МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

Кафедра нефтегазового оборудования и транспортировки

ЧИСЛЕННЫЙ РАСЧЕТ ИЗОТЕРМИЧЕСКИХ ТУРБУЛЕНТНЫХ ТЕЧЕНИЙ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине «Прикладная гидромеханика» для студентов направления подготовки 21.03.01 «Нефтегазовое дело» (профиль «Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки») всех форм обучения

Воронеж 2022

Составители:

д-р техн. наук С.Г. Валюхов канд. техн. наук Д.Н. Галдин *д-р техн. наук А.В. Кретинин*

Численный расчет изотермических турбулентных течений: методические указания к выполнению лабораторных работ по дисциплине «Прикладная гидромеханика» для студентов направления подготовки 21.03.01 «Нефтегазовое дело» (профиль «Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки») всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: С. Г. Валюхов, Д. Н. Галдин, А. В. Кретинин. – Воронеж: Изд-во ВГТУ, 2022. – 21 с.

Методические указания содержат теоретические сведения, необходимые для выработки навыков работы с инструментарием ANSYS Workbench, применения современных расчетных комплексов для решения задач компьютерной динамики жидкости.

Предназначены для студентов направления подготовки 21.03.01 «Нефтегазовое дело» (профиль «Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки») всех форм обучения.

Методические указания подготовлены в электронном виде и содержатся в файле МУ_ЛР_ПГ.pdf

Ил. 23. Библиогр.: 9 назв.

УДК 62:532(07) ББК 30.2-5-05я7

Рецензент – Д. П. Шматов, канд. техн. наук, доц. кафедры ракетных двигателей ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

введение

В состав комплекса ANSYS входят инструменты для предварительной обработки геометрической модели (геометрический препроцессор) и генерации конечно-элементной сетки, модули для выполнения прочностных расчетов, анализа температурного состояния и для решения задач гидродинамики, различные средства обработки и вывода результатов моделирования.

Интеграция на уровне графического интерфейса ANSYS с модулями других программных средств осуществляется на основе платформы Workbench.

Выполнение расчетов программой ANSYS "Fluent" основано на решении систем дифференциальных уравнений в частных производных, описывающих течение жидкости в проточной части насоса, численными методами конечноэлементного анализа (в частности, методом конечных объемов).

ЛАБОРАТОРНАЯ РАБОТА № 1

ФОРМИРОВАНИЕ 3D МОДЕЛИ ПРОТОЧНОЙ ЧАСТИ И ГЕНЕРАЦИЯ РАСЧЕТНОЙ СЕТКИ С ИСПОЛЬЗОВАНИЕМ МОДУЛЕЙ «DESIGN MODELER» И «MESHING»

Постановка задачи

В лабораторной работе № 1 представлена методика проектирования проточной части и генерация расчетной сетки с использованием модулей «Design Modeler» и «Meshing» в ANSYS WorkBench с использованием конструкторской терминологии, принятой в средах Windows и ANSYS.

Порядок выполнения работы

1. Открываем Пуск ->Workbench.

2. Сохраняем проект через File ->SaveAs. Не допускается, чтобы в пути к файлу присутствовали символы кириллицы.

3. Приступим к созданию геометрии. Перемещаем модуль "Mesh" в поле "Project Schematic" платформы ANSYS Workbench. После этого выделим ячейку "Geometry" (где горит знак вопроса).

Vinsaved Project - Workbench						
File View Tools Units Extensions Help						
Project						
👔 Import 🛛 🖗 Reconnect 👔 Refresh Project 🍼 Update Proje	ect					
Toolbox	Project	t Sch	ema	tic		
Analysis Systems						
🗹 Design Assessment	1					
Electric		▼		А		
🔝 Explicit Dynamics		1	۲	Mesh		
🚱 Fluid Flow - Blow Molding (Polyflow)		2		Geometry	?	
🔇 Fluid Flow-Extrusion(Polyflow)		2		Mach	÷	1
🔇 Fluid Flow (CFX)		2		mesn	5	4
🔇 Fluid Flow (Fluent)				Mesh		
🚱 Fluid Flow (Polyflow)						

Рис. 1. Запуск программы "Design Modeler" из модуля "Mesh"

Дважды "кликаем" кнопку "Geometry" модуля "Mesh". Запускается программа "Design Modeler". Построение геометрии производим с использованием графических примитивов "Cylinder". Распределительный коллектор будет представлять собой трубку диаметром 2 дюйма, длиной 0,4 м, с расположением вдоль оси 0Z. Формируем команду Create - Primitives - Cylinder и в табличке параметров задаем соответствующие выбранным значениям величины параметров.

Нажимаем кнопку "Generate"

Cylinder	Cylinder1
Base Plane	XYPlane
Operation	Add Material
Origin Definition	Coordinates
FD3, Origin X Coordinate	0 m
FD4, Origin Y Coordinate	0 m
FD5, Origin Z Coordinate	0 m
Axis Definition	Components
FD6, Axis X Component	0 m
FD7, Axis Y Component	0 m
FD8, Axis Z Component	0.4 m
FD10, Radius (>0)	0.0254 m
As Thin/Surface?	No

Рис. 2. Значения параметров построения раздаточного коллектора

Рис. 3. Модель раздаточного коллектора

4. Формирование трубной решетки

Трубная решетка будет состоять из 10 трубок диаметром 0,016 м. Первая трубка соединяется с раздающим коллектором в точке с координатой Z=0,39 м. Длина всех трубок трубной решетки одинакова и равна 0,2 м. Следующие трубки расположены с шагом 0,02 м по оси 0Z.

De	etails View	4
-	Details of Cylinder2	
	Cylinder	Cylinder2
	Base Plane	XYPlane
	Operation	Add Material
	Origin Definition	Coordinates
	FD3, Origin X Coordinate	0 m
	FD4, Origin Y Coordinate	0 m
	FD5, Origin Z Coordinate	0.39 m
	Axis Definition	Components
	FD6, Axis X Component	0 m
	FD7, Axis Y Component	0.2 m
	FD8, Axis Z Component	0 m
	FD10, Radius (>0)	0.008 m
	As Thin/Surface?	No

Рис. 4. Значения параметров построения первой трубки трубной решетки

Рис. 5. Модель первой трубки трубной решетки

Последняя 10-я отводящая трубка (таблица параметров) приведена на рис. 6.

Details of Cylinder11	Details of Cylinder11			
Cylinder	Cylinder11			
Base Plane	XYPlane			
Operation	Add Material			
Origin Definition	Coordinates			
FD3, Origin X Coordinate	0 m			
FD4, Origin Y Coordinate	0 m			
FD5, Origin Z Coordinate	0.21 m			
Axis Definition	Components			
FD6, Axis X Component	0 m			
FD7, Axis Y Component	0.2 m			
FD8, Axis Z Component	0 m			
FD10, Radius (>0)	0.008 m			
As Thin/Surface?	No			

Рис. 6. Значения параметров построения 10-й трубки трубной решетки

Рис. 7. Модель распределительного однорядного коллектора

5. Формирование набора "Именованных поверхностей"

Выбираем в верхнем меню кнопку "Выделение поверхностей"

Рис. 8. Задание "именованных" поверхностей

Выбираем "именнованные" поверхности. Начинаем с поверхности "Vhod" (рис. 8). Аналогично выбираем одну поверхность "Vhod" и 10 поверхностей "Vyh1" - "Vyh10", соответствующие выходным сечениям трубок трубной решетки.

Рис. 9. Дерево построения модели коллектора

5. Генерация расчетной сетки

Возвращаемся в поле "Project Schematic" платформы ANSYS Workbench и запускаем модуль "Meshing". В дереве построения выбираем элемент меню "Mesh". Открывается окошко "Details of Mesh"

Во вкладке "Sizing" активируем способ генерации сетки "Proximity and Curvature".

Ou	tline		P			
Fi	lter: Name 🔻 😰 🖉 🕁 🛨					
	Project Model (A3)	ystems tions				
De	etails of "Mesh"		д			
Ξ	Defaults					
	Physics Preference	Mechanical				
	Relevance	0				
+	Sizing					
+	Inflation					
Ξ	Patch Conforming Optic	Patch Conforming Options				
	Triangle Surface Mesher	Program Controlle	d			
Ξ	Patch Independent Opti	ons				
	Topology Checking	Yes				
+	Advanced					
+	Defeaturing	Defeaturing				
+	Statistics					
	Details of "Mesh"					
Ĩ	- Defaults					
	Physics Preference		Mechanical			
	Relevance		0			
	Sizing					
	Use Advanced Size Fur	nction	Off 🔹			
	Relevance Center		Off			
	Element Size		On: Proximity and Curvature			
	Initial Size Seed		On: Proximity			
	Smoothing		On: Fixed			
	Transition		East			

Рис. 10. Построение сетки

Выбираем параметры построения расчетной сетки

D	etails of "Mesh"				
E	Defaults				
	Physics Preference	Mechanical			
	Relevance	0			
-	Sizing				
	Use Advanced Size Function	On: Proximity and Curvature			
	Relevance Center	Coarse			
	Initial Size Seed	Active Assembly			
	Smoothing	Medium			
	Transition	Fast			
	Span Angle Center	Coarse			
	Curvature Normal Angle	Default (70.3950 °)			
	Num Cells Across Gap	Default (3)			
	Min Size	Default (2.3025e-004 m)			
	Proximity Min Size	Default (2.3025e-004 m)			
	Max Face Size	Default (2.3025e-002 m)			
	Max Size	Default (4.6049e-002 m)			
	Growth Rate	Default (1.850)			
	Minimum Edge Length	5.0265e-002 m			
De	tails of "Mesh"				
=	Defaults				
	Physics Preference	Mechanical			
	Relevance	0			
Ξ	Sizing				
	Use Advanced Size Function	On: Proximity and Curvature			
	Relevance Center	Coarse			
	Initial Size Seed	Active Assembly			
	Smoothing	Medium			
	Transition	Fast			
	Span Angle Center	Coarse			
	Curvature Normal Angle	Default (70.3950 °)			
	Num Cells Across Gap	Default (3)			
	Min Size	Default (2.3025e-004 m)			
	Proximity Min Size	Default (2.3025e-004 m)			
	Max Face Size	2.5e-003 m			
	Max Size	5.e-003 m			
	Growth Rate	Default (1.850)			
	Minimum Edge Length	5.0265e-002 m			
	1.0.1				

Рис. 11. Параметры построения расчетной сетки

Результат построения приведен на рис. 12.

Рис. 12. Сгенерированная расчетная сетка

6. Построение других вариантов модели

По заданию преподавателя повторить сценарий построения модели и расчетной сетки для других значений длин и диаметров отводящих трубок.

Выводы по работе

В ходе реализации методики построения модели раздаточного коллектора и генерации расчетной сетки решены следующие задачи:

- заданы геометрические параметры модели;

- заданы параметры расчетной сетки;

– осуществлено построение геометрической 3D модели и проведена генерация расчетной сетки для однорядного коллектора с трубной решеткой.

При выполнении работы реализован сценарий процедуры профилирования, представляющий собой последовательность операций по созданию модели коллектора и построению сеточной модели. Осуществлено многовариантное профилирование для оценки влияния различных факторов на параметры неравномерности распределения рабочего тела по трубкам трубной решетки.

ЛАБОРАТОРНАЯ РАБОТА № 2

ЧИСЛЕННЫЙ РАСЧЕТ ИЗОТЕРМИЧЕСКОГО ТУРБУЛЕНТНОГО ТЕЧЕНИЯ В РАЗДАТОЧНОМ КОЛЛЕКТОРЕ

1. Запускаем модуль компьютерной динамики жидкости "Fluent" из модуля "Mesh". Для этого выбираем последовательно команды Mesh - Transfer Data To New - Fluent

Рис. 13. Запуск "Fluent"

2. Затем работаем непосредственно в программе "Fluent". Задаем модель турбулентности *k*-є (для параметров модели оставляем значения по умолчанию).

Рис. 14. Выбор модели турбулентности *k*-є

Выбираем воду из "Fluent DataBase"и устанавливаем ее в качестве рабочего тела

Fluent Fluid Materials	🖹 🗐 🚍 Material Type	_
vinyl-silylidene (h2cchsih) vinyl-trichlorosilane (sid3ch2ch) vinylidene-chloride (ch2ccl2) water-floquí (h2o <l3>) water-vapor (h2o) wood-volatiles (wood_vol)</l3>	fluid Order Materials by Name Chemical Formula	•
•	Þ	
Copy Materials from Case Delete		
Properties		
Density (kg/m3	constant	/iew
	998.2	
Cp (Specific Heat) (j/kg-ł	constant	/iew
	4182	
Thermal Conductivity (w/m-k	constant	/iew
	0.6	
Viscosity (kg/m-s	constant 👻 🗸	/iew
	0.001003	

Рис. 15. Задание воды в качестве рабочего тела

3. Задание граничных условий

В качестве граничных условий задаем значение массового расхода на входе в сечении "Vhod" и значения "Pressure Outlet" для всех выходных сечений "Vyh1" - "Vyh10"

Boundary Condi	itions	
Zone		
interior-solid vhod vyh1 vyh10 vyh2 vyh3 vyh4 vyh5 vyh6 vyh6 vyh7 vyh8 vyh9 wall-solid		
Phase mixture -	Type wall	ID 6
Edit C Parameters C Display Mesh F Highlight Zone	axis G exhaust-fan inlet-vent interface mass-flow-inlet outflow outlet-vent pressure-far-field pressure-inlet pressure-outlet symmetry velocity-inlet wall	

Рис. 16. Выбор граничного условия "mass-flow-inlet" для входного сечения

Mass-Flow Inlet		×		
Zone Name				
vhod				
Momentum Thermal Radiation Species DPM Multiphase UDS				
Reference Frame	Absolute	•		
Mass Flow Specification Method	Mass Flow Rate			
Mass Flow Rate (kg/s)	2	constant 👻		
Supersonic/Initial Gauge Pressure (pascal)	0	constant 💌		
Direction Specification Method	Direction Vector	•		
Coordinate System	Cartesian (X, Y, Z)			
X-Component of Flow Direction	0	constant 💌		
Y-Component of Flow Direction	0	constant 👻		
Z-Component of Flow Direction	1	constant 🔻		
Turbulence				
Specification Method Intensity and Viscosity Ratio				
Turbulent Intensity (%) 5				
Turbulent Viscosity Ratio 10				
OK Cancel Help				

Рис. 17. Задание граничного условия "Mass Flow Rate" для входного сечения

Рис. 18. Задание для всех поверхностей "Vyh1" - "Vyh10" граничных условий "Pressure-Outlet"

4. Численный расчет уравнений гидродинамики Проводим инициализацию решения

Устанавливаем количество итераций при решении уравнений движения равное 1000

Meshing	Run Calculation
Mesh Generation	Check Case Preview Mesh Motion
Solution Setup	
General Models Materials	Number of Iterations Reporting Interval 1000
Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces	Profile Update Interval
Dynamic Mesh Reference Values	Data File Quantities Acoustic Signals
Solution Solution Methods Solution Controls	Calculate
Monitors Solution Initialization Calculation Activities	Help
Run Calculation Results	
Graphics and Animations Plots Reports	

Рис. 20. Задание максимального количества итераций

Нажимаем кнопку "Calculate". После 468 итерации решение сходится.

Рис. 21. Сходимость итерационного процесса

Заходим во вкладку "Reports" - "Surface Integrals". Во вкладке "Report Type" выбираем "Mass Flow Rate".

Meshing	Reports
Mesh Generation	Reports
Solution Setup General Models Materials Phases Cell Zone Conditions	Fluxes Forces Projected Areas Surface Integrals Volume Integrals Discrete Phase: Sample
Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values	Histogram Summary - Unavailable Heat Exchanger - Unavailable
Solution Solution Methods Solution Controls Monitors Solution Initialization	
Calculation Activities Run Calculation Results	Set Up Parameters
Graphics and Animations Plots Reports	Help

Рис. 22. Просмотр результатов моделирования

Далее последовательно выбираем все отверстия выхода "Vyh1" - "Vyh10" по одному и вычисляем значения массовых расходов через данные отверстия. В завершение рекомендуется оценить уровень неравномерности распределения теплоносителя по отдельным трубкам проточной части данного коллекторного устройства

Surface Integrals	
Report Type	Field Variable
Mass Flow Rate 👻	Pressure
Surface Types	Static Pressure
axis	Surfaces 🔋 🗎
exhaust-fan fan	vyh1 vyh10 wyh2
Surface Name Pattern Match	vyh2 vyh3 vyh4 vyh5 E
	vyh7 vyh8
	vyh9 wall-solid
	Highlight Surfaces
	Mass Flow Rate (kg/s)
Save Output Parameter	-0.1878885
Compute Write	. Close Help

Рис. 23. Просмотр значения расхода через отверстие "Vyh9"

5. Необходимо провести моделирование для различных значений подводящего расхода, устанавливаемого в сечении "Vhod". Для каждого варианта моделирования посчитать значения расходов в отводящих трубках и построить зависимости значений расходов от номера трубки при различных значениях расхода на входе.

Выводы по работе

В ходе реализации методики численного моделирования турбулентных течений в раздаточном коллекторе решены следующие задачи:

- заданы параметры модели турбулентности;

- сформированы граничные условия;

 осуществлено моделирование и получены параметры неравномерности распределения рабочего тела по трубкам трубной решетки для однорядного коллектора.

При выполнении работ реализован сценарий процедуры моделирования, представляющий собой последовательность операций по созданию модели расчеа, заданию граничных условий, заданию допустимых ошибок итерационного процесса решения систем сеточных уравнений для уравнений неразрывности, импульса, уравнений модели турбулентности.

ЗАКЛЮЧЕНИЕ

Отчет о лабораторной работе должен отражать результаты комплекса работ по реализации методики профилирования и численного расчета гидродинамических процессов в проточной части трубопроводной системы.

Реализованный конструкторский инструментарий обеспечивает возможность оптимизации параметров трубной решетки за счет интеграции созданных проектных процедур с модулями компьютерной динамики жидкости среды ANSYS Workbench.

Реализована методика профилирования проточной части непосредственно в ANSYS "DesignModeler" и построения сетки в модуле "Meshing".

Практические результаты, полученные при использовании методики, позволят, в итоге, сократить сроки проектно-конструкторской и технологической подготовки производства и повышения качества продукции.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Валюхов С. Г., Кретинин А. В. Математическое моделирование гидродинамических процессов в проточной части центробежного насоса с использованием нейросетевых алгоритмов / Насосы. Турбины. Системы. 2011, № 1. – С. 53-60.

2. Кузнецов А. В., Панаиотти С. С., Савельев А. И. Автоматизированное проектирование центробежного насоса: методическое пособие / Под ред. С. С. Панаиотти. – М.: Изд-во МГТУ им Н.Э. Баумана, 2002. – 48 с.

3. Ломакин А. А. Центробежные и осевые насосы. – М.–Л.: Машиностроение, 1966. – 364 с.

4. Овсянников Б. В., Селифонов В. С., Черваков В.В. Расчет и проектирование шнекоцентробежного насоса. – М.: МАИ, 1996. – 72 с.

5. Овсянников Б. В., Яловой Н. С. Моделирование и оптимизация характеристик высокооборотных насосных агрегатов. – М.: Машиностроение, 1992. – 378 с.

6. Панаиотти С. С. Основы расчета и автоматизированное проектирование лопастных насосов с высокой всасывающей способностью. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. – 48 с.

7. Проектировочный гидравлический расчёт проточной части насоса МНН 7500. Технический отчет № 311-02-10. ФГУП «Турбонасос», 2010 г.

8. Проектирование проточной части насосов МНН 7500/249, 5250/264, 5250/211, 4500/247 и 4500/190. Технический отчет № 311-03-10. ФГУП «Турбонасос», 2010 г.

9. Создание высокотехнологичного производства магистральных нефтяных насосов нового поколения с использованием методов многокритериальной оптимизации и уникальной экспериментальной базы. Технический проект. Пояснительная записка. Магистральные нефтяные насосы типа МНН. МНН.00.00.00-00.000ПЗ. НИИ ЛМ, 2013 г.

ОГЛАВЛЕНИЕ

Введение	3
Лабораторная работа № 1. Формирование 3D модели проточной части	
и генерация расчетной сетки с использованием модулей «Design Modeler»	
и «Meshing»	3
Лабораторная работа № 2. Численный расчет изотермического	
турбулентного течения в раздаточном коллекторе	12
Заключение	19
Библиографический список	20

ЧИСЛЕННЫЙ РАСЧЕТ ИЗОТЕРМИЧЕСКИХ ТУРБУЛЕНТНЫХ ТЕЧЕНИЙ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине «Прикладная гидромеханика» для студентов направления подготовки 21.03.01 «Нефтегазовое дело» (профиль «Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки») всех форм обучения

> Составители: Валюхов Сергей Георгиевич Галдин Дмитрий Николаевич Кретинин Александр Валентинович

> > Издается в авторской редакции

Компьютерный набор Д. Н. Галдина

Подписано к изданию 18.05.2022. Уч.-изд. л. 1,0.

ФГБОУ ВО «Воронежский государственный технический университет» 394006, Воронеж, ул. 20-летия Октября, 84