МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля) «Радиотехнические системы»

Направление 11.06.01 Электроника, радиотехника и системы связи Направленность 05.12.07 - Антенны, СВЧ устройства и их технологии Квалификация выпускника Исследователь. Преподаватель-исследователь Нормативный период обучения 4 года Форма обучения Очная Год начала подготовки 2021 г.

Автор программы // Володько А.В./

Заведующий кафедрой радиоэлектронных устройств и систем /Журавлёв Д.В./

Руководитель ОПОП // Пастернак Ю.Г./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Основной целью преподаваемой дисциплины является изучение студентами основ теории и методов построения основных типов РТС, изучения состава и принципов работы РТС, их роли в решении гражданских и оборонных задач, а также формирование навыков расчета основных параметров радиотехнических систем передачи информации

1.2. Задачи освоения дисциплины

- Изучение назначение назначения и принципов работы основных типов РТС;
- Изучение основных принципов и предельных соотношений теории информации применительно совершенствования систем передачи информации;
- Ознакомление студентов с основными принципами радиолокационных и радионавигационных систем;
- Изучение методики эскизного расчета систем передачи информации различных типов;

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Радиотехнические системы» относится к дисциплинам обязательной части блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Радиотехнические системы» направлен на формирование следующих компетенций:

- ОПК-3 способностью к разработке новых методов исследования и их применению в самостоятельной профессиональной научно-исследовательской деятельности в области профессиональной деятельности;
- ПК-6 владением методами синтеза устройств оптимальной обработки сигналов;
- ПК-7 способностью решать типовые прикладные задачи адаптации систем передачи информации к помеховой обстановке;
- ПК-8 способностью разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов, осуществлять их эксплуатацию и техническое обслуживание;
- ПК-9 способностью определять технические требования к антеннам с учетом назначения и характеристик радиотехнических систем.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-3	знать основные методы анализа и синтеза современных радиотехнических систем.
	уметь разрабатывать новые методы проектирования как отдельных узлов, так и радиотехнических систем в целом
	владеть навыком генерации новых методов исследования радиотехнических систем
ПК-9	знать требования к антенным системам типовых радиотехнических систем
	уметь определять технические требования к антеннам с учетом типовых требований и характеристик радиотехнических систем
	владеть навыками оценки требований к антенным системам к радиотехническим системам с учетом их параметров

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Радиотехнические системы» составляет 4 зачетные единицы.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего		Семес	тры	
	часов	4			
Аудиторные занятия (всего)	36	36			
В том числе:					
Лекции	36	36			
Практические занятия (ПЗ)	-	-			
Лабораторные работы (ЛР)	-	-			
Самостоятельная работа	108	108			
Курсовой проект	-	-			
Контрольная работа	-	-			
Вид промежуточной аттестации – зачет с	+	+			
оценкой					
Общая трудоемкость час	144	144			
зач. ед.	4	4			

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

$N_{\overline{0}}$	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Bce-
п/п				зан.	зан.		го,
1	0.5						час
1	Общие сведения о	Основные определения, классификация,					
	РТС. Представление	обобщенная схема, параметры и показате-					
	сигналов и помех	ли качества РТС Преставление сигналов и	2			12	14
		помех, сигналы – переносчики информации					
		и информационные (управляющие) про-					
		цессы					
2	Радиолокационные	Физические основы радиолокационных и					
	и радионавигацион-	радионавигационных измерений. Виды					
	ные системы	радиолокации и классификация РЛ систем.					
		Методы определения местоположения в					
		пространстве Отражающие свойства и мо-					
		дели радиолокационных целей (РЛЦ). Ста-					
		тистические модели РЛЦ и характеристики					
		отраженного сигнала Дальность радиооб-					
		наружения РЛС и РНС. Влияние условий					
		распространения радиоволн и подстилаю-					
		щей поверхности на дальность действия					
		РТС. Обзор пространства и поиск сигна-					
		лов. Методы обзора пространства. Методы					
		измерения дальности и скорости в РЛС и					
		РНС. Точность и разрешающая способ-					
		ность при импульсном, частотном и фазо-	12			36	48
		вом методах измерений. Ознакомление с					
		принципом работы индикатора кругового					
		обзора и радиолокационной станцией РБП.					
		Методы защиты от помех. Селекция сигна-					
		лов по параметрам Системы позиционной					
		навигации. Фазовые и импульсно – фазо-					
		вые РНС. Многозначность измерений.					
		Спутниковые РНС. Структура сигнала и					
		аппаратура потребителяОсновные функци-					
		ональные схемы измерителей угловых ко-					
		ординат Автономные РТС измерения па-					
		раметров полета ЛА, мониторинга среды и					
		навигации. Принципы построения счисле-					
		ния пути и систем навигации по геофизи-					
3	Da писанталия -	ческим полям					
3	Радиосистемы	Общие сведения об РТС ПИ.					
	передачи	Классификация и основные показатели РТС ПИ Цифровые методы передачи и					
	информации	приема непрерывных сообщений. Методы					
		1 1					
		уплотнения и разделения каналов связи.					
		Цифровые многоканальные РТС ПИ Основы теории линейного разделения					
		*					
		каналов. Примеры линейно независимых сигналов. Линейные и нелинейные методы	5			15	20
		уплотнения. Частотный, фазовый и					
		временной методы. Разделение каналов по					
		форме сигналов. Импульсно – кодовая					
		модуляция. Кодовое разделение каналов					
		Комбинационное и мажоритарное виды					
		уплотнения каналов. Оценка их					
		помехоустойчивости					

4	Радиосистемы управления	Системы следящего радиоуправления как замкнутые системы автоматического регулирования Системы самонаведения. Радиотехнические звенья РСУ и их модели. Системы командного радиоуправления. Автономное радиоуправление.	5	15	20
5	Системы разрушения информации	Радиотехническая разведка. Методы радиопротиводействия и виды организованных помех. Методы и принципы постановки широкополосных и прицельных помех. Генераторы – постановщики помех	6	15	21
6	Методы проектирования РТС	Показатели качества и оценки характеристик РТС. Инженерный синтез: выбор технических параметров, анализ и моделирование подсистем и устройств РТС. Анализ существующих технических решений РТС Основные принципы и методы анализа системой и элеткромагнитной совместимости РТС	6	15	21
		Итого	36	108	144

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Не предусмотрено учебным планом

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУ-ТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетенция	Результаты обучения,, характеризующие сформированность ком- петенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-3	знать основные методы анализа и синтеза современных радиотехнических систем.	Отвечает на теоретические вопросы при промежуточной аттестации	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

	уметь разрабатывать	Решение стандартных прак-	Выполнение ра-	Невыполнение
	новые методы проек-	тических задач	бот в срок,	работ в срок,
	тирования как от-		предусмотренный	предусмотренный
	дельных узлов, так и		в рабочих про-	в рабочих про-
	радиотехнических		граммах	граммах
	систем в целом			
	владеть навыком	Решение прикладных задач в	Выполнение ра-	Невыполнение
	генерации новых	конкретной предметной об-	бот в срок,	работ в срок,
	методов исследова-	ласти,	предусмотренный	предусмотренный
	ния радиотехниче-		в рабочих про-	в рабочих про-
	ских систем		граммах	граммах
ПК-9	знать требования к	Отвечает на теоретические	Выполнение ра-	Невыполнение
	антенным системам	вопросы при промежуточ-	бот в срок,	работ в срок,
	типовых радиотех-	ной аттестации	предусмотренный	предусмотренный
	нических систем		В рабочих про-	в рабочих про-
			граммах	граммах
	уметь определять	Решение стандартных прак-	Выполнение ра-	Невыполнение
	технические требо-	тических задач	бот в срок,	работ в срок,
	вания к антеннам с		предусмотренный	предусмотренный
	учетом типовых тре-		в рабочих про-	в рабочих про-
	бований и характе-		граммах	граммах
	ристик радиотехни-			
	ческих систем			
	владеть навыками	Решение прикладных задач в	Выполнение ра-	Невыполнение
	оценки требований к	конкретной предметной об-	бот в срок,	работ в срок,
	антенным системам к	ласти,	предусмотренный	предусмотренный
	радиотехническим		в рабочих про-	в рабочих про-
	системам с учетом		граммах	граммах
	их параметров			

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 4 семестре для очной и заочной формы по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компетенция	Результаты	Критерии	Отлично	Хорошо	Удовл	Неудовл
	обучения, характери-	оценивания				
	зующие					
	сформиро-					
	ванность					
ОПК-3	компетенции	Тест	Drymanyayyya	Dr. ma myayyya ma	Drygamianya	D maama Mayaa
Olik-3	знать основ- ные методы	Tecr	Выполнение	Выполнение те-	Выполнение	В тесте менее
	анализа и син-		теста на 90-100%	ста на 80-90%	теста на 70-80%	70% правиль-
	теза современ-					ных ответов
	ных радиотех-					
	нических си-					
	стем.					
	уметь разра-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	батывать		теста на 90-	теста на 80-90%		нее 70% пра-
	новые методы		100%		80%	вильных от-
	проектирова- ния как от-					ветов
	дельных уз-					
	лов, так и					
	радиотехни-					
	ческих систем					
	в целом					

	владеть навы- ком генерации новых мето- дов исследо- вания радио- технических систем	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
ПК-9	знать тре- бования к антенным системам типовых радиотех- нических систем	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	уметь определять технические требования к антеннам с учетом типовых требований и характеристик радиотехнических систем	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	владеть навыками оценки тре- бований к антенным системам к радиотехни - ческим си- стемам с учетом их параметров	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1) В чем заключается отличительный признак РТС?
- А) в том, что радиотехническая система работает лишь с сигналами радиодиапазона;
- Б) в наличии одного или нескольких радиоканалов;
- В) в подвижности РТС;
- Γ) в том, что РТС не может иметь в распоряжении больше одного канала связи.
- 2) Почему в РТС сигналы всегда искажаются?
- А) из-за действия различных технических средств;
- Б) из-за металлобетонных конструкций, расположенных неподалеку от РТС;
- В) из-за космической радиации;
- Г) из-за воздействия всевозможных шумов.

- 3) Выберите лишнее:
- ... системы передачи информации (СПИ) включают в себя системы...
- А) ...радиосвязи;
- Б) ...радиоуправления;
- В) ...передачи команд;
- Г) ...сигналов радиовещания и телевидения.
- 4) Что включают в себя системы извлечения информации?
- А) только радиолокационные (РЛС) и радионавигационные (РНС) системы;
- Б) радиолокационные (РЛС) и радионавигационные (РНС) системы, системы радиоастрономии, радионаблюдения поверхности Земли или других планет, радиоразведки технических средств противника;
- В) только системы радиоастрономии, радионаблюдения поверхности Земли или других планет;
- Γ) радиолокационные (РЛС) и радионавигационные (РНС) системы и системы радиоразведки технических средств противника.
- 5) Что изображено на рис.1?

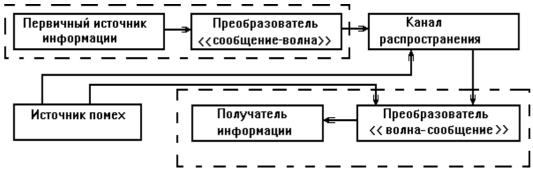


Рисунок 1

- А) структурная схема радиотехнической системы в целом;
- Б) структурная схема РЛС;
- В) структурная схема РНС;
- Г) структурная схема системы радиоразведки технических средств противника.
- 6) Что рассчитывается с помощью формулы 1?

$$\Im = C_{\Im}/C_{O} \tag{1}$$

- А) экономичность РТС;
- Б) эргономичность любой технической системы;
- В) эффективность РТС;
- Г) коэффициент экранирования.
- 7) Зона действия РТС это...
- А) область пространства, в которой РТС, с вероятностью 50 % выполняет функции, определенные ее назначением;
- Б) область пространства, в которой РТС, с вероятностью 75% выполняет функции, определенные ее назначением;
- В) область пространства, ближайшая к самой РТС;
- Г) область пространства, в которой РТС надежно выполняет функции, определенные ее назначением.
- 8) Разрешающая способность РТС это...
- А) способность РТС раздельно измерять параметры близко расположенных целей;
- Б) способность РТС разрешать конфликты радиоэлектронной борьбы;
- В) способность РТС раздельно измерять параметры целей далеко расположенных друг от друга;
- Г) способность РТС измерять параметры цели, расположенной на очень большом расстоянии.
- 9) Выберите лишнее:
- К техническим характеристикам РТС относятся:
- А) рабочие частоты, стабильность, мощность, вид модуляции, ширина спектра излучаемых колебаний;
- Б) коэффициент усиления, форма и ширина диаграммы направленности антенны;

- В) вид и параметры устройств отображения и съема информации;
- Г) зона обзора
- 10) Что в радиотехнике принято называть радиолокацией?
- А) процесс обнаружения объектов, измерения их координат и параметров движения;
- Б) область радиотехники, объединяющая методы и средства обнаружения, измерения координат и параметров движения, а также опознавания, определения свойств и характеристик различных объектов;
- В) область радиотехники, охватывающая радиотехнические методы и средства вождения автомобилей, кораблей, летательных и космических аппаратов, а также других движущихся объектов;
- Г) определение местоположения движущегося объекта с помощью радиотехнических устройств, расположенных на объекте и в окружающем пространстве в точках с известными координатами.

11) Выберите лишнее:

Радиолокационные станции принято классифицировать по происхождению принимаемого радиосигнала на:

- А) пассивные;
- Б) полупассивные;
- В) активные;
- Г) полуактивные.
- 12) Какой(ие) из диапазонов обычно не использует(ют)ся в РЛС?
- А) декаметровый, дециметровый;
- Б) сантиметровый, миллиметровый;
- В) метровый;
- Г) мириаметровый.

13) Выберите лишнее:

Тактическими характеристиками РЛС являются:

- А) зона действия или зона обзора;
- Б) определяемые параметры объекта и точность их измерения;
- В) чувствительность и полоса пропускания приемного устройства;
- Г) разрешающая способность, пропускная способность.
- 14) Что иллюстрирует рис.2?

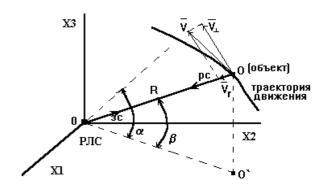


Рисунок 2

- А) определение геометрических параметров замеченного объекта;
- Б) определение параметров движения объекта;
- В) нахождение лишь скорости объекта;
- Г) нахождение лишь расстояния до объекта.
- 15) Что можно рассчитать с помощью формул 2 и 3 соответственно?

$$R = c \tau / 2 \tag{2}$$

$$F_v = 2f_0V_r/c = 2V_r/\lambda_0$$
 (3)

- А) радиальную скорость движения объекта и дальность объекта;
- Б) дальность объекта и отраженную от объекта частоту;
- В) дальность объекта и доплеровское смещение частоты отраженного сигнала;
- Г) ничего из перечисленного.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1) Для чего нужен антенный переключатель в РЛС?
- А) для того, чтобы иметь возможность работать с несколькими антеннами;
- Б) для того, чтобы передавать сигнал с одной антенны на несколько РЛС;
- В) для того, чтобы не сжечь приемник во время передачи зондирующего импульса;
- Γ) для того, чтобы не сжечь приемник во время паузы между зондирующими импульсами.
- 2) Как называется способность системы наблюдать и распознавать две цели расположенные близко относительно друг друга.
 - А) разрешающая способность;
 - Б) точность измерения координат;
 - В) различающая способность;
 - Г) пропускная способность.
- 3) Что такое радиолокационный сигнал?
 - А) это сигнал, который передает какая либо цель (наземная или воздушная) на РЛС;

- Б) это сигнал, которым РЛС облучает цели близлежащего пространства;
- В) это отраженный от цели сигнал, при облучении ее сигналом РЛС;
- Γ) нет верного ответа.
- 4) Диффузное рассеяние (ненаправленное излучение) возникает...
 - А) ...при размерах облучаемых объектов, кратных нечетному количеству полуволн;
 - Б) ... при облучении "гладких" поверхностей, размеры которых многократно превышают длину волны λ падающей радиоволны;
 - В) ...при облучении больших поверхностей с шероховатостями;
 - Γ) ... при размерах облучаемых объектов, кратных четному количеству полуволн.

5) О чем идет речь?

Площадь поперечного сечения такого воображаемого объекта, который, равномерно (изотропно) рассеивая падающие на него радиоволны, в месте приема создает такую же плотность потока мощности, что и реальная цель.

$$o_{_{\mathrm{II}}} = 4\pi R^2 \frac{\Pi_2}{\Pi_1} \tag{4}$$

- А) эффективная площадь рассеяния;
- Б) площадь облученной цели;
- В) площадь поперечного сечения облученной цели;
- Γ) нет верного ответа.

6) Что иллюстрирует рис.3?

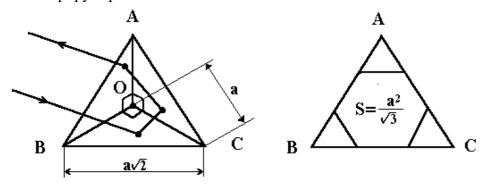


Рисунок 3

- А) конструкцию летательного аппарата;
- Б) конструкцию антенны РЛС;
- В) конструкцию плоского идеального проводящего листа;
- Г) конструкцию зеркального уголкового отражателя (ЗУО).
- 7) К ЭПР простейших объектов можно отнести:
 - А) ЭПР плоского идеального проводящего листа и ЗУО;
 - Б) ЭПР шара и линейного электрического вибратора;
 - В) только ЭПР линейного электрического вибратора;
 - Γ) все из перечисленного.

8) На каком из рис.4 – 6 изображена Модель радиолинии с пассивным ответом?

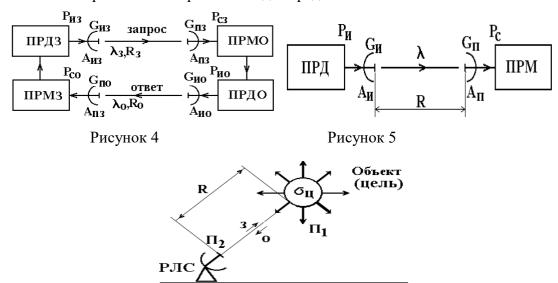


Рисунок 6

- А) на рис.4 и 5
- Б) на рис.4
- В) на рис.6
- Г) на рис.5
- 9) При каком условии в фидерной линии обеспечивается режим бегущей волны?
 - A) если KBB = 0.5;
 - Б) если КСВ = 1;
 - В) если КСВ → 0;
 - Г) если КСВ → ...
- 10) Что за выражение представлено в виде формулы (5)?

$$R_{\text{MAKC}} = \sqrt[4]{\frac{P_{\text{H}}G_{\text{H}}G_{\text{H}}^{2}\sigma_{\text{I}}}{(4\pi)^{3}P_{\text{CMUH}}}}$$
 (5)

- А) основное уравнение радиолокации;
- Б) основное уравнение радиолокации или уравнение дальности РЛС в свободном пространстве;
- В) уравнение дальности РЛС в свободном пространстве;
- Γ) обобщенное уравнение дальности радиолокационного наблюдения в свободном пространстве.
- 11) Дальность действия РЛС в свободном пространстве в наибольшей степени зависит от...
 - А) энергии импульса излучения Е_и;
 - Б) от коэффициентов усиления передающей G_n и приемной G_n антенн;
 - B) от ЭПР объекта σ_{u} ;
 - Γ) от всего перечисленного.

- 12) Существенное влияние на дальность действия РТС оказывает(ют)...
 - А) поглощение и дифракция;
 - Б) рефракция и деполяризация радиоволн на трассе распространения;
 - В) поглощение, рефракция, дифракция и деполяризация радиоволн на трассе распространения;
 - Г) влияние подстилающей поверхности.

13) О чем идет речь?

Изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

- А) о доплеровском набеге частоты;
- Б) о набеге фазы;
- В) об эффекте Миллера;
- Г) ответы А) и Б).
- 14) Рефракция радиоволн в атмосфере это...
 - А) наложение волн;
 - Б) огибание препятствий волнами с длиной волны большей, чем эти препятствия;
 - В) криволинейная траектория их распространения из-за атмосферных помех;
- Г) криволинейная траектория их распространения из-за неоднородностей среды.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1) Что такое радионавигационный параметр (РНП)?
 - А) тактический параметр РЛС;
 - Б) технический параметр РЛС;
 - В) параметр радиосигнала, несущий информацию о координате или скорости объекта:
 - Г) параметр радиосигнала РЛС, зондирующего заданную область пространства.
- 2) Продолжите фразу:

Погрешность определения поверхности положения оценивают ...

- А) ... отрезком нормали l между поверхностями положения, соответствующими истинному и измеренному значениям РНП;
- Б) ... точкой пересечения поверхностей положения, соответствующих истинному и измеренному значениям РНП;
- В) ... точкой пересечения по крайней мере двух линий положения различных семейств;
- Γ) нет верного ответа.
- 3) При определении координат объекта позиционным методом, точность нахождения местоположения растет ...
 - А) при уменьшении погрешностей определения линий положения;
 - Б) при приближении угла пересечения линий положения к 90° ;

- В) при А) и Б)
- Γ) при приближении угла между линиями положения к 0° .
- 4) О чем идет речь?
 - ... часть пространства (поверхности), в пределах которой обеспечивается нахождение координат объекта с погрешность, не превышающей максимальную.
 - А) рабочая зона РТС;
 - Б) рабочая зона радионавигационной станции (РНС);
 - В) зона покрытия РЛС;
 - Г) зона покрытия базовой станции.
- 5) Какие бывают виды РНС?
 - А) дальномерные и разностно-дальномерные;
 - Б) угломерные и дальномерные;
 - В) угломерно-дальномерные и разностно-дальномерные;
 - Γ) все перечисленные.
- 6) В диапазоне гектометровых волн (средних) под воздействием неоднородностей подстилающей поверхности и атмосферы наблюдается зависимость фазовой скорости распространения от частоты. Как называется данное явление?
 - А) дифракция скорости распространения;
 - Б) дисперсия скорости распространения;
 - В) доплеровский набег частоты;
 - Γ) нет верного ответа.
- 7) В чем РЛС осуществляет поиск сигнала (рабочая зона в радиолокации)?
 - А) в зоне покрытия;
 - Б) в секторе обзора;
 - В) А) или Б);
 - Г) любой из вариантов.
- 8) Что можно вычислить с помощью формулы 1?

$$T_{\mathbf{o}} \ge \frac{2D_{max}}{c} \frac{\theta_{\alpha}}{\alpha_{A}} \frac{\theta_{\beta}}{\beta_{A}} N \tag{1}$$

- А) период обращения антенны РЛС;
- Б) время приема отраженного сигнала;
- В) время, необходимое для обзора заданного объема пространства;
- Г) время, необходимое для передачи и получения отраженного от цели сигнала.
- 9) В каком случае ширина диаграммы направленности антенны (ДНА) РЛС в горизонтальной плоскости будет шире?
 - А) если РЛС кругового обзора;
 - Б) если РЛС с секторным обзором;
 - В) не имеет значения;
 - Г) другой ответ.

10) Что иллюстрируют рис. 1 и 2 соответственно?

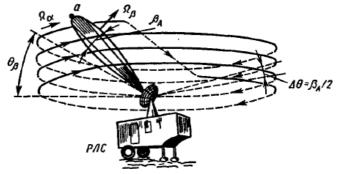


Рисунок 1

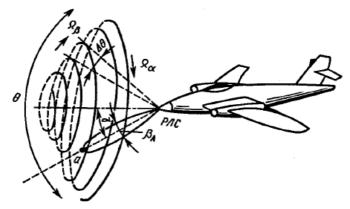


Рисунок 2

- А) работу РЛС с круговым и винтовым обзором;
- Б) работу РЛС с винтовым обзором и секторным;
- В) работу РЛС с винтовым и спиральным обзором;
- Г) работу РЛС со спиральным и секторным обзором.
- 11) Какая из антенн (антенных систем) наиболее эффективна при использовании ее в радиолокации?
 - А) фазированная антенная решетка (ФАР);
 - Б) плоская антенная решетка;
 - В) круговая антенная решетка;
 - Г) параболическая антенна.
- 12) Что такое пассивные помехи в радиолокации?
 - А) сигналы, отраженные от цели;
 - Б) сигналы сторонних излучателей (н-р радиостанций);
 - В) сигналы РЛС, отраженные от мешающих объектов (от всего, кроме цели);
 - Г) атмосферные шумы.
- 13) Чем так важен доплеровский эффект, если речь идет о селекции движущихся целей (СДЦ)?

- А) важен тем, что, с помощью этого эффекта возможно определить набег частоты сигнала, отраженного от цели, а далее, считая все остальные объекты пассивными, отфильтровать все, что возвращают мешающие объекты;
- Б) важен тем, что позволяет определить смещение частоты сигнала, отраженного от статичной помехи, а далее произвести селекцию всех сигналов на приеме;
- В) ничем не важен, хоть и имеет место при отражениях от динамических целей;
- Γ) ничем не важен, так как имеет место лишь при отражениях от статических целей;
- 14) Вставьте числа из табл.1, соответствующие пропущенным словам (фразам): Спектр импульсного сигнала, отраженного статичным объектом ...(?) 1 ..., а спектр импульсного сигнала, отраженного движущимся объектом ...(?) 2 ... при удалении объекта или ...(?) 3 ... при его приближении.

Таблица 1

(1)	переносится вверх по частоте
(2)	сжимается
(3)	не может совпадать со спектром зондирующего
(4)	переносится вниз по частоте
(5)	совпадает со спектром зондирующего
(6)	растягивается

- A) (3), (1), (4);
- Б) (5), (6), (2);
- B) (2), (4),(1);
- Γ) (5), (2), (6).
- 15) Какой из методов наиболее эффективен при применении его в системах селекции движущихся целей (СДЦ)?
 - А) устранение зон слепых скоростей;
 - Б) формирование карты мешающих отражений ОЗУ;
 - В) адаптивная компенсация помех;
 - Г) все перечисленные методы наиболее эффективны среди других

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1.Основные виды РТС ПИ: радиорелейные, спутниковые, космические, тропосферные, ионосферные и метеорные.
 - 2. Модели каналов связи без помех и с помехами; канал со стиранием.
- 3. Применение в СПИ относительной фазовой манипуляции. Схема когерентного и некогерентного приема.
- 4. Классификация многоканальных СПИ. Принцип линейного и нелинейного уплотнения каналов. Примеры.
 - 5. Частное количество информации и его свойства.
 - 6. Методы разнесённого приёма и их характеристика.
- 7. Основы теории линейного разделения каналов (вывод). Линейно-независимые сигналы.
 - 8. Полная информация и её свойства.

- 9. Активный метод борьбы с многолучёвостью.
- 10. Линейное уплотнение и разделение каналов. Функциональная схема, принцип работы.
 - 11. Собственная информация источника и его энтропия; свойства энтропии.
 - 12. Примеры эквалайзинга при многолучёвом распространении радиоволн.
- 13. Частотное разделение каналов. Закреплённые и незакреплённые частоты. Система "Алтай".
 - 14. Энтропия двоичного источника.
 - 15. Дальность действия в радиолокации. Основное уравнение дальности (вывод).
 - 16. Временное разделение каналов. Принцип ИКМ.
- 17. Производительность и избыточность источника. Пример избыточного сообщения.
 - 18. Методы определения местоположения в РТС.
 - 19. Разделение каналов по форме сигналов.
 - 20. Энтропия непрерывного источника.
- 21. Комбинационное уплотнение каналов. Определение. Принцип работы схемы. Помехоустойчивость.
- 22. Свойство приведённой энтропии, касающееся её максимальных значений (вывод).
- 23. Комбинационное уплотнение каналов: двойная частотная и фазовая телеграфия. Сравнительные их характеристики.
 - 24. Условная энтропия и её свойства.
- 25. Мажоритарное уплотнение каналов. Принцип формирования группового сигнала и его особенность. Разделение каналов при приёме. Помехоустойчивость по сравнению с линейными методами уплотнения.
 - 26. Основное уравнение теории информации.
 - 27. Активные методы борьбы с многолучевостью.
- 28. Юсновы теории линейного разделения каналов (вывод). Линейная независимость сигналов. Пример линейно-независимых сигналов.
 - 29. Пропускная способность двоичного симметричного канала (вывод).
- 30. Классификация многоканальных СПИ. Принцип линейного и нелинейного уплотнения каналов. Примеры.
 - 31. Пропускная способность гауссовского канала (вывод). Предельные соотношения.
 - 32. Линейное уплотнение каналов. Функциональная схема СПИ. Принцип работы.
 - 33. Теорема кодирования для канала с помехами.
 - 34. Собственная информация источника.
- 35. Частотное разделение каналов. Закрепленные и незакрепленные частоты. Система "Алтай".
 - 16. Теорема кодирования для канала без помех.
- 37. Основы теории линейного разделения каналов (вывод). Линейная независимость сигналов. Пример линейно-независимых сигналов.
 - 38. Пример безизбыточного кодирования независимых букв источника.
 - 39. Временное разделение каналов. Принцип ИКМ.
 - 40. Энтропия двоичного источника (вывод).
 - 41. Полная информация и её свойства.
 - 42. Активный метод борьбы с многолучёвостью.
- 43. Линейное уплотнение и разделение каналов. Функциональная схема, принцип работы.
 - 44. Собственная информация источника и его энтропия; свойства энтропии.
 - 45. Примеры эквалайзинга при многолучёвом распространении радиоволн.
- 46. Частотное разделение каналов. Закреплённые и незакреплённые частоты. Система "Алтай".

- 47. Энтропия двоичного источника.
- 48. Дальность действия в радиолокации. Основное уравнение дальности (вывод).
- 49. Временное разделение каналов. Принцип ИКМ.
- 50. Производительность и избыточность источника. Пример избыточного сообщения.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Не предусмотрено учебным планом

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 10 вопросов, 10 стандартных задач и 10 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов -30.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 16 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 16 до 20 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 21 до 25 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 26 до 30 баллов.

7.2.7 Паспорт оценочных материалов

No	Контролируемые разде-	Код контролируемой	Наименование
Π/Π	лы (темы) дисциплины	компетенции (или ее	оценочного сред-
		части)	ства
1	Общие сведения о РТС.	ОПК-3 ПК-9	Тест, зачет, уст-
	Представление		ный опрос
	сигналов и помех.		
2	Радиолокационные и радио-	ОПК-3, ПК-9	Тест, зачет, уст-
	навигационные системы		ный опрос
3	Радиосистемы передачи ин-	ОПК-3, ПК-9	Тест, зачет, уст-
	формации	·	ный опрос
4	Радиосистемы управления	ОПК-3, ПК-9	Тест, зачет, уст-
			ный опрос
5	Системы разрушения ин-	ОПК-3, ПК-9	Тест, зачет, уст-
3	формации	OIIK-3, IIK-9	l ' '
	формации		ный опрос
6	Методы проектирования	ОПК-3, ПК-9	Тест, зачет, уст-
	PTC		ный опрос

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Под ред.	Радиотехнические системы (5 экз)	2008.
Ю.М. Казари-	621.37/39 P154	печат
нова.		
Васин В.А. и	Радиосистемы передачи информации (25 экз)	2005
др.	621.396.9 P154	печат
	2. Дополнительная литература	
Бессарабова А.А.	Системы передачи информации с кодовым разде-	2006
Ледовских	лением каналов (39 экз) 621.396 Б535	печат.
В.И.		
Бессарабова А.А.	Псевдослучайные двоичные последовательности	2006
Ледовских	(25 экз) 621.396 Б535	печат.
В.И.		
	3. Методическая литература	
Володько А.В.	Основы теории радиолокационных систем и ком-	2018
	плексов. Практикум и сборник задач : учеб. посо-	печат
	бие /А.В. Володько. Воронеж: ФГБОУ ВО «Воро-	
	нежский государственный технический универси-	
	TeT»,	

А. В. Володько,	«Кодирование в радиотехнических системах пере-	2018
	дачи информации. Методические указания по	печат.
	дисциплине «Радиотехнические системы» для	
	студентов специальности 11.03.01 «Радиотехни-	
	ка» очной формы обучения». Воронеж,	
Володько А.В.	Основы теории радиолокационных систем и ком-	2018
	плексов. Практикум и сборник задач: учеб. посо-	печат
	бие /А.В. Володько. Воронеж: ФГБОУ ВО «Воро-	
	нежский государственный технический универси-	
	TeT»,	

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Рекомендуются следующие электронные библиотеки

http://www.oglibrary.ru/data/index.htm

http://djvu-inf.narod.ru/trlib.htm

http://umup.narod.ru

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная плакатами и пособиями по профилю.

9.1 . Учебная лаборатория «Радиотехнические системы», включающие в рабочие места с приборами и оборудованием, магистральный радиоприемник Р-399, внешняя приемная антенна, коаксиальная фидерная система, персональный компьютер

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Освоение дисциплины оценивается на зачете.

Вид учебных	Деятельность студента
занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Подготовка к за-	При подготовке к зачету необходимо ориентироваться на конспекты
чету	лекций, рекомендуемую литературу и решение задач на практиче-
	ских занятиях.