МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Декан факультета радиотехники и электроники

В.А. Небольсин /

и.О. Фамилия

31 августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

«Основы акустоэлектроники»

наименование дисциплины (модуля) в соответствии с учебным планом)

Направление подготовки (специальность) 11.04.04 ЭЛЕКТРОНИКА И НАНОЭЛЕКТРОНИКА

код и наименование направления подготовки/специальности

Профиль (специализация)

МАТЕРИАЛЫ И УСТРОЙСТВА ФУНКЦИОНАЛЬНОЙ ЭЛЕКТРОНИКИ

название профиля/программы

Квалификация выпускника магистратура

Нормативный период обучения 2 года

Форма обучения Очная

Год начала подготовки 2021

Автор(ы) программы

Заведующий кафедрой физики твердого тела

наименование кафедры, реализующей дисциплину

Руководитель ОПОП

Коротков Л.Н.

Ю.Е. Калинин

А.В. Костюченко

подпись

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Изучение студентами физических принципов акустоэлектроники, ее элементной базы, современного состояния и перспективных направлений развития, методов проектирования и расчета основных структур акустоэлектронных приборов.

Подготовка студентов к будущей профессиональной деятельности, связанной с вопросами изучения свойств объектов методами оптической обработки информации. Приобретения студентами навыков самостоятельного решения физических задач в области электроники и наноэлектроники.

1.2. Задачи освоения дисциплины

- Дать представление о фундаментальных физических процессах, лежащих в основе акустоэлектроники;
- рассмотреть принцип действия базовых акустоэлектронных приборов, особенности их конструкций, требования к материалам и элементам;
- дать представление о возможностях и технических характеристиках приборов и устройств акустоэлектроники;
- приобретение студентами компетенций, связанных с научно-практической деятельностью в области в области акустоэлектроники.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Основы акустоэлектроники» относится к дисциплинам части, формируемой участниками образовательных отношений (дисциплина по выбору) блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Основы акустоэлектроники» направлен на формирование следующих компетенций:

ПК-5 - Способность самостоятельно разрабатывать новые материалы, элементы, приборы и устройства функциональной электроники, работающие на новых физических принципах

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-5	знать физические принципы функционирования акустоэлектронных приборов.
	уметь находить технические решения для получения требуемых характеристик приборов.
	владеть практическими навыками проектирования акустоэлектронных приборов и устройств

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Основы акустоэлектроники» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Duran nachana nachana	Всего	Семестры
Виды учебной работы	часов	3
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	18	18
Самостоятельная работа	54	54
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Электромеханические свойства кристаллов и текстур	трической проницаемости. Пьезоэлектрический эффект и пьезоэлектрические коэффициенты. Электромеханическая связь, ее влияние на механические и диэлектрические свойства	6	4	10	20
2	• •	Требования, предъявляемые к датчикам. Датчики силы, быстропеременных давлений, деформации, акселерометры. Пьезоэлектрические звукосниматели, микрофоны (гидрофоны) и излучатели. Устройство и принцип действия.	6	2	10	18
3	Упругие волны в кристаллах. Пьезоэлектрический резонанс.	Распространение объемных продольных и поперечных акустических волн в кристаллах. Поверхностные волны. Разновидности ПАВ. Стоячие волны и резонанс. Пьезоэлектрический резонанс.	6	2	10	18

		Эквивалентная схема и основные параметры пьезоэлектрического резонатора.				
4	Приборы на объемных акустических волнах		6	2	8	16
5	Акустоэлектронные приборы на ПАВ	Способы возбуждения ПАВ. Встречно-штыревые преобразователи (ВШП), эквивалентная схема. Линии задержки, резонаторы, фильтры, акустические трансформаторы, разветвители, сумматоры сигналов, акустические фазовращатели, аттенюаторы.	6	4	8	18
6	Сложные акустоэлектронные приборы и сенсоры на ПАВ	Сенсоры на ПАВ, акусто- электронные усилители, генераторы на ПАВ, конволь- веры. Системы радиочастотной идентификации (РЧИ) на ПАВ- метках. Заключение.	6	4	8	18
		Итого	36	18	54	108

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-5	знать физические	Активная работа	Выполнение	Невыполнение
	принципы	на практических	работ в срок,	работ в срок,
	функционирования	занятиях, отвечает	предусмотренный	предусмотренный
	акустоэлектронных	на теоретические	в рабочих	в рабочих
	приборов.	вопросы при	программах	программах
		защите курсового		
		проекта		
	уметь находить	Решение	Выполнение	Невыполнение
	технические	стандартных	работ в срок,	работ в срок,
	решения для	практических	предусмотренный	предусмотренный
	получения	задач, написание	в рабочих	в рабочих
	требуемых	курсового проекта,	программах	программах
	характеристик	выполнение		
	приборов.	лабораторных		
		работ		
	владеть	Решение	Выполнение	Невыполнение
	практическими	прикладных задач	работ в срок,	работ в срок,
	навыками	в конкретной	предусмотренный	предусмотренный
	проектирования	предметной	в рабочих	в рабочих
	акустоэлектронных	области,	программах	программах
	приборов и	выполнение плана		
	устройств	работ по		
		разработке		
		курсового проекта,		
		выполнение		
		лабораторных		
		работ		

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ПК-5	знать физические	Тест	Выполнение	Выполнение
	принципы		теста на 70-100%	менее 70%
	функционирования			
	акустоэлектронных			
	приборов.			
	уметь находить	Решение	Продемонстриро-	Задачи не решены
	технические	стандартных	ван верный ход	
	решения для	практических	решения в	
	получения	задач	большинстве	
	требуемых		задач	
	характеристик			
	приборов.			
	владеть	Решение	Продемонстриро-	Задачи не решены
	практическими	прикладных задач	ван верный ход	

проектирования акустоэлектронных	в конкретной предметной области	решения в большинстве задач	
приборов и устройств			

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Дайте определение пьезоэлектрического эффекта.
- 1. Пьезоэлектрическим эффектом называют появление электрического заряда на поверхности образца при его однородной деформации.
- 2. Пьезоэлектрическим эффектом называют появление электрического заряда на поверхности образца при его неоднородной деформации.
- 3. Пьезоэлектрическим эффектом называют появление электрической поляризации материала вследствие однородного механического напряжения.

Правильные ответы -1 и 3.

- 2. Какие из нижеперечисленных пьезоэлектрических материалов используются в акустоэлектронике.
 - 1. Монокристаллический кремний.
 - 2. Аморфный кремний.
 - 3. Аморфный диоксид кремния.
 - 4. Монокристаллический диоксид кремния.
 - 5. Монокристаллический ниобат лития
 - 6. Монокристаллический хлорид натрия.
 - 7. Поликристаллический оксид титана (рутил)

Правильные ответы -4 и 5.

3. Какое выражение определяет частоту пьезоэлектрического резонанса?

1.
$$f = n[2l/(\rho S^E)^{1/2}]^{-1}$$

2.
$$f = n[2l(\rho S^E)^{1/2}]^{-1}$$

3.
$$f = n[2l(\rho S^D)^{1/2}]^{-1}$$

где n- целое, нечетное, l- один из геометрических размеров образца правильной формы, ρ - плотность, S^E- компонента упругой податливости электрически свободного кристалла, S^D - компонента упругой податливости электрически зажатого кристалла. Правильный ответ -2.

- 4. Что называют антирезонансом в пьезотехнике?
- 1. антирезонанс явление заключающийся в существенном ослабление амплитуды механических колебаний пьезорезонатора при совпадении частоты действующего электрического поля с частотой антирезонанса кристалла.
- 2. антирезонанс явление заключающийся в существенном ослабление амплитуды электрического тока, протекающего в цепи содержащей пьезорезонатор, при совпадении частоты действующего электрического поля с частотой антирезонанса кристалла.

3. антирезонанс – явление заключающийся в существенном ослабление амплитуды электрического тока, протекающего через пьезорезонатор, при совпадении частоты действующего электрического поля с частотой антирезонанса кристалла.

Правильный ответ -2.

- Назовите функцию пьезоэлектрического резонатора основную радиоэлектронных устройствах.
 - 1. Стабилизация частоты автогенератора.
- 2. Функция частотно-избирательного элемента в устройствах фильтрации аналогового сигнала.
 - 3. Элемент, реализующий функцию частотного смесителя. Правильный ответ -2.
 - 6. Какую функцию реализует линия задержки на ПАВ?
- 1. Линия задержки обеспечивает задержку распространения электрического сигнала по времени.
 - 2. Линия задержки выполняет операцию свертки двух аналоговых сигналов.
 - 3. Линия задержки задерживает рост амплитуды аналогового сигнала.

Правильный ответ -1.

- 7. Поясните назначение акселерометра?
- 1. Акселерометр предназначен для измерения скорости движения.
- 2. Акселерометр предназначен для измерения частоты вращения.
- 3. Акселерометр предназначен для измерения ускорения. Правильный ответ -3.
- 8. Какой из режимов используют при работе пьезотрансформатора тока?
- 1. Режим холостого хода.
- 2. Режим короткого замыкания
- 3. Режим согласования (передача максимальной мощности в нагрузку)
- 4. Режим максимального КПД

Правильный ответ -4.

- 9. Поясните назначение акустического сумматора на ПАВ.
- 1. Реализует операцию сложения амплитуд двух аналоговых сигналов.
- 2. Реализует операцию сложения частот двух аналоговых сигналов.
- 3. Реализует операцию сложения фаз двух аналоговых сигналов.

Правильный ответ -1.

- 10. Энергия какого источника используется при работе радиометки на ПАВ?
- 1. Энергия встроенного электрохимического элемента
- 2. Солнечная энергия
- 3. Энергия вибраций, обусловленных движением воздуха либо акустических воздействий.
 - 4. Энергия первичного (запрашивающего) радиосигнала.

Правильный ответ -4.

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Определить частоту пьезокерамического резонатора (пьезокерамика ЦТС-19), соответствующую третьей гармонике, если плотность материала $\rho = 7.4~e/cm^3$, модуль Юнга $Y = 6.6x10^{10}~H/m^2$, а толщина пластинки, l = 0.5~mm

Решение. Известно, что

$$f = n[2l(\rho/Y)^{1/2}]^{-1} = 3x[2x5x10^{-4} (7400/6,6x10^{10})^{1/2}]^{-1} = -3x2.98645 \text{ M}\Gamma_{\text{H}} = 8,95937 \text{ M}\Gamma_{\text{H}}$$

2. На большие грани образца в виде пластины из пьезокерамического материала с размерами 5x20x1 мм нанесены электроды. Определить, на сколько изменятся толщина (h), длина (l) и ширина (w) после подачи на электроды электрического напряжения U=10 B, если известны значения пьезомодулей $d_{33}=500$ и $d_{31}=100$ пКл/H.

Решение. Относительная деформация пьезоэлектрика дается формулой x = dE, где E — напряженность электрического поля.

Поле Е в нашем случае действует вдоль оси «3», его напряженность

$$E_3 = U/h = 10/10^{-3} = 10^4 \text{ B/m}.$$

Тогда изменение толщины составит $\Delta h = d_{33}xE_3xh =$

$$= 500 \times 10^{-12} \times 10^4 \times 10^{-3} = 5 \times 10^{-9} \text{ M} = 0{,}005 \text{ MKM}.$$

Изменение ширины составит $\Delta w = d_{31}xE_3xw = 0{,}005$ мкм.

Изменение длины составит $\Delta l = d_{31}E_{3}l = 0.02$ мкм.

3. На большие грани образца в виде диска радиусом R=20 мм и толщиной h=1 мм из пьезокерамического материала нанесены электроды. Определить, на сколько изменится амплитуда радиальных колебаний ΔR на частоте резонанса, длина (l) и ширина (w) после подачи на электроды электрического напряжения 10 B, если известно значение пьезомодуля $d_{31}=150$ пКл/H, добротность Q=100, а амплитуда подаваемого напряжения составляет 1 B.

Решение. Найдем амплитуду деформации при воздействии постоянного напряжения: $\Delta R_{cr} = d_{31}E_3R$. Напряженность поля $E_3 = U/h = 10/10^{-3} = 10^4$ В/м.

Тогда
$$\Delta R_{cm} = 150 \times 10^{-12} \times 10^4 \times 2 \times 10^{-2} = 3 \times 10^{-8} \text{ м} = 0,03 \text{ мкм}.$$

Для частоты, соответствующей резонансу справедливо

$$\Delta R = \Delta R_{cm} \times Q = 0.03 \times 100 = 3 \text{ MKM}.$$

4. Определить величину коэффициента электромеханической связи пьезоэлектрика, если известно, что накопленная в результате сжатия образца упругая энергия $W_{\text{упр}} = 1$ Дж, а электрическая - $W_3 = 0.5$ Дж?

Решение. Известно, что
$$k^2 = W_9/(W_9 + W_{ynp})$$
.
Из этой формулы находим: $k = [W_9/(W_9 + W_{vnp})]^{1/2} = (0.5/1.5)^{1/2} = 0.58$

5. Упругая податливость электрически свободного образца составляет $S^E = 10^{-11}$ H/m^2 . Найдите значение податливости электрически зажатого S^D материала, если коэффициент электромеханической связи k = 0.9.

Решение. Известно,
$$S^D = S^E(1-k^2) = 10^{-11} \text{ x} (1-0.81) = 0.09 \text{x} 10^{-11} \text{ H/m}^2$$

6. Электрическая емкость пьезоэлектрического резонатора на частотах много выше (C_3) и ниже (C_{cB}) резонансной частоты составила 5 и 8 пФ, соответственно. Найти коэффициент электромеханической связи k.

Решение. Известно, что $C_3 = C_{cg}(1 - k^2)$

Откуда находим
$$k = [(C_{cb} - C_3)/C_{cb}]^{1/2} = (3/8)^{1/2} = 0.61$$

7. Рассчитать коэффициент трансформации симметричного пьезоэлектрического трансформатора поперечно-поперечного типа, работающего в режиме максимального КПД (η), если известно, что η = 90 %.

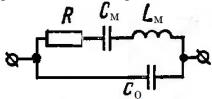
Решение.
$$K_U = \eta(2)^{1/2} = 0.9x1.41 = 1.27$$

8. Рассчитать коэффициент трансформации симметричного пьезоэлектрического трансформатора поперечно-поперечного типа, работающего в режиме холостого хода (K_{Uxx}), если известно, механическая добротность пьезоэлектрической пластины $Q_M = 80$, а коэффициент электромеханической связи $k_{31} = 0.8$.

Решение:
$$K_{Uxx} = 4Q_M k^2_{31}/[\pi^2(1-k_{31})] = 4x80x0,64/(9,87x0,36) = 57,64$$

9. Известно, что площадь секции генератора пьезоэлектрического трансформатора поперечно-поперечного типа $S=6~{\rm cm}^2$, толщина $h=1~{\rm mm}$, диэлектрическая проницаемость материала $\epsilon=900$ на частоте $1~{\rm к}\Gamma$ ц, а коэффициент электромеханической связи $k_{31}=0,8$. Найти значение сопротивления нагрузки $R_{\rm H}$, соответствующее максимальному КПД пьезоэлектрического трансформатора, рабочая частота которого $f_{\rm R}=60~{\rm k}\Gamma$ ц.

Решение: Условие максимального КПД: $R_{\text{H}} = X_{\text{эт}}$, где $X_{\text{эт}} = 1/\omega C_{\text{эт}}$. Здесь $C_{\text{эт}}$ – емкость секции генератора на частоте, превышающей f_R , $\omega = 2\pi$ $f_R = 376800$ c⁻¹. $C_{\text{эт}} = (1 - k^2_{31})\epsilon\epsilon_0 S/h = (0.36)x900x8.85x10^{-12}$ x 6 x10⁻⁴ /10⁻³= 4779 пФ x 0,36 = 1720,4 пФ. $R_{\text{H}} = X_{\text{эт}} = 1/\omega C_{\text{эт}} = (376800x1720.4x10^{-12})^{-1} = 1542,6$ Ом.


10. Скорость распространения ПАВ V = 2000 м/с. Найдите расстояние между соседними электродами (l) ВШП, на которые подают синфазное напряжение для возбуждения ПАВ частотой $f = 100 \ M\Gamma$ ц.

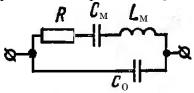
Решение: Условие оптимального возбуждения ПАВ даются выражением $l=n\lambda$, где λ - длина волны, $n=1,2,3,\ldots$

 $\lambda = V/f = 2000/10^8 = 2x \ 10^{-5} \ M = 20 \ MKM.$ Следовательно, $l = nx20 \ MKM$.

7.2.3 Примерный перечень заданий для решения прикладных задач

1. На рисунке показана эквивалентная схема пьезоэлектрического резонатора. Известны параметры эквивалентной схемы: R=10 Ом, $L_M=3$ мГн, $C_M=100$ пФ, $C_0=150$ пФ. Определить частоты резонанса f_R и антирезонанса f_A .

Варианты ответов.

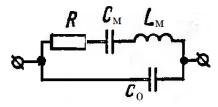

1. $f_R = 390723,2$ Гц; $f_A = 375372,07$ Гц

2. $f_R = 290723,2 \Gamma_{II}$; $f_A = 375322,07 \Gamma_{II}$

3. $f_R = 291723,2$ Гц; $f_A = 375322,07$ Гц

Правильный ответ - 2 f_R = 290723,2 Γ ц; f_A = 375322,07 Γ ц

2. На рисунке показана эквивалентная схема пьезоэлектрического резонатора. Известны параметры эквивалентной схемы: R=15 Ом, $L_M=3$ мГн, $C_M=100$ пФ, $C_0=180$ пФ. Определить добротность Q на частоте резонанса f_R .



Варианты ответов.

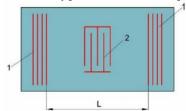
- 1. Q = 547,7
- 2. Q = 147,7
- 3. Q = 5047,7

Правильный ответ - 1: Q = 547,7

3. На рисунке показана эквивалентная схема пьезоэлектрического резонатора. Известны параметры эквивалентной схемы: R=25 Ом, $L_M=3$ мГн, $C_M=120$ пФ, $C_0=200$ пФ. Определить частоты резонанса f_R и антирезонанса f_A до и после того, как к резонатору будет подключен соединительный кабель с собственной емкостью 50 пФ.

Варианты ответов.

До подключения соединительного кабеля


- 1. $f_R = 390723,2$ Гц; $f_A = 375372,07$ Гц
- 2. $f_R = 290723,2 \Gamma_{II}$; $f_A = 375322,07 \Gamma_{II}$
- 3. $f_R = 265392,8 \ \Gamma$ ц; $f_A = 335698,26 \ \Gamma$ ц

После подключения соединительного кабеля

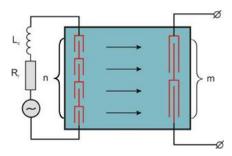
- 4. $f_R = 390723,2 \Gamma$ ц; $f_A = 375372,07 \Gamma$ ц
- 5. $f_R = 265392,8 \Gamma_{\text{Ц}}$; $f_A = 322864,25 \Gamma_{\text{Ц}}$
- 6. $f_R = 291723,2 \Gamma$ ц; $f_A = 375322,07 \Gamma$ ц

Правильные ответы.

- $3 (До подключения соединительного кабеля <math>f_R = 265392,8 \Gamma \mu$; $f_A = 335698,26 \Gamma \mu$);
- 5 (После подключения соединительного кабеля $f_R = 265392,8$ Γ ц; $f_A = 322864,25$ Γ ц)
 - 4. Конструкция какого акустоэлектронного прибора изображена на рисунке?

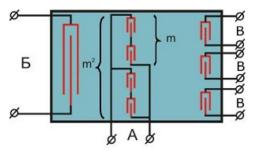
- 1. Резонатор на ПАВ
- 2. Линия задержки на ПАВ
- 3. Трансформатор на ПАВ

Правильный ответ. 1 - Резонатор на ПАВ


5. Конструкция какого акустоэлектронного прибора изображена на рисунке?

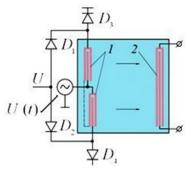
- 1. Резонатор на ПАВ
- 2. Линия задержки на ПАВ
- 3. Трансформатор на ПАВ
- 4. Сумматор на ПАВ

Правильный ответ. 2 - Линия задержки на ПАВ


6. Конструкция какого акустоэлектронного прибора изображена на рисунке?

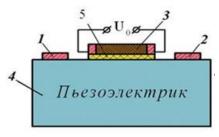
- 1. Резонатор на ПАВ
- 2. Линия задержки на ПАВ
- 3. Трансформатор на ПАВ
- 4. Сумматор на ПАВ

Правильный ответ. 3 - Трансформатор на ПАВ


7. Конструкция какого акустоэлектронного прибора изображена на рисунке?

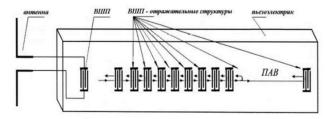
- 1. Резонатор на ПАВ
- 2. Линия задержки на ПАВ
- 3. Трансформатор на ПАВ
- 4. Сумматор на ПАВ

Правильный ответ. 4 - Сумматор на ПАВ


8. Конструкция какого акустоэлектронного прибора изображена на рисунке?

- 1. Резонатор на ПАВ
- 2. Линия задержки на ПАВ
- 3. Фазовращатель на ПАВ
- 4. Сумматор на ПАВ

Правильный ответ. 3 - Фазовращатель на ПАВ


9. Конструкция какого акустоэлектронного прибора изображена на рисунке?

- 1. Резонатор на ПАВ
- 2. Усилитель на ПАВ
- 3. Радиометка на ПАВ
- 4. Сумматор на ПАВ

Правильный ответ. 2 - Усилитель на ПАВ

10. Конструкция какого акустоэлектронного прибора изображена на рисунке?

- 1. Резонатор на ПАВ
- 2. Усилитель на ПАВ
- 3. Фазовращатель на ПАВ
- 4. Радиометка на ПАВ

Правильный ответ. 4 - Радиометка на ПАВ

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Упругие свойства кристаллов. Тензоры деформаций и упругих модулей. Закон Гука.
- 2. Диэлектрическая проницаемость. Тензоры диэлектрической проницаемости и непроницаемости.
- 3. Пьезоэлектрический эффект (прямой и обратный). Пьезоэлектрические коэффициенты.
- 4. Электромеханическая связь, ее влияние на механические и диэлектрические свойства.
 - 5. Общие требования, предъявляемые к датчикам.
- 6. Датчики силы, быстропеременных давлений, деформации, акселерометры, работающие на прямом пьезоэффекте.
- 7. Пьезоэлектрические звукосниматели, микрофоны (гидрофоны) и излучатели. Устройство и принцип действия.
- 8. Упругие продольные и поперечные волны в кристаллах. Стоячие волны. Механический резонанс.
 - 9. Влияние геометрических факторов на спектр резонансных частот.
 - 10. Поверхностные волны. Разновидности ПАВ.
- 11. Пьезоэлектрический резонанс. Эквивалентная схема и основные параметры пьезоэлектрического резонатора.
 - 12. Явление «антирезонанса»
 - 13. Приборы на объемных акустических волнах.
- 14. Пьезоэлектрические резонаторы. Базовые конструкции и эксплуатационные параметры. Область применения.
- 15. Назначение и разновидности электрических фильтров. Пьезоэлектрические фильтры. Базовые конструкции, параметры и характеристики.
- 16. Линии задержки, их назначение и разновидности. Ультразвуковые линии задержки на объемных акустических волнах.
- 17. Пьезоэлектрические сенсоры резонансного типа. Разновидности и принцип действия.
 - 18. Пьезорезонансные датчики силы, температуры, давления и ускорения.
 - 19. Пьезорезонансные датчики микроперемещений.
- 20. Пьезорезонансные датчики влажности, химического состава. Приборы для микровзвешивания.
 - 21. Пьезоэлектрические трансформаторы, их разновидности и режимы работы.
- 22. Основные режимы работы пьезоэлектрических трансформаторов. (Короткое замыкание, холостой ход, режимы максимальной передачи энергии и максимального КПД).
 - 23. Акустоэлектронные приборы на поверхностных акустических волнах.
- 24. Способы возбуждения ПАВ. Встречно-штыревые преобразователи (ВШП), эквивалентная схема. Влияние конструкции преобразователя на его АЧХ.
- 25. Линии задержки, их основные параметры и характеристики. Базовые конструкции Π 3 на Π AB.
 - 26. Резонаторы на ПАВ, их основные параметры и характеристики.
- 27. Фильтры на ПАВ. Базовые конструкции, основные параметры и характеристики.

- 28. Акустические трансформаторы, разветвители, сумматоры сигналов на ПАВ. Базовые конструкции.
 - 29. Акустические фазовращатели, разветвители и аттенюаторы на ПАВ.
 - 30. Конвольверы. Назначение и устройство.
 - 31. Акустоэлектронные усилители.
 - 32. Использование резонаторов и линий задержки на ПАВ в ВЧ автогенераторах.
 - 33. Системы радиочастотной идентификации (РЧИ) на ПАВ-метках.
 - 34. Сенсоры на ПАВ, разновидности, принцип действия, основные конструкции.

7.2.5 Примерный перечень заданий для решения прикладных задач Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ Максимальное количество набранных баллов — 20.

- 1. Оценка «Незачет» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Зачет» ставится в случае, если студент набрал от 6 до 10 баллов

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Электромеханические свойства кристаллов и текстур	ПК-5	Тест, контрольная работа, опрос на занятиях.
2	Пьезоэлектрические устройства, исполь-зующие прямой пьезоэффект.	ПК-5	Тест, контрольная работа, опрос на занятиях.
3	Упругие волны в кристаллах. Пьезоэлектрический резонанс.	ПК-5	Тест, контрольная работа, опрос на занятиях
4	Приборы на объемных акустических волнах	ПК-5	Тест, контрольная работа, опрос на занятиях
5	Акустоэлектронные приборы на ПАВ	ПК-5	Тест, контрольная работа, опрос на занятиях
6	Сложные акустоэлектронные приборы и сенсоры на ПАВ	ПК-5	Тест, контрольная работа, опрос на занятиях

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
- 1. С.А. Гриднев. Физика пьезоэлектрических кристаллов. Воронеж: изд. ВГТУ. 2001. 362 с
- 2. В.В. Малов. Пьезорезонансные датчики. М.- Энергоатомиздат, $1989.-272~\mathrm{c}.$
- 3. Основы нано- и функциональной электроники. Учебн. Пособие/ Ю.А. Смирнов, С.В. Соколов, Е.В. Титов- Изд. 2-е испр. СПб.: Лань, 2013. 310 с.
- 4. В.С. Орлов, В.С. Бондаренко. Фильтры на поверхностных акустических волнах. М.: Радио и связь. 1984. 272 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Microsoft Word, Microsoft Excel, Internet Explorer, Origin

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Научно-учебная лаборатория кафедры ФТТ с научноисследовательскими измерительными стендами, комплексами и оборудованием, компьютерный класс. (аудитории 226, 226а первого корпуса ВГТУ)

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Основы акустоэлектроники» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета акустоэлектронных устройств. Занятия проводятся путем

решения конкретных задач в аудитории.

решения конкретных	к задач в аудитории.		
Вид учебных	Деятельность студента		
занятий	деятельность студента		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом		
	занятии.		
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-		
~	графических заданий, решение задач по алгоритму.		
Самостоятельная	Самостоятельная работа студентов способствует глубокому		
работа	усвоения учебного материала и развитию навыков		
Полготорка к	самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует		
промежуточной	систематически, в течение всего семестра. Интенсивная		
аттестации	подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом три дня эффективнее всего использовать для повторения и систематизации материала.		