МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
И.о. декана ФМАТ В.И. Ряжских

«28» августа 2017 г.

РАБОЧАЯ ПРОГРАММА дисциплины (модуля) «Математика»

Направление подготовки 15.03.05 — Конструкторско-технологическое обеспечение машиностроительных производств
Профиль Технология машиностроения
Квалификация выпускника Бакалавр
Нормативный период обучения 4 года / 5 лет
Форма обучения Очная / Заочная
Год начала подготовки 2017 г.

Автор программы	/ Соколова О.А./
Заведующий кафедрой прикладной математики и	механики/ Ряжских В. И. /
Руководитель ОПОП	/ Смоленцев Е.В. /

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Цель высокой изучения дисциплины: воспитание достаточно математической культуры, привитие навыков современных видов математического мышления, использование математических методов в практической деятельности, развитие способностей к логическому и алгоритмическому мышлению. Изучение дисциплины должно способствовать формированию у студентов основ научного мышления, в том числе: пониманию границ применимости математических понятий и теорий; умению оценивать степень достоверности результатов экспериментальных исследований; математический эксперимент и обрабатывать его результаты с использованием современных методов.

1.2. Задачи освоения дисциплины

Дать ясное понимание необходимости математического образования в общей подготовке инженера; научить умению логически мыслить, оперировать с абстрактными объектами и быть корректным в употреблении математических понятий, символов для выражения количественных и качественных отношений; дать достаточную общность математических понятий и конструкций, обеспечивающую широкий спектр их применимости, разумную точность формулировок математических свойств изучаемых объектов, логическую строгость изложения математики, опирающуюся на адекватный современный математический язык; научить умению использовать основные понятия и методы линейной алгебры, аналитической геометрии, математического анализа.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Математика» относится к дисциплинам обязательной части блока Б1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Математика» направлен на формирование следующих компетенций:

ОПК-1 - Способность использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-1	знать линейную алгебру и аналитическую геометрию; дифференциальное исчисление функций одной и нескольких переменных; интегральное исчисление; дифференциальные уравнения. уметь применять математические методы для решения практических задач в области конструкторскотехнологического обеспечения машиностроительных производств.
	владеть базовыми знаниями в области линейной алгебры, аналитической геометрии, математического анализа для решения математических задач в своей предметной области

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Математика» составляет 11 зачетных единиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего		Семес	тры	
	часов	1	2		
Аудиторные занятия (всего)	126	72	54		
В том числе:					
Лекции	72	36	36		
Практические занятия (ПЗ)	54	36	18		
Лабораторные работы (ЛР)	-	-	-		
Самостоятельная работа	207	54	153		
Курсовой проект	-	-	-		
Контрольная работа	-	-	-		
Вид промежуточной аттестации – экзамен	63	36	27		
		экз	экз		
Общая трудоемкость час	396	162	234		
зач. ед.	11	4,5	6,5		

Заочная форма обучения

Вид учебной работы	Всего		Семес	тры	
	часов	1	2	3	4
Аудиторные занятия (всего)	70	16	14	20	20
В том числе:					
Лекции	34	8	6	10	10
Практические занятия (ПЗ)	36	8	8	10	10
Лабораторные работы (ЛР)	-	-	-	-	-
Самостоятельная работа	308	80	61	90	77
Курсовой проект	-	-	-	-	-
Контрольная работа	+	+	+	+	+
Вид промежуточной аттестации – экзамен	18	-	9		9
			ЭКЗ	_	ЭКЗ
Общая трудоемкость час	396	96	84	110	106
зач. ед.	11	2,7	2,3	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

No	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Bce
Π/Π				зан.	зан.		го,
							час
1	Линейная алгебра	Матрицы, операции над матрицами. Определители второго и третьего порядков, их свойства. Системы уравнений. Правило Крамера. Обратная матрица. Матричный способ решения систем линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений методом Гаусса.	6	6	-	8	20
2	Векторная алгебра	Векторы, простейшие операции над векторами. Линейная зависимость векторов. Базис. Разложение вектора по базису. Скалярное, векторное и смешанное произведение векторов и их свойства.	4	4	-	6	14
3	Аналитическая гео- метрия	Общее уравнение плоскости с заданной нормалью, проходящей через данную точку, через три заданные точки. Условия параллельности, перпендикулярности плоскостей, угол между ними. Прямая в пространстве. Взаимное расположение прямой и плоскости. Уравнение прямой линии на плоскости. Полярная система координат. Кривые второго порядка: эллипс, гипербола, парабола. Приведение общих уравнений второго порядка к каноническому виду.	8	8	-	8	24
4	Предел и непрерыв- ность функции	Функция. Способы задания функции. Основные элементарные функции. Предел функции, его свойства. Непрерывность функции. Односторонние пределы. Классификация точек разрыва. Свойства непрерывных функций. Первый и второй замечательные пределы. Простейшие типы неопределенностей и способы их раскрытия. Бесконечно большие и бесконечно малые величины и их свойства. Сравнение бесконечно	6	6	-	10	22

	малых величин.					
5 Производная и ди ференциал. Исслед вание функции	Производная, ее геометрический и физический смысл. Основные правила дифференцирования. Таблица производных. Дифференцирование сложных функций. Производная неявной и параметрически заданной функции. Производные высших порядков. Дифференциал и его свойства. Геометрический смысл дифференциала. Дифференциалы высших порядков. Правило Лопиталя. Возрастание и убывание функции. Экстремумы. Выпуклость и вогнутость графика функции. Асимптоты. Общая схема построения графика функции. Формула Тейлора. Разложение функций по формуле Тейлора.	6	6	-	12	24
б Функции несколька переменных	непрерывность функции двух переменных. Частные производные, их геометрический смысл. Дифференциал функции двух переменных, его геометрический смысл. Частные производные и дифференциалы высших порядков. Производная по направлению, градиент. Свойства градиента. Экстремум функции двух переменных. Наименьшее и наибольшее значение функции в замкнутой области.	6	6	-	10	22
7 Неопределенный и теграл	Первообразная и неопределенный интеграл. Свойства неопределенного интеграла. Таблица интегралов. Замена переменной в неопределенном интеграле. Интегрирование по частям в неопределенном интеграле. Алгебра многочленов. Рациональные дроби. Простейшие рациональные дроби и их интегрирование. Интегрирование рациональных дробей. Метод неопределенных коэффициентов. Интегрирование тригонометрических выражений. Интегрирование иррациональных выражений.	12	8	-	50	54
8 Определенный инт грал и его приложени	е- Определенный интеграл и его свойства. Инте-	8	4	-	45	50
9 Комплексные числа	Алгебраическая и тригонометрическая форма комплексного числа. Действия над комплексными числами. Формулы Эйлера. Функция комплексного переменного. Производная функции комплексного переменного.	2	-	-	8	10
10 Дифференциальные уравнения	Обыкновенные дифференциальные уравнения первого порядка. Задача Коши. Уравнения с разделяющими переменными. Однородные уравнения первого порядка Линейные уравнения первого порядка. Уравнения Бернулли Дифференциальные уравнения высших порядков. Уравнения, допускающие понижение порядка. Линейные однородные уравнения с постоянными коэффициентами. Характеристическое уравнение. Линейные неоднородные уравнения с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами.	14	6	-	50	84
	инивии коэффициентами.			I		

заочная форма обучения

№ π/π	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Все го, час
1	Линейная алгебра	Матрицы, операции над матрицами. Определители второго и третьего порядков, их свойства. Системы уравнений. Правило Крамера. Обратная матрица. Матричный способ решения систем линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений методом Гаусса.	2	4	-	30	34
2	Векторная алгебра	Векторы, простейшие операции над векторами. Линейная зависимость векторов. Базис. Разложение вектора по базису. Скалярное, векторное и смешанное произведение векторов и их свойства.	2	2	-	20	24
3	Аналитическая гео- метрия	Общее уравнение плоскости с заданной нормалью, проходящей через данную точку, через три заданные точки. Условия параллельности, перпендикулярности плоскостей, угол между ними. Прямая в пространстве. Взаимное расположение прямой и плоскости. Уравнение прямой линии на плоскости. Полярная система координат. Кривые второго порядка: эллипс, гипербола, парабола. Приведение общих уравнений второго порядка к каноническому виду.	4	2	-	30	36
4	Предел и непрерыв- ность функции	Функция. Способы задания функции. Основные элементарные функции. Предел функции, его свойства. Непрерывность функции. Односторонние пределы. Классификация точек разрыва. Свойства непрерывных функций. Первый и второй замечательные пределы. Простейшие типы неопределенностей и способы их раскрытия. Бесконечно большие и бесконечно малые величины и их свойства. Сравнение бесконечно малых величин.	2	2	-	20	24
5	Производная и дифференциал. Исследование функции	Производная, ее геометрический и физический смысл. Основные правила дифференцирования. Таблица производных. Дифференцирование сложных функций. Производная неявной и параметрически заданной функции. Производные высших порядков. Дифференциал и его свойства. Геометрический смысл дифференциала. Дифференциалы высших порядков. Правило Лопиталя. Возрастание и убывание функции. Экстремумы. Выпуклость и вогнутость графика функции. Асимптоты. Общая схема построения графика функции. Формула Тейлора. Разложение функций по формуле Тейлора.	2	4		21	27
6	Функции нескольких переменных	Функция нескольких переменных. Предел и непрерывность функции двух переменных. Частные производные, их геометрический смысл. Дифференциал функции двух переменных, его геометрический смысл. Частные производные и дифференциалы высших порядков. Производная по направлению, градиент. Свойства градиента. Экстремум функции двух переменных. Наименьшее и наибольшее значение функции в замкнутой области.	2	2		20	24
7	Неопределенный ин- теграл	Первообразная и неопределенный интеграл. Свойства неопределенного интеграла. Таблица интегралов. Замена переменной в неопределенном интеграле. Интегрирование по частям в неопределенном интеграле. Алгебра многочленов. Рациональные дроби. Простейшие рациональные дроби и их интегрирование. Интегрирование рациональных дробей. Метод неопределенных коэффициентов. Интегрирование	6	6	-	45	57

Ник иррациональных выражений. Определенный интеграл и его свойства. Интеграл и его приложения Определенным нерхими пределем. Формула Ньютона-Лейбница. Замена переменной и интеграриование по частям в определенном интеграла. Вычисление площади плоской фигуры в декартовых и полярных координатах. Вычисление длины дути. Вычисление площади поверхности с помощью определенного интеграла. Несобственные интегралы первого и второго рода. Алгебраическая и тригонометрическая форма комплексного числа. Действия над комплексными числами. Формулы Эйлера. Функция комплексного переменного. Производная функции комплексного переменного. Производная функции комплексного переменного. Обыкновенные дифференциальные уравнения первого порядка. Задача Копи. Уравнения с разделяющими переменными. Однородные уравнения первого порядка. Уравнения Бернуллы. Дифференциальные уравнения высших порядков. Уравнения, допускающие понижение порядка. Линейные однородные уравнения с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами. Уравнений с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами и правой частью специальнох уравнений с постоянной системы линейных дифференциальных уравнений с постоянной спетами и правой частью специальнох уравнений с постоянной состоянными коэффициентами и правой частью специальных уравнений с постоянными коэффициентами и правой частью специальнох уравнений с постоянными коэффициентами и правой частью специальнох уравнения с постоянными коэффициентами и правой частью специальнох у			v 11		l			1
Определенный интеграл и его свойства. Интеграл и его приложения			тригонометрических выражений. Интегрирова-					
грал и его приложения грал с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определенном интеграле. Приложения определенного интеграла. Вычисление площади плоской фигуры в декартовых и полярных координатах. Вычисление длины дуги. Вычисление объемов тел вращения. Вычисление площади поверхности с помощью определенного интегралы. Несобственные интегралы первого и второго рода. Ялгебраическая и тригонометрическая форма комплексного числа. Действия над комплексными числами. Формулы Эйлера. Функция комплексного переменного. Производная функции комплексного переменного. Обыкновенные дифференциальные уравнения гервого порядка. Задача Копш. Уравнения с разделяющими переменными. Однородные уравнения первого порядка. Линейные уравнения первого порядка. Линейные уравнения первого порядка. Уравнения Бернулли. Дифференциальные уравнения с постоянными коэффициентами. Характеристическое уравнение. Линейные недину с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной с постоянной с постоянной коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной с постоянной с постоянной коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной с постоянной коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной с постоянной коэффициентами и правой частью специального вида.								
комплексного числа. Действия над комплексными числами. Формулы Эйлера. Функция комплексного переменного. Производная функции комплексного переменного. По Дифференциальные уравнения первого порядка. Задача Коши. Уравнения с разделяющими переменными. Однородные уравнения первого порядка. Уравнения Бернулли Дифференциальные уравнения высших порядков. Уравнения, допускающие понижение порядка. Линейные однородные уравнения с постоянными коэффициентами. Характеристическое уравнение. Линейные неоднородные уравнения с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами.	8	•	грал с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определенном интеграле. Приложения определенного интеграла. Вычисление площади плоской фигуры в декартовых и полярных координатах. Вычисление длины дуги. Вычисление объемов тел вращения. Вычисление площади поверхности с помощью определенного интеграла. Несобственные инте-	4	4	-	45	53
уравнения первого порядка. Задача Коши. Уравнения с разделяющими переменными. Однородные уравнения первого порядка Линейные уравнения Бернулли Дифференциальные уравнения высших порядков. Уравнения, допускающие понижение порядка. Линейные однородные уравнения с постоянными коэффициентами. Характеристическое уравнение. Линейные неоднородные уравнения с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с постоянными коэффициентами.	9	Комплексные числа	Алгебраическая и тригонометрическая форма комплексного числа. Действия над комплексными числами. Формулы Эйлера. Функция комплексного переменного. Производная функ-	2	2		10	14
Итого 34 36 - 308 396	10		первого порядка. Задача Коши. Уравнения с разделяющими переменными. Однородные уравнения первого порядка Линейные уравнения первого порядка. Уравнения Бернулли Дифференциальные уравнения высших порядков. Уравнения, допускающие понижение порядка. Линейные однородные уравнения с постоянными коэффициентами. Характеристическое уравнение. Линейные неоднородные уравнения с постоянными коэффициентами и правой частью специального вида. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений с посто-	8	8		67	83
			Итого	34	36	_	308	396

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Для **заочной формы** обучения учебным планом предусмотрено выполнение контрольных работ в 1,2,3и 4 семестрах.

Примерная тематика контрольных работ :

К.р.№1 «Элементы аналитической геометрии и линейной алгебры».

К.р.№2 «Введение в анализ. Техника дифференцирования».

К.р.№3 «Неопределенный и определенный интеграл».

К.р.№4 «Дифференциальные уравнения».

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»; «не аттестован».

Компетенция	Результаты обучения,, характеризующие сформированность компе- тенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	знать линейную алгебру и аналитическую гео- метрию; дифференци- альное исчисление функций одной и не- скольких переменных; интегральное исчисле- ние; дифференциальные уравнения.	Активная работа на практиче- ских занятиях	Выполнение работ, предусмотренных в рабочей программе	Невыполнение работ, предусмотренных в рабочей программе
	уметь применять математические методы для решения практических задач в области конструкторскотехнологического обеспечения машиностроительных производств.	Решение стандартных практических задач	Выполнение работ, предусмотренных в рабочей программе	Невыполнение работ, предусмотренных в рабочей программе
	владеть базовыми знаниями в области линейной алгебры, аналитической геометрии, математического анализа для решения математических задач в своей предметной области	Решение прикладных задач в конкретной предметной области	Выполнение работ, предусмотренных в рабочей программе	Невыполнение работ, предусмотренных в рабочей программе

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 1 и во 2 семестрах для очной формы обучения по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компетенция	Результаты обуче-	Критерии	Отлично	Хорошо	Удовл	Неудовл
	ния, характеризую-	оценивания				
	щие					
	сформированность					
	компетенции					
ОПК-1	знать линейную	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	алгебру и аналити-		теста на	теста на	теста на	нее 70% пра-
	ческую геометрию;		90- 100%	80- 90%	70-80%	вильных от-
	дифференциальное					ветов
	исчисление функ-					
	ций одной и не-					
	скольких перемен-					
	ных; интегральное					
	исчисление; диффе-					
	ренциальные урав-					
	нения.					
	уметь применять	Решение	Задачи реше-	Продемон-	Продемон-	Задачи не

математические	стандарт-	ны в полном	стрирован вер-	стрирован	решены
методы для реше-	ных прак-	объеме и по-	ный ход реше-	верный ход	
ния практических	тических	лучены вер-	ния всех, но не	решения в	
задач в области	задач	ные ответы	получен вер-	большинстве	
конструкторско-			ный ответ во	задач	
технологического			всех задачах		
обеспечения ма-					
шиностроитель-					
ных производств.					
владеть базовыми	Решение	Задачи реше-	Продемон-	Продемон-	Задачи не
знаниями в обла-	прикладных	ны в полном	стрирован вер-	стрирован	решены
сти линейной ал-	задач в кон-	объеме и по-	ный ход реше-	верный ход	
гебры, аналитиче-	кретной	лучены вер-	ния всех, но не	решения в	
ской геометрии,	предметной	ные ответы	получен вер-	большинстве	
математического	области		ный ответ во	задач	
анализа для реше-			всех задачах		
ния математиче-					
ских задач в сво-					
ей предметной					
области.					

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1 семестр Тестовое задание №1

1. Дана матрица $A = \begin{pmatrix} 6 & -2 & 1 \\ 2 & 1 & 4 \\ -3 & 5 & -2 \end{pmatrix}$. Тогда сумма элементов, расположенных на

главной диагонали этой матрицы, равна...

- 1) 5; 2) -1; 3) 2; 4) 7. 2. Выражение AB + 3A, где $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ и $B = \begin{pmatrix} 4 & 1 \\ 2 & 5 \end{pmatrix}$ равно ...

$$1)\begin{pmatrix} 23 & 11 \\ 17 & 23 \end{pmatrix}; \quad 2)\begin{pmatrix} 11 & 17 \\ 23 & 11 \end{pmatrix}; \quad 3)\begin{pmatrix} 17 & 11 \\ 23 & 11 \end{pmatrix}; \quad 4)\begin{pmatrix} 23 & 17 \\ 17 & 11 \end{pmatrix}.$$

- 3. Определитель $\begin{vmatrix} 2 & -1 & 3 \\ 1 & 0 & 1 \\ 2 & 5 & 1 \end{vmatrix}$ равен ...
 - 1) 4; 2) 3; 3) 5; 4) 2.

- 4. Определитель $\begin{vmatrix} 1 & 1 \\ 5 & 3\alpha 4 \end{vmatrix}$ равен 0, при $\alpha = \dots$
 - 2) 0; 3) 3; 4) -1. 1) 1;

- 5. Сколько решений имеет система $\begin{cases} 2x y + 3z + 1 = 0, \\ 5x + 7y z + 2 = 0. \end{cases}$

- 1) нет решений; 2) два; 3) множество?
- 6. Если $(x_0; y_0)$ решение системы линейных уравнений

$$\begin{cases} 2x + 3y = -1 \\ 3x - y = 4 \end{cases}$$
, тогда $x_0 - y_0$ равно...

- 1) 0; 2) 1; 3) 2; 4) 3.
- 7. Система $\begin{cases} x+y-z=0, & \text{имеет решения ...} \\ 2x-y+3z=9, \\ -x+3y+z=8 \\ 2) & \text{множество решений;} \end{cases}$

 - 3) (2;1;3);
- 8. Расстояние между точками A(5;2) и B(2;k) равно 3, при k = ...
- 2) 2; 3) 3; 4) 4.

- 9. Длина вектора $\bar{c} = 3\bar{b} \bar{a}$, где $\bar{a} = \{1;4;-2\}u\ \bar{b} = \{-1;0;1\}$, равна ...
- 1) $\sqrt{82}$: 2) $\sqrt{57}$: 3) $\sqrt{31}$: 4) $\sqrt{23}$.
- 10. Коллинеарны ли вектора \overline{AB} и \overline{CD} , де A(2;-4;3), B(1;2;1), C(5;1;-2), D(-1;0;-3)?
 - 1) да; 2) нет.
- 12. Угол между векторами $\overline{a} = \overline{i} + \overline{j}$ и $\overline{b} = -\overline{i} 2\overline{j} + 2\overline{k}$ равен:
 - 1) 45° ;

- 2) 60° ; 3) 90° ; 4) 135° .
- 13. Прямая проходит через точки A(1;1) и B(2;-4). Тогда ее угловой коэффициент равен...
 - 1) -5;
- 2) 5; 3) 0;
- 4) 1.
- 14. Нормальный вектор плоскости x-3y+5z-1=0 имеет координаты ...
 - 1) (1;-1;0);

- 2) (3;1;5); 3) (1;-3;5); 4) (1;5;-1).
- 15. Уравнение прямой, перпендикулярной плоскости x 2y + 3z 2 = 0и проходящей через точку A(4;8;-1) ...

1)
$$\frac{x-1}{2} = \frac{y+3}{-3} = \frac{z+5}{1}$$
; 2) $\frac{x-4}{-1} = \frac{y-8}{7} = \frac{z+1}{5}$;

3)
$$\frac{x-4}{1} = \frac{8-y}{2} = \frac{z+1}{3}$$
; 4) $\frac{x-1}{4} = \frac{y+2}{8} = \frac{z-3}{-1}$.

16. Дан треугольник ABC, A(1;1;3), B(2;-1;-4), C(-5;3;6). Сторона AB описывается уравнением ...

1)
$$\frac{x-1}{3} = \frac{y-2}{4} = \frac{z+5}{6}$$
; 2) $\frac{x-1}{3} = \frac{y-1}{2} = \frac{z-3}{1}$;

3)
$$\frac{x-1}{-1} = \frac{y-1}{2} = \frac{z-3}{7}$$
; 4) $\frac{x-2}{4} = \frac{y+1}{2} = \frac{z+4}{1}$.

17. Эллипс описывается уравнением ... 1) $x^2 - 3y^2 + x - 4y + 2 = 0$; 2) $2x^2 + y^2 - 4y - 1 = 0$;

1)
$$x^2 - 3y^2 + x - 4y + 2 = 0$$
;

2)
$$2x^2 + y^2 - 4y - 1 = 0$$
;

3)
$$x^2 - 2x + 5y + 1 = 0$$
;

4)
$$2x - 4y - z - 5 = 0$$
.

18. Если уравнение гиперболы имеет вид $\frac{x^2}{9} - \frac{y^2}{25} = 1$, то длина ее действительной полуоси равна ...

Тестовое задание №2

1. Значение предела $\lim_{x \to \infty} \frac{3x^4 + 4x^3 - 1}{9x^4 - x^2 + 2}$ равно ...

1) 0; 2) 3; 3)
$$\frac{1}{3}$$
 4) ∞ .

2. Значение предела $\lim_{x\to 0} \frac{\sin^2 4x}{2x^2}$ равно ...

1) 4; 2) 8; 3) 0; 4)
$$\infty$$
.

3. Значение предела $\lim_{x\to\infty} \left(1+\frac{4}{x}\right)^x$ равно ...

1) 1; 2)
$$\infty$$
; 3) $e^{\frac{1}{4}}$; 4) e^4 .

1) 1; 2) ∞ ; 3) $e^{\frac{1}{4}}$; 4) e^4 . 4. Значение предела $\lim_{x\to 1} \frac{x^2+4x-5}{x^2-1}$ равно ...

5. Производная функции $y = \frac{x^4}{4} - \frac{5}{x} + 1$ равна ...

1)
$$x^3 - 5$$
; 2) $x^3 - 5 \ln x$; 3) $x^3 + \frac{5}{x^2}$; 4) $\frac{x^3}{16} - \frac{5}{x^2}$.

6. Производная произведения $x \ln(x^3)$ равна ...

1)
$$\ln(x^3) + \frac{1}{x^2}$$
; 2) $\ln(x^3) + \frac{3}{x^3}$; 3) $\ln(x^3) + 3$; 4) $x + \frac{3}{x^2}$.

7. Производная частного $\frac{x^2}{r^2+3}$ равна ...

1)
$$\frac{6x}{(x^2+3)^2}$$
; 2) $\frac{6x}{x^2+3}$; 3) $\frac{4x^3+6x}{(x^2+3)^2}$; 4) $\frac{2x^2+3}{x^2+3}$.

8. Угловой коэффициент касательной к функции $y = 5x^4 - x + 3$ в точке (1;2) равен

...

1) 20; 2) 7; 3) 79; 4) 19.

9. Функция $y = \frac{x+2}{x-1}$ в точке (2;4) имеет ...

1) максимум; 2) минимум; 3) возрастает; 4) убывает.

10. Частная производная функции $z = tg \frac{x}{y}$ по переменной у равна ...

1)
$$\frac{x}{\cos^2 \frac{x}{y}}$$
; 2) $-\frac{x}{\cos^2 \frac{x}{y}}$; 3) $-\frac{x}{y^2 \cos^2 \frac{x}{y}}$; 4) $\frac{y^2 x}{\cos^2 \frac{x}{y}}$.

11. Градиент скалярного поля $u = x^2y + 3xy^2 - 4z^5$ в точке A(1;1;0) имеет вид ...

1)
$$\bar{i} - 2\bar{j} + \bar{k}$$
; 2) $5\bar{i} + 7\bar{j}$; 3) $3\bar{i} - \bar{k}$; 4) $5\bar{i} + 7\bar{j} + \bar{k}$.

2 семестр

Тестовое задание №3

1. Множество первообразных функций sin(4x+1) имеет вид

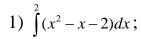
1)
$$\cos(4x+1)+c$$
; 2) $-\cos(4x+1)+c$; 3) $4\cos(4x+1)+c$;

4)
$$-\frac{1}{4}\cos(4x+1)+c$$
.

2. Множество первообразных функций $\frac{e^{5x}}{1+e^{5x}}$ имеет вид ...

1)
$$\frac{1}{5}\ln(1+e^{5x})+c$$
; 2) $\ln(1+e^{5x})+c$; 3) $-5\ln(1+e^{5x})+c$;
4) $5\ln(1+e^{5x})+c$.

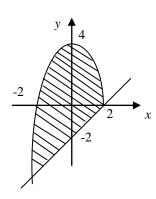
3. Неопределённый интеграл $\int x \sin 5x dx$ равен ...


1)
$$-x\cos 5x + \sin 5x + c$$
; 2) $-\frac{x}{5}\cos 5x + \frac{1}{5}\sin 5x + c$;

3)
$$-\frac{x}{5}\cos 5x + \frac{1}{25}\sin 5x + c$$
 4) $\frac{x}{5}\cos 5x - \frac{1}{25}\sin 5x + c$.

4. Неопределённый интеграл $\int \frac{\cos 2x}{\sin^2 2x} dx$ равен ...

1)
$$-\frac{1}{2\sin 2x} + c$$
; 2) $\frac{-1}{\sin 2x} + c$; 3) $\frac{1}{2\sin 2x} + c$; 4) $\frac{1}{\sin 2x} + c$


5. Площадь области, показанной на рисунке, определяется ...

1)
$$\int_{-2}^{2} (x^2 - x - 2) dx$$
; 2) $\int_{2}^{-3} (x^2 + x - 6) dx$;
3) $\int_{-3}^{2} (x^2 + x - 6) dx$; 4) $\int_{2}^{2} (x^2 - x) dx$.

3)
$$\int_{0}^{2} (x^2 + x - 6) dx$$

4)
$$\int_{0}^{2} (x^2 - x) dx$$
.

- 6. Исследовать сходимость $\int_{-\infty}^{+\infty} e^{-x} dx$...
 - 1) сходится к 0; 2) сходится к 1; 3) сходится к -1; 4) расходится .
- 7. Модуль комплексного числа $z = 1 \sqrt{3}i$ равен ... 2)1:

8. Если $z_1 = 3 + i$; $z_2 = 1 - 2i$, то $\frac{z_1}{z_2}$ равно ...

1)
$$1+\frac{i}{5}$$

1)
$$1+\frac{i}{5}$$
; 2) $\frac{1}{5}+\frac{7i}{5}$; 3) $3-2i$; 4) $\frac{1}{5}+i$.

4)
$$\frac{1}{5} + i$$

9. Общее решение уравнения xdy + ydx = 0 имеет вид ...

1)
$$y=xc$$
; 2) $y=-x+c$; 3) $y=\frac{c}{x}$; 4) $y=x^2+c$.

3)
$$y = \frac{c}{x}$$
;

$$4) \ y = x^2 + c$$

10. Частное решение уравнения $y' + y = x^2$, удовлетворяющее начальным условиям $y_0 = \frac{1}{4}$ при $x_0 = 1$, имеет вид ...

1)
$$y = x + 1$$
; 2) $y = \frac{x^3}{4}$; 3) $y = \frac{x^2}{4} + 2$; 4) $y = x^3$.

3)
$$y = \frac{x^2}{4} + 2$$
;

4)
$$y = x^3$$
.

11. Общее решение уравнения $y' = \frac{y}{x} + 1$ имеет вид...

$$1) \quad y = \ln|xc|$$

2)
$$y = x + c$$
:

3)
$$y = x \ln |xc|$$
;

1)
$$y = \ln |xc|$$
; 2) $y = x + c$; 3) $y = x \ln |xc|$; 4) $y = \frac{x^2}{2} + c$.

12. Общим решением уравнения y'' + 9y = 0 является ...

1)
$$c_1e^{3x} + c_2e^{-3x}$$
; 2) $c_1\cos 3x + c_2\sin 3x$; 3) $c_1 + c_2e^{9x}$; 4) $e^{3x}(c_1\cos 3x + c_2\sin 3x)$.

3)
$$c_1 + c_2 e^{9x}$$
; 4

; 4)
$$e^{3x}(c_1\cos 3x + c_2\sin 3x)$$

13. Общий вид частного решения неоднородного уравнения $y'' - 2y' + y = (4x + 1)e^x \dots$

1)
$$Ae^x$$
:

2)
$$x^{2}Ae^{x}$$

1)
$$Ae^x$$
; 2) x^2Ae^x ; 3) $x^2(Ax+B)e^x$; 4) $x(Ax+B)e^x$

4)
$$x(Ax+B)e^x$$

14. Система дифференциальных уравнений $\begin{cases} x' = -3x + y \\ y' = x - 3y \end{cases}$ может быть сведена к уравнению вида...

1)
$$x'' - x' + 5x = 0$$

$$2) x'' + 6x' + 8x = 0$$

3)
$$x'' + 3x' + x = 0$$
:

1)
$$x'' - x' + 5x = 0$$
; 2) $x'' + 6x' + 8x = 0$;
3) $x'' + 3x' + x = 0$; 4) $x'' + 4x' - x = 0$.

7.2.2 Примерный перечень заданий для решения стандартных задач 1 семестр

- 1. Решить матричное уравнение $\begin{pmatrix} 4 & -1 & 4 \\ 1 & 3 & 1 \\ 2 & 1 & 6 \end{pmatrix} X = \begin{pmatrix} 14 \\ 10 \\ 18 \end{pmatrix}.$
- 2. Решить систему с помощью формул Крамера $\begin{cases} 7x y + 2z = 8, \\ x + 3y + z = 5, \\ 8x 2y + 3z = 9. \end{cases}$
- 3. Найти площадь треугольника *ABC* при условии, что A(1,3,2), B(-3,1,0), C(0,2,-1).
- 4. Под каким углом пересекаются прямые 3x 4y = 0 и 8x + 6y = 11?
- 5. Найти уравнение плоскости, проходящей через прямую $\frac{x}{4} = \frac{y-1}{2} = \frac{z+2}{1}$ параллельно прямой $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{3}$.
- 6. Найти угол между прямой $\frac{x-4}{3} = \frac{y+1}{-2} = \frac{z+3}{1}$ и плоскостью x-4y+2z+8=0.
- 7. Составить уравнение плоскости, проходящей через точку M(1,-1,2), перпендикулярно прямой, являющейся пересечением плоскостей 3x + y 4z + 5 = 0 и x y + 2z 1 = 0.
- 8. Привести уравнение кривой $3x^2 + 3y^2 6x 12y + 3 = 0$ к каноническому виду. Изобразить эту кривую.
- 9-11. Найти пределы функций, не используя правила Лопиталя
- 9. $\lim_{x \to \infty} \frac{x^3 3x 2}{5x^3 x 2}$; 10. $\lim_{x \to -8} \frac{\sqrt{1 x} 3}{x + 8}$ 11. $\lim_{x \to 0} \frac{\sin^2 6x}{2x^2}$
- 12. Найти производную функций: a) $y = \ln(x + \sqrt{x^2 + 4})$, б) $y = t \ln(t + 1)$, x = arctgt.
- 13. Вычислить предел с помощью правила Лопиталя $\lim_{x\to 0} \frac{3^x \cos 2x}{x}$.
- 14. Найти частные производные первого порядка функции $z = \sqrt{x} \cdot \sin \frac{y}{x}$.
- 15. Найти величину и направление вектора градиента функции $z = \frac{2x^2}{y^3} + xy^2$ в точке A(1;2).

2 семестр

1-5. Вычислить интегралы

1.
$$\int \frac{x^3 dx}{x^8 + 16}$$
, 2. $\int (x+3)e^{(3-x)}dx$, 3. $\int \frac{dx}{1+\sqrt[3]{x+1}}$, 4. $\int \frac{(x-4)dx}{x^2+4x+13}$, 5. $\int \frac{dx}{4\cos x + 3\sin x}$.

14

6. Найти общее решение дифференциального уравнения $x^2y' = y + 1$.

7. Найти решение задачи Коши
$$\begin{cases} y'' - 2yy' = 0, \\ y(0) = 1, \ y'(0) = 1. \end{cases}$$

8. Решить систему уравнений:

$$\begin{cases} \frac{dx}{dt} = -x - 2y\\ \frac{dy}{dt} = 3x + 4y \end{cases}$$

7.2.3 Примерный перечень заданий для решения прикладных задач

1 семестр

- 1. Решить систему методом Гаусса $\begin{cases} x y + 2z = 1, \\ 2x + 5y + z = 13, \\ -3x 3y + 8z = -1. \end{cases}$
- 2. Чему равно расстояние между точками A(5;2) и B(2;6)?
- 3. Найти длину перпендикуляра, опущенного из начала координат на плоскость 2x y + 2z + 9 = 0.
- 4. Под каким углом пересекаются плоскости 4x 5y + 2z + 1 = 0 и x + y + 2z 7 = 0.
- 5. Прямая проходит через точки A(3;1) и B(6;-4). Чему равен ее угловой коэффициент.
- **6.** Составить уравнение касательной к графику функции $y = x^2 + 5\sqrt{x}$ в точке (1,2).
- 7. Найти частные производные первого порядка функции $z = tg^3 \frac{y}{x}$.
- 8. Найти величину и направление вектора градиента функции $z = \frac{4y}{x^2} + yx^2$ в точке A(1;2).

2 семестр

1. Вычислить площадь фигуры, ограниченной графиками функций $y = 2 - x^2$ и y = 4 - x.

15

- 2. Найти решение задачи Коши $\begin{cases} y' + \frac{1}{1 x^2} y = 1 + x, \\ y(0) = 1. \end{cases}$
- 3. Найти решение задачи Коши

$$\begin{cases} y'' + 3y' - 10y = 8\sin 2x, \\ y(0) = 0, \ y'(0) = 2. \end{cases}$$

7.2.4 Примерный перечень вопросов для подготовки к зачету

Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену 1 семестр

- 1. Матрицы. Операции над ними.
- 2. Определители второго и третьего порядка и их свойства, вычисление.
- 3. Обратная матрица и ее нахождение.
- 4. Метод Крамера решения системы линейных уравнений.
- 5. Метод обратной матрицы решения системы линейных уравнений.
- 6. Метод Гаусса решения системы линейных уравнений. Векторы. Линейные операции над векторами. Прямоугольная система координат. Декартовый базис. Разложение вектора по базису.
- 7. Скалярное произведение. Свойства.
- 8. Векторное произведение. Свойства.
- 9. Смешанное произведение. Свойства.
- 10. Деление отрезка в заданном отношении.
- 11. Уравнения прямой на плоскости: с угловым коэффициентом, общее, проходящей через две точки, в отрезках.
- 12. Расстояние от точки до прямой. Угол между прямыми на плоскости.
- 13. Уравнения плоскости в пространстве: общее, в отрезках. Угол между плоскостями.
- 14. Расстояние от точки до плоскости.
- 15. Уравнение плоскости, проходящей через заданную точку параллельно двум заданным векторам. Уравнение плоскости, проходящей через три заданные точки.
- 16. Уравнения прямой в пространстве. Угол между прямыми в пространстве.
- 17. Угол между прямой и плоскостью.
- 18. Эллипс. Основные свойства.
- 19. Гипербола. Основные свойства.
- 20. Парабола. Основные свойства.
- 21. Функция одной переменной, способы задания. Основные элементарные функции.
- 22. Определение предела функции. Свойства пределов.
- 23. Бесконечно малые величины и их свойства. Бесконечно большие величины.
- 24. Предел рациональной дроби в точке и на бесконечности.
- 25. Простейшие пределы от иррациональных дробей.
- 26. Первый замечательный предел.
- 27. Второй замечательный предел.
- 28.Односторонние пределы. Непрерывность функции, свойства непрерывных функций.
- 29. Классификация точек разрыва.
- 30. Определение производной. Непрерывность дифференцируемой функции.
- 31. Геометрический и механический смысл производной. Уравнение касательной.

- 32. Правила дифференцирования. Дифференцирование сложной функции.
- 33. Дифференцирование функции, заданной параметрически.
- 34. Производные высших порядков.
- 35. Дифференциал, его свойства и приложения. Дифференциалы высших порядков.
- 36.Правило Лопиталя..
- 37. Экстремумы. Необходимый и достаточные признаки существования экстремума.
- 38. Выпуклость и вогнутость функции. Признаки.
- 39. Асимптоты.
- 40. Понятие функции двух переменных.
- 41. Определение частных производных. Полный дифференциал.
- 42. Производная по направлению.
- 43.Градиент.
- 44. Производные высших порядков.
- 45. Экстремум функции нескольких переменных. Необходимый и достаточный признаки экстремума.

2 семестр

- 1. Первообразная. Определение неопределенного интеграла и его свойства.
- 2. Замена переменной в неопределенном интеграле.
- 3. Формула интегрирования по частям.
- 4. Интегрирование простейших рациональных дробей.
- 5. Метод неопределенных коэффициентов интегрирования рациональных дробей.
- 6. Интегрирование тригонометрических функций.
- 7. Интегрирование некоторых иррациональных функций.
- 8. Понятие определенного интеграла и его свойства. Геометрический смысл.
- 9. Интеграл с переменным верхним пределом. Формула Ньютона—Лейбница.
- 10.Замена переменной и интегрирование по частям в определенном интеграле.
- 11. Вычисление площади, объема тела вращения, длины дуги с помощью определенного интеграла.
- 12. Несобственные интегралы І-го рода.
- 13. Несобственные интегралы ІІ-го рода.
- 14. Комплексные числа, их свойства, операции над комплексными числами.
- 15. Дифференциальные уравнения 1-го порядка. Уравнения с разделяющимися переменными.
- 16. Линейные уравнения первого порядка.
- 17. Уравнения второго порядка, допускающие понижение порядка.
- 18. Решение линейных однородных дифференциальных уравнений с постоянными коэффициентами. Характеристическое уравнение.
- 19. Метод неопределенных коэффициентов решения неоднородных линейных дифференциальных уравнений.
- 20. Метод вариации произвольной постоянной решения линейных неоднородных уравнений.

21. Системы линейных дифференциальных уравнений. Метод исключения неизвестных.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится в форме экзамена по тест-билетам, каждый из которых содержит 10 вопросов и 10 стандартных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов -20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 10 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 11 до 15 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 16 до 23 балпов
- 4. Оценка «Отлично» ставится, если студент набрал от 24 до 25 баллов.

7.2.7 Паспорт оценочных материалов

/.2./ Паспорт оц	еночных матері	AAJIOB
Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
Элементы линейной, векторной алгебры и аналитической геометрии.	ОПК-1	Тест, контрольная работа, устный опрос, экзамен
Введение в математический анализ. Дифференциальное исчисление функции одной переменной.		Тест, контрольная работа, устный опрос, экзамен
Функции нескольких переменных. Обыкновенные дифференциальные уравнения.	ОПК-1	Тест, контрольная работа, устный опрос, экзамен
Неопределенный и определенный интеграл.	ОПК-1	Тест, контрольная работа, устный опрос, экзамен
Комплексные числа. Дифференциальные уравнения первого и второго порядков.	ОПК-1	Тест, контрольная работа, устный опрос, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется с использованием выданных тест- заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении и промежуточной аттестации.

Решение стандартных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8. УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения диспиплины

- 1. Пискунов Н.С. Дифференциальное и интегральное исчисления. М. Ч. 1. 2006,2010.
- 2. Пискунов Н.С. Дифференциальное и интегральное исчисления. М. Ч. 2. 2006,2010.
- 3. Беклемишев Д.Е. Курс аналитической геометрии и линейной алгебры. М. 2008,498 с.
- 4. Шипачев В.С. Высшая математика: учеб. пособие. 8-е изд., стереотип. М.: Высш. шк., 2007. 479 с.
- 5. Клетеник Д.В. Сборник задач по аналитической геометрии. М.: Наука. 2010.
- 6. Берман Γ .Н. Сборник задач по курсу математического анализа. М.: Наука 2006.
- 7. Шипачев В.С. Задачник по высшей математике: учеб. пособие / В. С. Шипачев. 7-е изд., стереотип. М.: Высш. шк., 2007. 304 с.
- 8. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах: Учеб. пособие для втузов: В 2 ч. Ч.1.
 - М.: ИД ОНИКС 21 век: Мир и Образование, 2003. 304с.
- 9. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах: Учеб. пособие для втузов: В 2 ч. Ч.2.
 - M.: ИД ОНИКС 21 век: Мир и Образование, 2003. 416 c.
- 10. Горбунов В.В., Соколова О.А. Курс лекций по математическому анализу. Часть 1.(Учебное пособие), ВГТУ, г. Воронеж, 2013 г. (магн. носит.)
- 11. Горбунов В.В., Соколова О.А. Курс лекций по линейной алгебре и аналитической геометрии. Учеб. пособие . ВГТУ, г. Воронеж, 2013 г.

- эл. ресурс.
- 12. Горбунов В.В., Соколова О.А. Элементы высшей математики. Часть 1. ВГТУ, г. Воронеж, 2017 г.-88 с.
- 13. Горбунов В.В., Соколова О.А. Элементы высшей математики. Часть 2. ВГТУ, г. Воронеж, 2017 г.-106 с.
- 14. Горбунов В.В., Соколова О.А. Элементы высшей математики. Часть 3. ВГТУ, г. Воронеж, 2017 г. -120 с.
- 15. Горбунов В.В., Кузнецова В.Н., Соколова О.А. Методические указания к контрольным работам №1,2 по дисциплине "Математика" для студентов всех направлений заочной формы обучения. ВГТУ, г. Воронеж, 2016 г.
- 16. Горбунов В.В., Кузнецова В.Н., Соколова О.А. Методические указания к контрольным работам №3,4 по дисциплине "Математика" для студентов всех направлений заочной формы обучения. ВГТУ, г. Воронеж, 2016 г.
- 17. Горбунов В.В., Кузнецова В.Н., Соколова О.А. Методические указания к контрольным работам №5,6 по дисциплине "Математика" для студентов всех направлений заочной формы обучения. ВГТУ, г. Воронеж, 2016 г.
- 8.2. Перечень информационных технологий, используемых при осуществлении и образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Microsoft Word, Microsoft Excel, Internet Explorer.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Система университетского образования предполагает рациональное сочетание таких видов учебной деятельности, как лекции, практические занятия, самостоятельная работа студентов, а также контроль полученных знаний.

- Лекции представляет собой систематическое, последовательное изложение учебного материала. Это — одна из важнейших форм учебного процесса и один из основных методов преподавания в вузе. На лекциях от студента требуется не просто внимание, но и самостоятельное оформление конспекта. Качественный конспект должен легко восприниматься зрительно, в эго тексте следует соблюдать абзацы, выделять заголовки, пронумеровать формулы, подчеркнуть термины. В качестве ценного совета рекомендуется записывать не каждое слово лектора (иначе можно потерять мысль и начать писать автоматически, не вникая в смысл), а постараться понять основную мысль лектора, а затем записать, используя понятные сокращения.

- Практические занятия позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности практических занятий для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
- Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:
- работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;
 - выполнение домашних заданий;
 - работа над темами для самостоятельного изучения;
 - участие в работе студенческих научных конференций, олимпиад;
 - подготовка к экзаменам.

Кроме базовых учебников рекомендуется самостоятельно использовать имеющиеся в библиотеке учебно-методические пособия. Независимо от вида учебника, работа с ним должна происходить в течение всего семестра. Эффективнее работать с учебником не после, а перед лекцией.

При ознакомлении с каким-либо разделом рекомендуется прочитать его целиком, стараясь уловить общую логику изложения темы. При повторном чтении хорошо акцентировать внимание на ключевых вопросах и основных теоремах (формулах). Можно составить их краткий конспект.

Степень усвоения материала проверяется следующими видами контроля:

- промежуточный (опрос, контрольные работы);
- итоговый (экзамен).

Для успешной сдачи экзамена необходимо выполнить следующие рекомендации —готовиться к экзамену следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до экзамена. Данные перед экзаменом три-четыре дня эффективнее всего использовать для повторения и систематизации материала.

Вид учебных	Деятельность студента
занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.

Практические	Конспектирование рекомендуемых источников. Работа с
занятия	конспектом лекций, подготовка ответов к контрольным во-
	просам, просмотр рекомендуемой литературы. Прослуши-
	вание аудио- и видеозаписей по заданной теме, выполне-
	ние расчетно-графических заданий, решение задач по ал-
	горитму.
Подготовка к	При подготовке к экзамену необходимо ориентироваться
экзамену	на конспекты лекций, рекомендуемую литературу и реше-
	ние задач на практических занятиях.

АННОТАЦИЯ

к рабочей программе дисциплины «Математика»

Направление подготовки <u>15.03.05 — Конструкторско-технологическое обеспечение машиностроительных производств</u>
Профиль Технология машиностроения.

Квалификация выпускника <u>Бакалавр</u> Нормативный период обучения <u>4 года / 5 лет</u> Форма обучения <u>Очная / Заочная</u> Год начала подготовки 2017 г.

Цели дисциплины

- воспитание достаточно высокой математической культуры;
- привитие навыков современных видов математического мышления;
- использование математических методов в практической деятельности;
- развитие способностей к логическому и алгоритмическому мышлению.

Изучение дисциплины должно способствовать формированию основ научного мышления, в том числе: пониманию границ применимости математических понятий и теорий; умению оценивать степень достоверности результатов теоретических и экспериментальных исследований; умению планировать математический эксперимент и обрабатывать его результаты с использованием современных методов.

Задачи освоения дисциплины

- дать ясное понимание необходимости математического образования, в том числе выработать представление о роли и месте математики в современной цивилизации и мировой культуре;
- научить умению логически мыслить, оперировать с абстрактными объектами и быть корректным в употреблении математических понятий, символов для выражения количественных и качественных отношений;
- дать достаточную общность математических понятий и конструкций, обеспечивающую широкий спектр их применимости, разумную точность формулировок математических свойств изучаемых объектов, логическую строгость изложения математики, опирающуюся на адекватный современный математический язык;
- научить умению использовать основные понятия и методы линейной алгебры, аналитической геометрии, математического анализа.

Перечень формируемых компетенций: ОПК-1.

ОПК-1 — Способность использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда.

Общая трудоемкость дисциплины ЗЕТ: 11.

Форма итогового контроля по дисциплине: экзамен.