МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

Кафедра теплогазоснабжения и нефтегазового дела

РАСЧЕТ НА МЕХАНИЧЕСКУЮ ПРОЧНОСТЬ ПРОВОДОВ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению курсовой работы по дисциплине «Технология монтажа линий электропередачи» для студентов направления подготовки 13.03.01 «Теплоэнергетика и теплотехника» (профиль «Проектирование и строительство городских систем энергосбережения») всех форм обучения

Составители

М. Н. Жерлыкина, С. А. Яременко, К. В. Гармонов

Расчет на механическую прочность проводов линий электропередач: методические указания к выполнению курсовой работы по дисциплине «Технология монтажа линий электропередачи» для студентов направления 13.03.01 «Теплоэнергетика и теплотехника» (профиль «Проектирование и строительство городских систем энергосбережения») всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: М. Н. Жерлыкина, С А. Яременко, К. В. Гармонов. – Воронеж: Изд-во ВГТУ, 2024. – 24 с.

Методические указания содержат методику проектирования механической части воздушных линий электропередач.

Предназначены для студентов направления 13.03.01 «Теплоэнергетика и теплотехника» (профиль «Проектирование и строительство городских систем энергосбережения») всех форм обучения.

Методические указания подготовлены в электронном виде и содержатся в файле MУ_ТМЛЭПТТ_КР.pdf.

Ил. 2. Табл. 16. Библиогр.: 7 назв.

УДК 621.315(07) ББК 31.279я7

Рецензент – А. Ю. Глушков, канд. техн. наук, доцент кафедры жилищно-коммунального хозяйства ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

ВВЕДЕНИЕ

Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электро-энергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции.

Воздушная линия электропередачи (ВЛ) – устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам). Конструкция ВЛ, её проектирование и строительство регулируются Правилами устройства электроустановок (ПУЭ) и Сводом правил (СП).

Цель курсовой работы изучить технологию монтажа, расчет на механическую прочность проводов линий электропередач, ремонт и обслуживание воздушных линий.

Задачи:

- ✓ описать общие сведения о воздушных линиях;
- ✓ изучить применение опор воздушных линий;
- ✓ изучить монтаж изоляторов, провода и троса;
- ✓ определить виды монтажа воздушных линий электропередач;
- ✓ выполнить расчет на механическую прочность проводов линий электропередач.

На воздушных линиях электропередачи (ВЛ) подвешиваются голые (неизолированные) провода, состоящие из одной или нескольких проволок. К материалу проводов предъявляют следующие требования: высокую электрическую проводимость, достаточную прочность, антикоррозионную стойкость. Основными материалами для проводов служат алюминий и сталь, из них изготавливают алюминиевые и комбинированные сталеалюминиевые провода. Опоры ВЛ делятся на две основные группы: промежуточные и анкерные. Промежуточные опоры устанавливают на прямых участках трассы. В нормальном режиме они воспринимают вертикальные нагрузки от массы проводов, изоляторов, арматуры и горизонтальные нагрузки от давления ветра на провода и опоры.

При обрыве одного или нескольких проводов промежуточные опоры воспринимают дополнительную нагрузку, направленную вдоль линии, и подвергаются кручению и изгибу. Поэтому они изготавливаются с определенным запасом прочности. Число промежуточных опор на ВЛ составляет до 80 %. Анкерные опоры устанавливают на прямых участках трассы для перехода ВЛ через инженерные сооружения или естественные препятствия. Их конструкция жестче и прочнее, так как они воспринимают продольную нагрузку от разности тяжения проводов и тросов в смежных анкерных пролетах, а при монтаже — от тяжения подвешенных с одной стороны проводов. Деревянные опоры с пропиткой антисептиком применяется там, где использование древесины экономически выгодно. Преимущество деревянных опор обусловлено их низкой стоимостью, доста-

- 9. Поясните методику определения искомого значения максимального, минимального и среднего напряжений в материале провода.
- 10. Назовите режимы, при которых необходимо рассчитать допустимые значения стрелы провеса провода.
- 11. Назовите условия, при которых полученные расстояния от низшей точки провисания провода до земли соответствуют требуемым.
- 12. От чего зависит наименьшее допустимое расстояние между тросом и проводом в середине пролета без учета отклонения ветром?
- 13. Поясните, при каких условиях обеспечивается механическая прочность троса.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. ГОСТ 839 2019. Провода неизолированные для воздушных линий электропередачи. Технические условия. М: Изд-во стандартов, 2002. 21 с. 165
- 2. Беленя, Е. И. Металлические конструкции / Е. И. Беленя, В. А. Балдин, Г. С. Веденников и др. М.: Стройиздат, 1985. 560 с.
- 3. Вихарев, А. П. Проектирование механической части ЛЭП: учебное пособие / А П. Вихарев. Киров: Изд-во ВятГУ, 2009. 140 с.
- 4. Дядищев, Б. А. Справочник по эксплуатации и ремонту высоковольтных линий электропередач / Б. А. Дядищев, П. И. Хоменко. Киев: Техника, 1984. 192 с.
- 5. Короткевич, М. А. Проектирование линий электропередачи. Механическая часть / М. А. Короткевич. Минск : Высшая школа, 2010. 572 с.
- 6. Крюков, К. П. Конструкции и механический расчет ЛЭП / К. В. Крюков, Б. П. Новгородцев. Л.: Энергия, 1979. 310 с.
- 7. Федин, В. Т. Основы расчета механической части воздушных линий / В. Т. Федин. Минск: БПИ, 1977. 35 с.

ОГЛАВЛЕНИЕ

Вв	Введение	
1.	Исходные данные	4
	Определение толщины стенки гололеда на проводе	
	и величины ветрового давления	10
3.	Определение удельной нагрузки на провод	13
	Определение критических пролетов	15
5.	Определение напряжений в материале провода	16
6.	Определение стрелы провеса провода в различных режимах	18
7.	Определение соблюдения требуемых расстояний	
	от низшей точки провисания провода до земли	19
8.	Определение механической прочности грозозащитного троса	19
Зак	Заключение	
Ко	Контрольные вопросы	
	Библиографический список	

РАСЧЕТ НА МЕХАНИЧЕСКУЮ ПРОЧНОСТЬ ПРОВОДОВ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению курсовой работы для студентов направления подготовки 13.03.01 «Теплоэнергетика и теплотехника» (профиль «Проектирование и строительство городских систем энергосбережения») всех форм обучения

Составители

Жерлыкина Мария Николаевна **Яременко** Сергей Анатольевич **Гармонов** Кирилл Валерьевич

Издается в авторской редакции

Подписано к изданию . .2024. Уч.-изл. л.

ФГБОУ ВО «Воронежский государственный технический университет» 394006 Воронеж, ул. 20-летия Октября, 84