МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ
И.о. декана факультета
радиотехники и электроники
наименование факультета
/ В.А. Небольсин /
и.о. фамилия
февраля 2024 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

«Схемотехническое проектирование электронных средств»

наименование дисциплины (модуля) в соответствии с учебным планом)

Направление подготовки	11.04.03 – Конструировани	е и технология
электронных средств		
	именование направления подготовки/специальност	mu
Профиль Силовая электрон название профиля/программе		
Квалификация выпускник	ка магистр	
Нормативный период обуч	иения <u>2 года / 2 года 3 мес.</u>	
Форма обучения очная / за	<u>очная</u>	
Год начала подготовки <u> 202</u>	<u> 24 г.</u>	
Автор(ы) программы	подпись	М.А. Ромащенко
Заведующий кафедрой	<i>'</i>	
конструирования и производ радиоаппаратуры	цства	А.В. Башкиров
Руководитель ОПОП	подпись	А.В. Башкиров

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Цель изучения дисциплины: теоретическая и практическая подготовка специалистов в области проектирования СБИС выполненных по методу систем в корпусе.

Предметом дисциплины «Схемотехническое проектирование электронных средств» является изучение вопросов, связанных с устройством и построением типовых микроэлектронных узлов различных автоматизированных систем контроля и управления физическими объектами и процессами на основе КМОП-структур, что представляет собой актуальную задачу. При этом рассматриваются вопросы развития глубоко субмикронной технологии, основных этапов проектирования СБИС.

1.2. Задачи освоения дисциплины

овладение методами схемотехнического и топологического проектирования цифровых, аналоговых и аналого-цифровых устройств;

изучение назначения и принципов действия основных физических приборов, приобретение навыков работы с измерительными приборами и инструментами и постановки физических экспериментов;

приобретение навыков моделирования физических процессов и явлений.

изучение временной, энергетической (тепловой), топологической оптимизации, вопросов электромагнитной совместимости изделия и анализ перекрестных искажений на уровне системы в корпусе

приобретение способности эффективно применять типовые программные продукты, ориентированные на решение научных, проектных и технологических задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Схемотехническое проектирование электронных средств» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Схемотехническое проектирование электронных средств» направлен на формирование следующих компетенций:

ПК-3 - проектировать функциональные блоки, модули, устройства, системы и комплексы электронных средств с учетом заданных требований

Компетен	Результаты обучения, характеризующие
ция	сформированность компетенции
ПК-3	Знать

- принципы проектирования конструкций радиоэлектронных средств.

Уметь

- использовать нормативные и справочные данные при разработке проектно-конструкторской документации
- разрабатывать техническое задание на проектирование.

Владеть

- навыками оформления проектно-конструкторской документации в соответствии со стандартами

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Методы обеспечения надежности РЭС» составляет 5 зачетных единицы.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

T	1 0			
Вид учебной работы	Всего	C	Семестры	
	часов	2		
Аудиторные занятия (всего)	90	90		
В том числе:				
Лекции	36	36		
Практические занятия (ПЗ)	18	18		
Лабораторные работы (ЛР)	36	36		
Самостоятельная работа	63	63		
Курсовой проект (есть, нет)	нет	нет		
Контрольная работа (есть, нет)	нет	нет		
Часы на контроль	27	27		
Вид промежуточной аттестации (зачет,	экзамен	экзамен		
зачет с оценкой, экзамен)				
Общая трудоемкость час	180	180		
зач. ед.	5	5		

Заочная форма обучения

Вид учебной работы	Всего	Семестры		
	часов	2		
		(летняя)		
Аудиторные занятия (всего)	8	8		
В том числе:				
Лекции	2	2		
Практические занятия (ПЗ)	2	2		
Лабораторные работы (ЛР)	4	4		
Самостоятельная работа	163	163		
Курсовой проект (есть, нет)	нет	нет		
Контрольная работа (есть, нет)	нет	нет		
Часы на контроль	9	9		
Вид промежуточной аттестации (зачет,				
зачет с оценкой, экзамен)				
Общая трудоемкость час	180	180		
зач. ед	. 5	5		

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Всего,
Π/Π				зан.	зан.		час
1	Среда проектирования аналоговых устройств. Маршрут моделирования и проектирования аналоговых устройств Cadence IC	Среда проектирования аналоговых устройств; Постановка задачи и платформа Cadence Virtuoso как метод решения; Маршрут моделирования аналоговых устройств; Маршрут проектирования аналоговых устройств; Иерархическая система моделей, используемых в САПР элементов БИС; Самостоятельное изучение. Развитие средств схемотехнического моделирования;	9	4,5	9	16	38,5
2	Аналоговое схемотехническое моделирование. Виды и типы анализа	Общие положения математической формулировки задач моделирования элементов БИС; Спектральный анализ; Анализ чувствительности; Анализ устойчивости (stb-analisis); Многовариантный анализ. Режим Parametric Sweep; Самостоятельное изучение. Анализ Монте-Карло; Моделирование цифровых и аналогоцифровых устройств;	9	4,5	9	16	38,5

		Итого	36	18	36	63	153
4	Методология проектирования цифровых устройств УБИС	Маршрут проектирования цифровых устройств Cadence; Цифровой Design Kit; Самостоятельное изучение. Формирование ограничений (временных, топологических, энергетических);	9	4,5	9	15	37,5
3	Библиотеки элементов. Состав, структура библиотек элементов для схемотехнического моделирования с проектными нормами 90 нм БиКМОП технологии	Библиотека элементов БиКМОП технологии; Самостоятельное изучение. Состав, структура библиотек элементов для схемотехнического моделирования с проектными нормами 90 нм БиКМОП технологии;	9	4,5	9	16	38,5

заочная форма обучения

No	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Всего,
п/п				зан.	зан.		час
1	Среда проектирования аналоговых устройств. Маршрут моделирования и проектирования аналоговых устройств Cadence IC	Среда проектирования аналоговых устройств; Постановка задачи и платформа Cadence Virtuoso как метод решения; Маршрут моделирования аналоговых устройств; Маршрут проектирования аналоговых устройств; Иерархическая система моделей, используемых в САПР элементов БИС; Самостоятельное изучение. Развитие средств схемотехнического моделирования;	0,5	0,5	1	41	43
2	Аналоговое схемотехническое моделирование. Виды и типы анализа	Общие положения математической формулировки задач моделирования элементов БИС; Спектральный анализ; Анализ чувствительности; Анализ устойчивости (stb-analisis); Многовариантный анализ. Режим Parametric Sweep; Самостоятельное изучение. Анализ Монте-Карло; Моделирование цифровых и аналогоцифровых устройств;	0,5	0,5	1	41	43
3	Библиотеки элементов. Состав, структура библиотек элементов для схемотехнического моделирования с проектными нормами 90 нм БиКМОП технологии	Библиотека элементов БиКМОП технологии; Самостоятельное изучение. Состав, структура библиотек элементов для схемотехнического моделирования с проектными нормами 90 нм БиКМОП технологии;	0,5	0,5	1	41	43
4	Методология проектирования цифровых устройств УБИС	Маршрут проектирования цифровых устройств Cadence; Цифровой Design Kit; Самостоятельное изучение. Формирование ограничений (временных, топологических, энергетических);	0,5	0,5	1	40	42
		Итого	2	2	4	163	171

5.2 Перечень лабораторных работ

Лабораторная работа №1.

Схемотехническое проектирование усилителей с общим истоком и общим стоком (истоковых повторителей) в технологии с проектными нормами 90 нм.

Лабораторная работа №2.

Схемотехническое проектирование дифференциальных усилителей в технологии с проектными нормами 90 нм.

Лабораторная работа №3.

Схемотехническое проектирование дифференциальных усилителей в технологии с проектными нормами 90 нм.

Лабораторная работа №4

Схемотехническое проектирование операционных усилителей.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Учебным планом по дисциплине «Схемотехническое проектирование электронных средств» не предусмотрено выполнение лабораторных работ.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетен ция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-3	Знать	Активная работа на	Выполнение работ	Невыполнение
	- принципы проектирования	практических занятиях,	в срок,	работ в срок,
	конструкций радиоэлектронных	отвечает на	предусмотренный	предусмотренны
	средств.	теоретические вопросы	в рабочих	й в рабочих
		при защите курсовой	программах	программах
		работы		
	Уметь	Решение стандартных	Выполнение	Невыполнение
	- использовать нормативные и	практических задач,	работ в срок,	работ в срок,
	справочные данные при разработке	написание курсовой	предусмотренны	предусмотренн
	проектно-конструкторской	работы	й в рабочих	ый в рабочих

документации - разрабатывать техническое задание		программах	программах
на проектирование. Владеть - навыками оформления проектно- конструкторской документации в соответствии со стандартами	Решение прикладных задач в конкретной предметной области, выполнение плана работ при выполнении курсовой работы	Выполнение работ в срок, предусмотренны й в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 2 семестре для очной формы обучения и в 2 (летняя сессия) для заочной формы обучения по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компе тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл	Неудовл
ПК-3	Знать - принципы проектирования конструкций радиоэлектронных средств.	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	Уметь - использовать нормативные и справочные данные при разработке проектноконструкторской документации - разрабатывать техническое задание на проектирование.	Решение стандартны х практическ их задач	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонст р ирован верный ход решения в большинств е задач	Задачи не решены
	Владеть - навыками оформления проектно-конструкторской документации в соответствии со стандартами	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонст р ирован верный ход решения в большинств е задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. По усиливаемому сигналу усилители делятся на: А) мощности, напряжения и тока Б) мощности и сопротивления В) сопротивления и индуктивности Г) индуктивности и напряжения 2. Какие бывают триоды? А) открытый и закрытый Б) полный и неполный В) двойной и тройной Г) одно - и двухфазный 3. Чему обычно равняется коэффициент усилителя? A) 1 Б) 2 B) 3 Γ) 4 4. Из чего состоит триод? А) анод, катод и сетка Б) катод и анод В) диод и сетка Г) сетка и катод 5. Сколько видов усилителей по частотам существует? A) 4 Б) 3 B) 5 Γ) 7 6. По полосе пропускания усилители бывают: А) широко - и узкополосые Б) одно - и многополосые В) пропускающие и задерживающие Г) цветные и черно-белые 7. Зависимость коэффициента усиления усилителя от частоты – это: А) АЧХ Б) ФЧХ В) БЧХ Г) УЧХ. 7.2.2 Примерный перечень заданий для решения стандартных задач 1. Чему равно К. П.Д. в режиме работы усилителя А?

- A) < 0.5Б) 0,5-1.0
- B) 1,0-1,5
- Γ) 1,5-2,0

	. Преимущества режима работы А?
	А) малые нелинейные искажения
	б) малые линейные искажения
	В) высокий КПД
Γ) отсутствие КПД
3	. Отношение мощности выхода к мощности, потребляемой выходным
каскадо	0M - 3T0:
Α	А) КПД
Б	S) CKO
В	3) СКП
Γ) КПМ
4	. Режимы работы усилителя выделяют?
	A) A, B, C, D
Б	(A, B, B, Γ)
В	в) простой и сложный
) общий и частный
5	. Режим работы усилителя, при котором ток выходной цепи протекает в
течениі	и всего периода входного сигнала?
Α	A) A
	S) B
	B) C
Γ	Τ) Γ
6	.В течении какого времени протекает ток через усилитель в режиме В?
A	х) полупериод входного сигнала
Б) полный период выходного сигнала
В	3) 2 секунды
Γ	у) мгновение
7	Какой пежим паботы усилителя используется в пезонаненых усилителях?

- 7. Какой режим работы усилителя используется в резонансных усилителях?
- A) A
- Б) В
- B) C
- Γ) D
- 8. В каких состояниях может находиться усилитель в режиме D?
- А) открыт закрыт
- Б) рабочий нерабочий
- В) спокойный активный
- Г) ключевой усиливающий

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1.1 Составить таблицу истинности для заданной переключательной функции в соответствии с вариантом задания (таблица 1.1).
- 1.2 Составить карту Карно в соответствии с заданной функцией по указанному варианту.
- 1.3 Провести минимизацию функции. Записать выражения для СДНФ и СКНФ после исключения повторяющихся членов.

1.4 Разработать три электрические схемы в базисах логических элементов: И, ИЛИ, НЕ; И-НЕ; ИЛИ-НЕ.

Таблица 1.1

Вариант	Функция алгебры логики
1	$f(x_1,x_2,x_3,x_4) = V(0, 1, 2, 4, 5, 6, 10, 12)$
	1
2	$f(x_1,x_2,x_3,x_4) = V(0, 2, 3, 8, 9, 10, 11, 14, 15)$
	1
3	$f(x_1,x_2,x_3,x_4) = V(0, 2, 4, 6, 7, 9, 12, 15)$
	1
4	f(x1,x2,x3,x4) = V(0, 1, 2, 3, 8, 10, 11, 12, 13, 15)
	1
5	f(x1,x2,x3,x4) = V(1, 3, 5, 6, 7, 8, 10, 14, 15)
	1
6	f(x1,x2,x3,x4) = V(3, 4, 5, 9, 10, 12, 14, 15)
7	$f(x_1,x_2,x_3,x_4) = V(2, 4, 5, 6, 8, 9, 10, 14)$
8	f(x1,x2,x3,x4) = V(1, 4, 8, 9, 10, 12, 13, 14, 15)
	[
9	$f(x_1,x_2,x_3,x_4) = V(1, 2, 4, 8, 9, 10, 12, 13, 15)$
10	
10	f(x1,x2,x3,x4) = V(0, 4, 5, 6, 7, 8, 9, 13, 15)
	1

- 2.1 Составить таблицу истинности для мультиплексора с 16 входами и построить функциональную схему, при этом на управляющие входы мультиплексора подать младшие переменные.
- 2.2 Составить таблицу истинности для мультиплексора с 8 входами и построить функциональную схему;
- 2.3 Составить таблицу истинности для мультиплексора с 4 входами и построить функциональную схему;

Таблица 2.1

Вариант	Функция алгебры логики
1	$f(x_1,x_2,x_3,x_4) = V(0, 1, 2, 4, 5, 6, 10, 12)$
	1
2	$f(x_1,x_2,x_3,x_4) = V(0, 2, 3, 8, 9, 10, 11, 14, 15)$
	1
3	$f(x_1,x_2,x_3,x_4) = V(0, 2, 4, 6, 7, 9, 12, 15)$
	1
4	$f(x_1,x_2,x_3,x_4) = V(0, 1, 2, 3, 8, 10, 11, 12, 13, 15)$
	1
5	$f(x_1,x_2,x_3,x_4) = V(1, 3, 5, 6, 7, 8, 10, 14, 15)$
	1
6	$f(x_1,x_2,x_3,x_4) = V(3, 4, 5, 9, 10, 12, 14, 15)$
	1
7	$f(x_1,x_2,x_3,x_4) = V(2, 4, 5, 6, 8, 9, 10, 14)$
	1
8	$f(x_1,x_2,x_3,x_4) = V(1, 4, 8, 9, 10, 12, 13, 14, 15)$
	1
9	$f(x_1,x_2,x_3,x_4) = V(1, 2, 4, 8, 9, 10, 12, 13, 15)$

	1
10	$f(x_1,x_2,x_3,x_4) = V(0, 4, 5, 6, 7, 8, 9, 13, 15)$
	1

- 3.1 Записать выражение в алгебре логики для выходной функции F по заданному варианту.
 - 3.2 Записать таблицу истинности для заданной функции.
 - 3.3 Построить принципиальную схему в заданном базисе.

Таблица 3.1

Вариант	Задание
1	двухразрядный цифровой компаратор с тремя выходами в базисе И-НЕ
2	четырехразрядный цифровой компаратор на равенство в базисе И-НЕ
3	трехразрядный цифровой компаратор на равенство на демультиплексоре и
	мультиплексоре
4	двухразрядный цифровой компаратор на равенство в базисе И-НЕ
5	четырехразрядный цифровой компаратор с тремя выходами в базисе И-ИЛИ-НЕ
6	двухразрядный цифровой компаратор на меньше в базисе И-НЕ
7	трехразрядный цифровой компаратор на больше на демультиплексоре и
	мультиплексоре
8	четырехразрядный цифровой компаратор на меньше в базисе И-ИЛИ-НЕ
9	двухразрядный цифровой компаратор с тремя выходами в базисе ИЛИ-НЕ
10	четырехразрядный цифровой компаратор с тремя выходами в базисе И-НЕ

- 4.1 Записать аналитическое выражение для выходной функции F в соответствии с заданным вариантом.
 - 4.2 Построить таблицу истинности для выходной функции F в соответствии с заданным вариантом.
 - 4.3 Построить электрическую принципиальную схему в заданном базисе. Таблица 4.1

Вариант	Задание
1	Одноразрядный сумматор (на входе а и b; выход сумма). Нельзя использовать
	XOR.
2	Одноразрядный полусумматор (на входе а и b; выход сумма и перенос) в базисе
	И-ИЛИ-НЕ
3	Одноразрядный полный сумматор (на входе а, b и перенос; выход сумма и
	перенос) в базисе И-НЕ
4	4-разрядный параллельный сумматор. Предусмотреть вход переноса.
5	2-разрядный последовательный сумматор
6	2-разрядный параллельный сумматор с параллельным переносом. Предусмотреть
	вход переноса
7	Параллельный сумматор с последовательным переносом для 2-х разрядных
	чисел
8	2-разрядный двоичный сумматор— вычитатель и выполнить следующие
	арифметические операции A+B и C-D
9	2-разрядный полусумматор в базисе И-ИЛИ-НЕ
10	2-разрядный полусумматор в базисе И-НЕ

- 5.1 Построить таблицу истинности для триггера в соответствии с заданным вариантом в таблице 5.1.
 - 5.2 Записать логическое выражение синтеза триггера в заданном базисе.
 - 5.3 Построить электрическую схему в заданном базисе.

Таблица 5.1

Вариант	Задание
1	Синтезировать RS- тригтер в базисе И-НЕ
2	Синтезировать D- триггер в базисе ИЛИ-НЕ
3	Синтезировать Т- триггер в базисе И-НЕ
4	Синтезировать синхронный ЈК- триггер и в базисе ИЛИ-НЕ.
5	Синтезировать RS- тригтер в базисе ИЛИ-НЕ
6	Синтезировать D- триггер в базисе И-НЕ.
7	Синтезировать Т- триггер в базисе ИЛИ-НЕ
8	Синтезировать синхронный ЈК- триггер в базисе И-НЕ
9	Синтезировать двухступенчатый RS- триггер в базисе И-НЕ
10	Синтезировать на логических элементах динамический D-триггер

- 6.1 Построить таблицу истинности для регистра в соответствии с заданным вариантом в таблице 6.1.
 - 6.2 Записать логическое выражение синтеза регистра.
 - 6.3 Построить электрическую схему в заданном базисе.

Таблица 6.1

Вариант	Задание	
1	Синтезировать 4-разрядный регистр сдвига на D-триггерах	
2	Синтезировать реверсивный 8-разрядный регистр сдвига на D триггерах	
3	Синтезировать последовательный 8-разрядный регистр	
4	Синтезировать 4- разрядный регистр памяти с общим входом управления	
	записью	
5	Синтезировать последовательный 4-разрядный регистр	
6	Синтезировать параллельно- последовательный 4-разрядный регистр	
7	Синтезировать параллельный 8-разрядный регистр на D-триггерах	
8	Синтезировать 8-разрядный регистр с синхронной параллельной записью	
9	Синтезировать 8-разрядный устройство с асинхронной параллельной записью	
	кода	
10	Синтезировать 8- разрядный регистр памяти с общим входом управления записью	

- 7.1. Записать таблицу истинности (переходов) счетчика в соответствии с заданным вариантом.
- 7.2. Составить карты переходов триггеров каждого разряда. Карта переходов размечается также как карта Карно, строится по таблице состояний и отображает переход триггера из предыдущего состояния в последующее.
- 7.3. Разработать электрическую принципиальную схему на заданном виде триггеров, используя светодиоды.

Таблица 7.1

Вариант	Задание
1	Синтезировать 4-разрядный суммирующий счетчик на ЈК-триггерах
2	Синтезировать 4-разрядный вычитающий счетчик на ЈК-триггерах
3	Синтезировать 3-разрядный синхронный суммирующий счетчик на D-триггерах
4	Из 3-разрядных синхронных суммирующих счетчиков, построенных на D-
	триггерах, получить 9-разрядный счетчик
5	Синтезировать 3-разрядный счетчик на триггерах с изменяемым направлением
	счета
6	Синтезировать на триггерах 3-разрядный счетчик с предварительной установкой
	и сбросом
7	Синтезировать 4-разрядный счетчик, который при одном состоянии

	управляющего сигнала считает от 0 до 9, а при другом по коду Грея
8	Синтезировать 4-разрядный счетчик на триггерах с изменяемым направлением
	счета
9	Синтезировать двоично-десятичный суммирующий счетчик, работающий в
	прямом коде
10	Синтезировать на Т-триггерах счетчик с коэффициентом пересчета равным 5

7.2.4 Примерный перечень вопросов для подготовки к зачету

В соответствии с учебным планом освоение дисциплины не предусматривает проведение зачета.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Понятие «моделирование». Задачи схемотехнического моделирования СБИС. Проблемы схемотехнического моделирования КМОП СБИС.
- 2. Среда проектирования аналоговых устройств. Постановка задачи и платформа Cadence Virtuoso как метод решения. Маршрут моделирования аналоговых устройств.
- 3. Маршрут проектирования аналоговых устройств. Иерархическая система моделей, используемых в САПР элементов БИС.
- 4. Иерархическая система моделей, используемых в САПР элементов БИС. Развитие средств схемотехнического моделирования.
- 5. Принципы аналогового схемотехнического моделирования.
- 6. Виды и типы анализа. Общие положения математической формулировки задач моделирования элементов БИС.
- 7. Расширенные виды анализа. Спектральный анализ. Анализ чувствительности.
- 8. Расширенные виды анализа. Анализ устойчивости (stb-analisis). Многовариантный анализ. Режим Parametric Sweep.
- 9. Расширенные виды анализа. Анализ Монте-Карло. Моделирование цифровых и аналого-цифровых устройств.
- 10. Библиотека элементов БиКМОП технологии.
- 11. Состав, структура библиотек элементов для схемотехнического моделирования с проектными нормами 90 нм БиКМОП технологии.
- 12. Модели элементов. Их параметры: Резисторы, Конденсаторы.
- 13. Модели биполярных транзисторов.
- 14. Модели МОП-транзисторов. Источники сигналов и питания.
- 15. Задание на моделирование. Список соединений. Язык SPICE. Расчет режима по постоянному току. Многовариантный расчет режима по постоянному току.
- 16. Задание на моделирование. Список соединений. Язык SPICE.
- 17. Расчет малосигнальных чувствительностей.
- 18. Микросхемотехника аналоговых и аналого-цифровых СФ блоков.
- 19. Математические модели РЭУ и их элементов.

- 20. Классификация усилительных устройств. Технические показатели усилительных устройств.
- 21. Особенности МОП-транзисторов. Схемотехника источников тока и токовых зеркал. Схемотехника с общим истоком и истоковых повторителей.
- 22. Дифференциальные каскады. Схемотехника дифференциальных каскадов усиления. Схемотехника компараторов.
- 23. Операционный усилитель. Схемотехника операционных усилителей. Амплитудно-частотная и фазово-частотная характеристики операционного усилителя для малого сигнала.
- 24. Схемотехника резистивно-емкостных каскадов. Характеристики в области средних частот. Характеристики в области низших частот. Характеристики в области высших частот.
- 25. Устройства формирования АЧХ. Активные фильтры на операционных усилителях.
- 26. Модуляция и демодуляция. Преобразователи частоты. Схемотехническое проектирование преобразователя частоты. Принципы построения умножителей частоты. Умножители частоты на дифференциальных каскадах.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 3 вопроса, по одному по каждой из тем, и 3 задачи, по одной по каждой из тем. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 5 баллов, при допуске арифметической ошибки — 4 балла, при правильном ходе незаконченного решения — 3 балла, при продвижении в решении — 2 балла. Максимальное количество набранных баллов —18.

- оценка «неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- оценка «удовлетворительно» ставится в случае, если студент набрал от 6 до 9 баллов
- оценка «хорошо» ставится в случае, если студент набрал от 10 до 15 баллов.
- оценка «отлично» ставится, если студент набрал от 16 до 18 баллов

7.2.7 Паспорт оценочных материалов

No	Контролируемые разделы	Код	Наименование
Π/Π	(темы) дисциплины	контролируемой	оценочного средства
		компетенции (или	
		ее части)	
1	Среда проектирования	ПК-3	Тест, экзамен, устный
	аналоговых устройств.		опрос, защита
	Маршрут моделирования и		лабораторных работ ,
	проектирования аналоговых		ответы на практических
	устройств Cadence IC		занятиях
2	Аналоговое схемотехническое	ПК-3	Тест, экзамен, устный
	моделирование. Виды и типы		опрос, защита

	анализа		лабораторных работ, ответы на практических занятиях
3	Библиотеки элементов. Состав, структура библиотек элементов для схемотехнического моделирования с проектными нормами 90 нм БиКМОП технологии	ПК-3	Тест, экзамен, устный опрос, защита лабораторных работ, ответы на практических занятиях
4	Методология проектирования цифровых устройств УБИС	ПК-3	Тест, экзамен, устный опрос, защита лабораторных работ, ответы на практических занятиях

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Ю.С. Балашов, А.И. Мушта, А.М. Сумин Моделирование аналоговых устройств сверхбольших интегральных схем (учебное пособие)
- 2. Ю.С. Балашов, Д.В Шеховцов Проектирование цифровых устройств УБИС (учебное пособие)

- 3. Королев М. А. Крупкина Т. Ю. Путря М. Г. Шевяков В. И. Технология, конструкции и методы моделирования кремниевых интегральных микросхем. Часть 2 ISBN: 978-5-9963-0913-9 http://znanium.com/bookread2.php?book=366622
- 4. Балашов Ю.С., Сумин А.М., Мушта А.И. Методические указания по выполнению лабораторных работ № 1 4 по дисциплине «Схемотехническое проектирование аналоговых устройств сверхбольших интегральных схем» для магистров и слушателей профессиональной переподготовки специалистов очной формы обучения / ФГБОУ ВПО «Воронежский государственный технический университет»; сост. Ю.С. Балашов, А.И. Мушта, А.М. Сумин. Воронеж, 2011. 41 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

программный комплекс «Компас 3D»

программный комплекс Altium designer (учебная лицензия)

http://window.edu.ru/ - единое окно доступа к образовательным ресурсам

http://www.rsci.ru/grants/grant_news/ - новости о грантах

http://www.fips.ru/ - Федеральный институт промышленной собственности

<u>http://www.rupto.ru/</u> - Федеральная служба по интеллектуальной собственности (Роспатент)

https://old.education.cchgeu.ru/ - электронная информационно-обучающая система ВГТУ

https://docplan.ru/ - база данных ГОСТ

www.elibrary.ru/ - электронная библиотека

 $\underline{\text{https://www.iprbookshop.ru/}}$, $\underline{\text{https://e.lanbook.com/}}$ - электронные библиотечные системы

<u>http://www.vorstu.ru/structura/library/</u> - научно-техническая библиотека ВГТУ

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой

Компьютерный класс, оснащенная ПЭВМ с установленным программным обеспечением

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Схемотехническое проектирование электронных средств» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета параметров электромагнитной совместимости. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Освоение дисциплины оценивается на экзамене.

Вид учебных	Деятельность студента
занятий	(особенности деятельности студента инвалида и лица с ОВЗ,
Запитии	при наличии таких обучающихся)
Лекция	Написание конспекта лекций: кратко, схематично, последовательно
лекция	фиксировать основные положения, выводы, формулировки, обобщения;
	помечать важные мысли, выделять ключевые слова, термины. Проверка
	терминов, понятий с помощью энциклопедий, словарей, справочников с
	выписыванием толкований в тетрадь. Обозначение вопросов, терминов,
	материала, которые вызывают трудности, поиск ответов в рекомендуемой
	литературе. Если самостоятельно не удается разобраться в материале,
	необходимо сформулировать вопрос и задать преподавателю на лекции
	или на практическом занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с конспектом
занятие	лекций, подготовка ответов к контрольным вопросам, просмотр
	рекомендуемой литературы. Прослушивание аудио- и видеозаписей по
	заданной теме, выполнение расчетно-графических заданий, решение задач
	по алгоритму.
Лабораторная	Лабораторные работы позволяют научиться применять теоретические
работа	знания, полученные на лекции при решении конкретных задач. Чтобы
	наиболее рационально и полно использовать все возможности
	лабораторных для подготовки к ним необходимо: следует разобрать
	лекцию по соответствующей теме, ознакомится с соответствующим
	разделом учебника, проработать дополнительную литературу и источники,
	решить задачи и выполнить другие письменные задания.
Самостоятельн	Самостоятельная работа студентов способствует глубокому усвоения
ая работа	учебного материала и развитию навыков самообразования.
	Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной
	- работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;
	литературой, а также прорасотка конспектов лекции, - выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
	, , , , , , , , , , , , , , , , , , , ,

Подготовка к	Готовиться к промежуточной аттестации следует систематически, и
промежуточно	течение всего семестра. Интенсивная подготовка должна начаться не
й аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные
	перед экзаменом три дня эффективнее всего использовать для повторения
	и систематизации материала.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений		Подпись
		Дата	заведующего
		внесения	кафедрой,
		изменений	ответственной за
			реализацию ОПОП