно-силовой микроскоп «Интегра-Прима»

Спектрофотометр SS 1103

Установка синтеза нитевидных кристаллов «Изоприн ЖКМ»

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО

ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Технология изготовления и метрология нитевидных кисталлов» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета ростовых параметров и характеристик нитевидных кристаллов. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

	ами, приведенными в указаниях к выполнению расот.
Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов,
	терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом
	занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с
занятие	конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по
Побороторую д робото	алгоритму.
Лабораторная работа - Самостоятель ная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций,

	олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует
промежуточной аттестации	систематически, в течение всего семестра. Интенсивная
	подготовка должна начаться не позднее, чем за месяц-полтора
	до промежуточной аттестации. Данные перед зачетом, зачетом
	с оценкой три дня эффективнее всего использовать для
	повторения и систематизации материала.