МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан ФМАТ

<u>/В.И. Ряжских /</u>

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля) «Компьютерная графика»

Направление подготовки 15.03.01 — Машиностроение Профиль Технологии, оборудование и автоматизация машиностроительных производств Квалификация выпускника Бакалавр Нормативный период обучения 4 года / - Форма обучения Очная / - Год начала подготовки 2021 г.

Автор программы

_ / Д. Е. Пачевский. /

Заведующий кафедрой автоматизированного оборудования машиностроительного производства

В.Р Петренко./

Руководитель ОПОП

_/ В.Р Петренко. /

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1 Цель изучения дисциплины

- освоение материалов по основам и методам компьютерной графики и графического моделирования, векторной и растровой графики и применению их при проектировании технологий, оборудования и средств автоматизации машиностроительных производств.

1.2 Задачи освоения дисциплины

- изучение алгоритмов и методов компьютерной геометрии, растровой и векторной графики;
- получение навыков работы с программным обеспечением, графическими библиотеками для создания 2D и 3D моделей, технологического процесса обработки изделия, конструкторско-технологической документации.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Компьютерная графика» относится к дисциплинам по выбору вариативной части (Б1.В.ДВ) блока Б1 учебного плана.

3 ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Компьютерная графика» направлен на формирование следующих компетенций:

ПК-7 — способностью оформлять законченные проектноконструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам.

ПК-12 — способностью разрабатывать технологическую и производственную документацию с использованием современных инструментальных средств.

Компе-	Результаты обучения, характеризующие						
тенция	сформированность компетенции						
ПК-7	знать алгоритмы, методы и средства компьютерной графики и гео-						
	метрического моделирования, основы векторной и растровой графи-						
	ки, теоретические аспекты фрактальной графики, основные методы						
	компьютерной геометрии						
	уметь работать с программным обеспечением САД-систем						
	владеть приемами создания и редактирования 2D и 3D моделей						
	проектируемого изделия, создания технологического процесса обра-						
	ботки изделия						
ПК-12	знать алгоритмические и математические основы и методики по-						
	строения реальной визуализации графических и технологических						
	разработок с помощью ПК.						

уметь реализовывать основные алгоритмы растровой и векторной графики, используя графические стандарты и библиотеки.

владеть навыками оформления сопроводительной документации на изделие в CAD/CAM/CAE системах.

4 ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Компьютерная графика» составляет 7 зачетных единиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего	Семестры			
	часов	3	4	5	
Аудиторные занятия (всего)	108	36	54	18	
В том числе:					
Лекции	36	18	18	нет	
Практические занятия (ПЗ)	36	нет	18	18	
Лабораторные работы (ЛР)	36	18	18	нет	
Самостоятельная работа	144	18	72	54	
Курсовая работа	+	нет	есть	нет	
Контрольная работа	нет	нет	нет	нет	
Вид промежуточной аттестации	+; +; +	Зачет	Зачет	Зачет с	
– зачет, зачет, зачет с оценкой				оценкой	
Общая трудоемкость, часов	252	54	126	72	
Зачетных единиц	7,0	1,5	3,5	2,0	

5 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

Очная форма обучения

No	Наимено-	Содержание раздела	Лек	Пра	Лаб	CP	Bce-
п/п	вание темы		ции	К		C	го,
				зан.	зан.		час
1	Основы компью- терной графики	Компьютерная графика и области ее применения. Задачи компьютерной графики. Виды компьютерной графики. Основные направления в компьютерной графике. Программное обеспечение для создания, просмотра и обработки графической информации. Требования информаци-	4	1	4	5	13

		онной безопасности.					
2	Двухмер-	Базовые положения 2D-графики.					
	ная гра-	Растровая графика. Структура					
	фика.	растрового файла. Форматы					
	Форматы	растровой графики. Сжатие	8	-	4	5	17
	растро-	растровых изображений. Алго-					
	вой гра-	ритмы сжатия. Редактирование					
	фики	растровой графики.					
3	Форматы	Векторная графика. Программ-					
	вектор-	ные средства векторной графики.					
	ной гра-	Структура файла векторной гра-					
	фики	фики. Форматы векторной гра-	4	-	4	6	14
		фики. Цветовые модели. Коди-					
		рование цвета. Палитра. Переход					
		к 3D-графики.					
4	Методы и	Особенности оптимального по-					
	алгорит-	строения локальной вычисли-					
	МЫ	тельной сети. Алгоритмы ком-					
	компью-	пьютерной графики. Особенно-	2	-	6	2	10
	терной	сти интерфейса современных					
	графики	САПР. Особенности хранения					
		проектных данных.					
	_	Итого, третий семестр	18	-	18	18	54
1	Основы	Компьютерная графика и обла-					
	компью-	сти ее применения. Задачи ком-					
	терной	пьютерной графики. Виды ком-					
	графики	пьютерной графики. Основные					
		направления в компьютерной	-	4	-	12	16
		графике. Программное обеспече-					
		ние для создания, просмотра и					
		обработки графической инфор-					
		мации. Требования информаци-					
2	Пруума	онной безопасности.					
	Двухмер-	Базовые положения 2D-графики.					
	ная гра- фика.	Растровая графика. Структура растрового файла. Форматы					
	фика. Форматы	растрового фаила. Форматы растровой графики. Сжатие	_	4	_	12	16
	растро-	растровой графики. Сжатие растровых изображений. Алго-	-	+	_	12	10
	вой гра-	ритмы сжатия. Редактирование					
	фики	растровой графики.					
3	Форматы	Векторная графика. Программ-					
	вектор-	ные средства векторной графики.					
	ной гра-	Структура файла векторной гра-	-	2	-	12	14
		i o io ini iba wanja beniuliun iba- i					
	фики	фики. Форматы векторной гра-					

		Assess Harris Marie					
		фики. Цветовые модели. Коди-					
		рование цвета. Палитра. Переход					
		к 3D-графики.					
4	Методы и	Особенности оптимального по-					
	алгорит-	строения локальной вычисли-					
	мы ком-	тельной сети. Алгоритмы ком-	_	•		10	22
	пьютер-	пьютерной графики. Особенно-	6	2	2	12	22
	ной гра-						
	фики	САПР. Особенности хранения					
		проектных данных.					
5	Создание	Структура, создание и управле-					
	моделей в	ние моделями твердых тел в					
	CAD -	1 , 1 ,					
	системах	ных моделей; методики создания					
		каркасных и твердотельных мо-	6	4	8	12	30
		делей; редактирование трехмер-					
		ных моделей. Упрощенные ме-					
		тодики создания моделей. Дере-					
		во проектирования.					
6	Система	Паминини выполнания пасска					
U	КОМ-	Принципы выполнения проектно-конструкторских работ и тек-					
	ΠAC 3D	стовых документов в системе					
	TIAC 3D	КОМПАС. Интерфейс програм-	6	2	8	12	28
		мы. Библиотеки типовых фраг-					
		мы. Виолиотски типовых фраг-					
		Итого, 4 семестр	18	18	18	72	126
4	Методы и	Особенности оптимального по-	10	10	10	12	120
	алгорит-	строения локальной вычисли-					
	мы	тельной сети. Алгоритмы ком-					
	компью-	пьютерной графики. Особенно-	_	6	_	18	24
	терной	сти интерфейса современных					
	графики	САПР. Особенности хранения					
	1 1	проектных данных.					
5	Создание	Структура, создание и управле-					
	моделей в	ние моделями твердых тел в					
	CAD -	САПР: классификация трехмер-					
	системах	ных моделей; методики создания					
		каркасных и твердотельных мо-	-	6	-	18	24
		делей; редактирование трехмер-					
		ных моделей. Упрощенные ме-					
		тодики создания моделей. Дере-					
		во проектирования.					
6	Система	Принципы выполнения проект-	-	6	-	18	24

КОМ-	но-конструкторских работ и тек-					
ПАС 3D	стовых документов в системе					
	КОМПАС. Интерфейс програм-					
	мы. Библиотеки типовых фраг-					
	ментов. Текстовый процессор.					
	Практическая подготовка обу-		20			
	чающихся		<u>20</u>			
	Итого, Зсеместр	18	-	18	18	54
	Итого, 4 семестр	18	18	18	72	126
	Итого, 5 семестр	-	18	-	54	72
	Всего	36	36	36	144	252

№	Перечень выполняемых обучающимися от-	Формируемые профессио-
Π/Π	дельных элементов работ, связанных с бу-	нальные компетенции
	дущей профессиональной деятельностью	
1	Построение 2D модели детали и на ее осно-	ПК-7
	ве создание 3D модели в CAD-системах и	
	технологического процесса ее обработки.	
2	Оформление сопроводительной конструк-	ПК-12
	торской и технологической документации с	
	использованием CAD/CAM/CAE систем.	

5.2 Перечень лабораторных работ

- 1. Физическая среда реализации алгоритмов и методов компьютерной графики
 - 2. Векторная графика в САПР
 - 3. Рабочая область КОМПАС
 - 4. Построение чертежа
 - 5. Основы 3D-моделирования
 - 6. Создание сборочной единицы
 - 7. Инструменты создания изображений в САМ-системах

5.3 Перечень практических работ

- 1. Основы компьютерной графики
- Анализ основных программных продуктов для различных направлений компьютерной графики
 - Анализ графических библиотек для работы с компьютерной графикой
 - 2. Двухмерная графика. Форматы растровой графики
 - Изучение рабочей области графического редактора Photoshop
 - Изучение рабочей области графического редактора CorelPhotopoint
 - 3. Форматы векторной графики
 - Изучение основ работы в CorelDraw
 - Изучение основ работы в Adobe Illustrator
 - 4. Методы и алгоритмы компьютерной графики

- Знакомство с библиотекой WEBGL
- Изучение аппаратных возможностей видеокарт
- 5. Создание моделей в CAD -системах
- Сравнительный анализ основных САД-систем.
- Обзор инструментальных возможностей Siemens NX
- Обзор инструментальных возможностей SolidWorks
- 6. Система КОМПАС 3D
- Изучение рабочей области
- Построение 2d чертежа
- Построение 3d модели
- 7. Система NX
- Изучение рабочей области
- Построение 2d чертежа
- Построение 3d модели
- Обработка и постпроцессирование в NX

6 ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

6.1. Курсовые проекты (работы)

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы в 4семестре.

Примерная тематика курсовой работы: «Создание 3D-модели детали» Задачи, решаемые при выполнении курсовой работы:

- Выполнить чертеж в системе КОМПАС 3D;
- Смоделировать деталь, или сборку на основе чертежа в системе КОМПАС 3D;
 - Оформить отчет об этапах выполненной работы.

Курсовая работа включает в себя графическую часть и расчетно-пояснительную записку.

6.2 Контрольные работы для обучающихся заочной формы обучения Заочная форма обучения не предусмотрена.

7 ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе-	не аттестован». Результаты обуче-	Критерии	Аттестован	Не аттесто-
тенция	,	оценивания		ван
,	щие сформирован-	,		
	ность компетенции			
ПК-7	Знать алгоритмы, мето-	Активная работа	Выполнение	Невыпол-
	ды и средства компью-	на практических и	работ в срок,	нение работ
	терной графики и гео-	лабораторных за-	предусмот-	в срок,
	метрического модели-	нятиях, отвечает	ренный в ра-	предусмот-
	рования, основы век-	на теоретические	бочих про-	ренный в
	торной и растровой	вопросы при за-	граммах	рабочих
	графики, теоретические	щите курсовой		программах
	аспекты фрактальной	работы		
	графики, основные ме-			
	тоды компьютерной			
	геометрии.			
	Уметь работать с про-	Решение стан-	Выполне-	Невыпол-
	граммным обеспече-	дартных практи-	ние работ в	нение ра-
	нием CAD-систем	ческих задач,	срок,	бот в срок,
		написание курсо-	предусмот-	преду-
		вой работы	ренный в	смотрен-
			рабочих	ный в ра-
			программах	бочих
				програм-
				мах
	Владеть приемами со-	Решение при-	Выполне-	Невыпол-
	здания и редактирова-	кладных задач в	ние работ в	нение ра-
	ния 2D и 3D моделей	конкретной пред-	срок,	бот в срок,
	проектируемого изде-	метной области,	предусмот-	преду-
	лия, создания техно-	выполнение плана	ренный в	смотрен-
	логического процесса	работ по разра-	рабочих	ный в ра-
	обработки изделия.	ботке курсовой	программах	бочих
		работы		програм-
				Max
ПК-12	Знать алгоритмические	Активная работа	Выполне-	Невыпол-
	и математические ос-	на практических	ние работ в	нение ра-
	новы и методы постро-	и лабораторных	срок,	бот в срок,
	ения реальной визуали-	занятиях, отве-	предусмот-	преду-
	зации графических и	чает на теорети-	ренный в	смотрен-
	технологических раз-	ческие вопросы	рабочих	ный в ра-
	работок с помощью	при защите кур-	программах	бочих
	ПК.	совой работы		програм-
	1 77		D	Max
	Уметь реализовывать	Решение стан-	Выполне-	Невыпол-
	основные алгоритмы	дартных практи-	ние работ в	нение ра-

растровой и векторной	ческих задач,	срок,	бот в срок,
графики, используя	написание курсо-	предусмот-	преду-
графические стандар-	вой работы	ренный в	смотрен-
ты и библиотеки.		рабочих	ный в ра-
		программах	бочих
			програм-
			мах
Владеть навыками	Решение при-	Выполне-	Невыпол-
оформления конструк-	кладных задач в	ние работ в	нение ра-
торско-	конкретной пред-	срок,	бот в срок,
технологической до-	метной области,	предусмот-	преду-
кументации на изде-	выполнение плана	ренный в	смотрен-
лие в CAD/CAM/CAE	работ по разра-	рабочих	ный в ра-
системах.	ботке курсовой	программах	бочих
	работы		програм-
			мах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний для очной формы обучения в 3 и 4 семестрах оцениваются по системе:

«зачтено»;

«не зачтено»

Компе-	Результаты обучения, ха-	Крите-	Зачтено	Не зачтено
тенция		рии	34 110110	
,		оценива-		
	Permission	ния		
ПК-7	Знать алгоритмы, методы и	Задание	Выполнение за-	Выполнение за-
	средства компьютерной		дания на 60-100	дания менее 60
	графики и геометрического		%	%
	моделирования, основы век-	Задание	Выполнение за-	Выполнение за-
	торной и растровой графи-		дания на 60-100	дания менее 60
	ки, теоретические аспекты		%	%
	фрактальной графики, ос-			
	новные методы компьютер-			
	ной геометрии.			
	Уметь работать с про-	Задание	Выполнение	Выполнение
	граммным обеспечением		задания на 60-	задания менее
	CAD-систем		100 %	60 %
		Задание	Выполнение	Выполнение
			задания на 60-	задания менее
			100 %	60 %
	Владеть приемами созда-	Задание	Выполнение	Выполнение
	ния и редактирования 2D и		задания на 60-	задания менее
	3D моделей проектируемо-		100 %	60 %

1		T		
	го изделия, создания тех-	Задание	Выполнение	Выполнение
	нологического процесса		задания на 60-	задания менее
	обработки изделия		100 %	60 %
ПК-12	Знать алгоритмические и	Задание	Выполнение	Выполнение
	математические основы и		задания на 60-	задания менее
	методы построения реаль-		100 %	60 %
	ной визуализации графиче-	Задание	Выполнение	Выполнение
	ских и технологических		задания на 60-	задания менее
	разработок с помощью ПК.		100 %	60 %
	Уметь реализовывать ос-	Задание	Выполнение	Выполнение
	новные алгоритмы растро-		задания на 60-	задания менее
	вой и векторной графики,		100 %	60 %
	используя графические	Задание	Выполнение	Выполнение
	стандарты и библиотеки.		задания на 60-	задания менее
			100 %	60 %
	Владеть навыками оформ-	Задание	Выполнение	Выполнение
	ления конструкторско-		задания на 60-	задания менее
	технологической докумен-		100 %	60 %
	тации на изделие в	Задание	Выполнение	Выполнение
	CAD/CAM/CAE системах.		задания на 60-	задания менее
			100 %	60 %

Результаты промежуточного контроля знаний для очной формы обучения оцениваются в 5 семестре по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компе-	Результаты обуче-	Крите-	Отлич-	Хорошо	Удовл	Неудовл
тенция	ния, характеризую-	рии	но			
	щие сформирован-	оцени-				
	ность компетенции	вания				
ПК-7	Знать алгоритмы, ме-	Атте-	Выпол-	Выпол-	Выпол-	В зада-
	тоды и средства ком-	стаци-	нение за-	нение за-	нение	нии менее
	пьютерной графики и	онное	дания на	дания на	задания	70% пра-
	геометрического мо-	задание	90-100%	80-90%	на 70-	вильных
	делирования, основы				80%	ответов
	векторной и растро-					
	вой графики, теорети-					
	ческие аспекты фрак-					
	тальной графики, ос-					
	новные методы ком-					
	пьютерной геометрии					
	Уметь работать с	Атте-	Выпол-	Выпол-	Вы-	В зада-

	программным обес-	ста-	нение	нение	полне-	нии ме-
	печением CAD-	цион-	задания	задания	ние	нее 70%
	систем	ное	на 90-	на 80-	зада-	правиль-
		зада-	100%	90%	ния на	ных от-
		ние			70-	ветов
					80%	
	Владеть приемами	Атте-	Выпол-	Выпол-	Вы-	В зада-
	создания и редакти-	ста-	нение	нение	полне-	нии ме-
	рования 2D и 3D мо-	цион-	задания	задания	ние	нее 70%
	делей проектируемо-	ное	на 90-	на 80-	зада-	правиль-
	го изделия, создания	зада-	100%	90%	ния на	ных от-
	технологического	ние			70-	ветов
	процесса обработки				80%	
	изделия					
ПК-12	Знать алгоритмиче-	Атте-	Выпол-	Выпол-	Вы-	В зада-
	ские и математиче-	ста-	нение	нение	полне-	нии ме-
	ские основы и методы	цион-	задания	задания	ние	нее 70%
	построения реальной	ное	на 90-	на 80-	зада-	правиль-
	визуализации графи-	зада-	100%	90%	ния на	ных от-
	ческих и технологи-	ние			70-	ветов
	ческих разработок с				80%	
	помощью ПК.					
	Уметь реализовы-	Атте-	Выпол-	Выпол-	Вы-	В зада-
	вать основные алго-	ста-	нение	нение	полне-	нии ме-
	ритмы растровой и	цион-	задания	задания	ние	нее 70%
	векторной графики,	ное	на 90-	на 80-	зада-	правиль-
	используя графиче-	зада-	100%	90%	ния на	ных от-
	ские стандарты и	ние			70-	ветов
	библиотеки.				80%	
	Владеть навыками	Атте-	Выпол-	Выпол-	Вы-	В зада-
	оформления кон-	ста-	нение	нение	полне-	нии ме-
	структорско-	цион-	задания	задания	ние	нее 70%
	технологической до-	ное	на 90-	на 80-	зада-	правиль-
	кументации на изде-	зада-	100%	90%	ния на	ных от-
	лие в	ние			70-	ветов
	CAD/CAM/CAE си-				80%	
	стемах.					

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию 1.Пиксель является -

а. Основой растровой графики

- б. Основой векторной графики
- в. Основой фрактальной графики
- г. Основой трёхмерной графики
- 2. При изменении размеров растрового изображения
 - а. Качество остаётся неизменным
 - б. Качество ухудшается при увеличении и уменьшении
 - в. При уменьшении остаётся неизменным, а при увеличении ухудшается
 - г. При уменьшении ухудшается, а при увеличении остаётся неизменным.
- 3. Что можно отнести к устройствам ввода информации?
 - а. Мышь, клавиатуру, экраны
 - б. Клавиатуру, принтер, колонки
 - в. Сканер, клавиатуру, мышь
 - г. Колонки, сканер, клавиатуру
- 4. Какие цвета входят в цветовую модель RGB
 - а. Чёрный, синий, красный
 - б. Жёлтый, розовый, голубой
 - в. Красный, зелёный, голубой
 - г. Розовый, голубой, белый
- 5. Что такое интерполяция?
 - а. Разлохмачивание краёв при изменении размеров растрового изображения
 - б. Программа для работы с фрактальными редакторами
 - в. Инструмент в Photoshop
 - г. Это слово никак не связано с компьютерной графикой
- 6. Наименьшим элементом изображения на графическом экране монитора является?
 - а. Курсор
 - б. Символ
 - в. Линия
 - г. Пиксель
- 7. Выберете устройства, являющиеся устройствами вывода информации:
 - а. Принтер
 - б. Сканер
 - в. Дисплей монитора
 - г. Клавиатура
 - д. Мышь
 - е. Колонки
- 8. Наименьший элемент фрактальной графики
 - а. Пиксель
 - б. Вектор
 - в. Точка
 - г. Фрактал
- 9. К какому виду графики относится рисунок?

- а. Фрактальной
- б. Растровой
- в. Векторной
- г. Ко всем выше перечисленным
- 10. Какие программы предназначены для работы с векторной графикой?
 - а. Компас 3D
 - б.Photoshop
 - в.Corel Draw
 - г.Blender
 - д.Picasa
 - e.Gimp

7.2.2 Примерный перечень заданий для решения стандартных задач 5 семестр

- 1. Графический редактор Paint находится в группе программ:
 - а. Утилиты
 - б. Стандартные
 - в. Microsoft Office
- 2.К какому типу компьютерной графики относится программа Paint
 - а. Векторная
 - б. Фрактальная
 - в. Растровая
 - г. Трёхмерная
- 3. Способ хранения информации в файле, а также форму хранения определяет:
 - а. Пиксель
 - б. Формат
 - в. Графика
 - г. Гифка
- 4. С помощью растрового редактора можно:
 - а. Создать коллаж
 - б. Улучшить яркость
 - в. Раскрашивать чёрно белые фотографии
 - г. Печатать текст
 - д. Выполнять расчёт
- 5. Для ввода изображения в компьютер используются:
 - а. Принтер
 - б. Сканер
 - в. Диктофон
 - г. Цифровой микрофон
- 6. Графический редактор это ...
 - а. Устройство для создания и редактирования рисунков
 - б. Устройство для печати рисунков на бумаге
 - в. Программа для создания и редактирования текстовых документов
 - г. Программа для создания и редактирования рисунков
- 7. Графическим объектом НЕ является

- а. Чертёж
- б. Текст письма
- в. Рисунок
- г. Схема
- 8. Растровым графическим редактором НЕ является
 - a. GIMP
 - б.Paint
 - в.Corel draw
 - г.Photoshop
- 9. В процессе сжатия растровых графических изображений по алгоритму JPEG, его информационный объем обычно уменьшается в ...
 - а. 10-15 раз
 - б. 100 раз
 - в. Ни разу
 - г. 2-3 раза
- 10. В модели СМУК используется:
 - а. Красный, голубой, желтый, синий
 - б. Голубой, пурпурный, желтый, черный
 - в. Голубой, пурпурный, желтый, белый
 - г. Красный, зеленый, синий, черный

7.2.3 Примерный перечень заданий для решения прикладных задач 5 семестр

- 1. При изменении размеров векторной графики его качество:
 - а. При уменьшении ухудшается, а при увеличении остаётся неизменным
 - б. При уменьшении остаётся неизменным, а при увеличении ухудшается.
 - в. Ухудшается при увеличении и уменьшении
 - г. Остаётся неизменным
- 2. Чем больше разрешение, тем изображение ...
 - а. Качественнее
 - б. Светлее
 - в. Темнее
 - г. Не меняется
- 3. Пиксилизация эффект ступенек это один из недостатков:
 - а. Растровой графики
 - б. Векторной графики
 - в. Фрактальной графики
 - г. Масленой графики
- 4. Графика, которая представляется в виде графических примитивов
 - а. Растровая
 - б. Векторная
 - в. Трёхмерная
 - г. Фрактальная

- 5. Недостатки трёхмерной графики
 - а. Малый размер сохранённого файла
 - б. Невозможность посмотреть объект на экране, только при распечатывании
 - в. Необходимость значительных ресурсов на ПК для работы с данной графикой в программах
- 6. К достоинствам Ламповых мониторов относится:
 - а. Низкая частота обновления экрана
 - б. Хорошая цветопередача
 - в. Высокая себестоимость
- 7.К недостаткам ЖК мониторов можно отнести:
 - а. Громоздкость
 - б. Излучение
 - в. Узкий угол обзора
 - г. Широкий угол обзора
- 8. Какое расширение имеют файлы графического редактора Paint?
 - a. Exe
 - б. Doc
 - в. Втр
 - г. Com
- 9. Сетка из горизонтальных и вертикальных столбцов, которую на экране образуют пиксели, называется ...
 - а. Видеопамять
 - б. Видеоадаптер
 - в. Растр
 - г. Дисплейный процессор.
- 10. В цветовой модели RGB установлены следующие параметры: 0, 255, 0. Какой цвет будет соответствовать этим параметрам?
 - а. Красный
 - б. Чёрный
 - в. Голубой
 - г. Зелёный

7.2.4 Примерный перечень вопросов для подготовки к зачетам 3 семестр

- 1. Технические средства ввода графической информации.
- 2. Технические средства получения твердой копии графической информации.
 - 3. Дисплей как техническое средство компьютерной графики.
 - 4. Векторная и растровая графика: суть, отличия, области применения.
- 5. Мировые координаты, нормированные координаты, координаты устройства, функция кадрирования.
- 6. Понятие графического примитива. Наиболее распространенные графические примитивы и операции над ними.

- 7. Основные отличия текстового и графического режима видеоадаптера.
- 8. Чем отличаются, с точки зрения машинной графики, видеоадаптеры EGA,VGA,SVGA,MGA.
 - 9. Особенности представления цвета в видеоадаптерах EGA и VGA.
 - 10. Как программно осуществляется управление принтером.

4 семестр

- 1. Основные отличия в подходах MS DOS и WINDOWS при разработке графических приложений.
- 2. Основные этапы преобразования и модели, используемые при переходе от изображений реального мира к компьютерным изображениям.
- 3. Основные этапы растро-векторного преобразования графических объектов.
- 4. Понятие аффинных преобразований и их прикладное значение для задач компьютерной графики.
- 5. Элементарные аффинные преобразования на плоскости, составляющие базис операций машинной графики.
 - 6. Понятие и прикладное значение однородных координат.
- 7. Элементарные аффинные преобразования в пространстве, составляющие базис операций машинной графики.
- 8. Основные виды проекций и соответствующие им аффинные преобразования.
 - 9. Геометрические сплайны.
 - 10. Алгоритм Брезенхема.

7.2.5 Примерный перечень вопросов для подготовки к зачету с оценкой

- 1. Определение принадлежности точки многоугольнику.
- 2. Алгоритмы заполнения (закраски) замкнутой области.
- 3. Отсечение отрезка. Алгоритм Сазерленда-Кохена.
- 4. Растровое представление эллипса.
- 5. Исходные эвристики, используемые при удалении невидимых линий и поверхностей.
- 6. Общее представление алгоритма удаления невидимых поверхностей (тесты глубины только перечислить).
- 7. Тесты глубины, используемые при удалении невидимых поверхностей.
- 8. Основные алгоритмы удаления невидимых линий и поверхностей, их краткая характеристика и сравнительный анализ.
- 9. Алгоритм Робертса, алгоритм *Z*-буфера, метод построчного сканирования: суть, область применения, сравнительный анализ.
 - 10. Подсчет количественной невидимости с помощью алгоритма Аппеля.
- 11. Удаление невидимых линий и поверхностей с помощью методов приоритетов (упорядочения).

- 12. Триангуляция.
- 13. Закраска методами Гуро и Фонга.
- 14. Основы метода трассировки лучей.
- 15. Понятие текстуры и способы моделирования текстур.
- 16. Распределенная трассировка лучей, оптимизация трассировки лучей.
- 17. Метод излучательности.
- 18. Системы цветов.
- 19. Основные методы сжатия изображений.
- 20. Основные графические форматы, их сравнительный анализ и область применения.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится в 3 и 4 семестре в форме зачета и в 5 семестре в форме зачета с оценкой.

Фонд оценочных средств промежуточной аттестации 3 семестра состоит из заданий, в каждое из которых включены 2 вопроса по изученным материалам дисциплины и 2 вопроса по выполненным лабораторным работам. Каждый правильный ответ на вопрос оценивается 3 баллами. Максимальное количество набранных баллов — 12.

Фонд оценочных средств промежуточной аттестации 4 семестра состоит из заданий, в каждое из которых включены 2 вопроса по изученным материалам дисциплины и 2 вопроса по выполненным практическим и лабораторным работам. Каждый правильный ответ на вопрос оценивается 3 баллами. Максимальное количество набранных баллов — 12.

По результатам зачетов 3 и 4 семестров ставятся оценки:

- 1) «Зачтено» ставится в случае, если обучающийся набрал от 6 до 12 баллов
- 2) «Не зачтено» ставится в случае, если обучающийся набрал менее 6 баллов

Зачет с оценкой в 5 семестре проводится по аттестационным заданиям, каждый содержит 10 тестовых заданий, стандартную и прикладную задачи. Каждый правильный ответ на вопрос тестового задания оценивается 1 баллом, правильное решение стандартной и прикладной задачи оценивается по 5 баллов каждое. Максимальное количество набранных баллов — 20. По результатам экзамена обучающимся ставятся оценки:

- 1. «Неудовлетворительно» ставится в случае, если набрано менее 10 баллов.
- 2. «Удовлетворительно» ставится в случае, если набрано от 10 до 14 баллов.
- 3. «Хорошо» ставится в случае, если набрано от 14 до 17 баллов.
- 4. «Отлично» ставится в случае, если набрано от 17 до 20 баллов.

По результатам защиты курсовой работы обучающимся ставятся оценки:

- 1) «Отлично», если работа выполнена самостоятельно, в полном объёме с соблюдением необходимых требований к оформлению и структуре.
- 2) «Хорошо», если задание выполнено в полном объёме и самостоятельно с небольшими ошибками в оформлении работы, нарушении ее структуры.
- 3) «Удовлетворительно», если творческое задание выполняется студентом при помощи преподавателя и студентов, выполнивших свое задание на «отлично». Работа выполнена с ошибками в оформлении, нарушении ее структуры.
- 4) «Неудовлетворительно», если в работе показано плохое знание теоретического материала и отсутствуют необходимые умения в ее оформлении. Руководство и помощь со стороны преподавателя и хорошо подготовленных студентов неэффективны по причине плохой подготовки студента.

7.2.8 Паспорт оценочных материалов

	··-··		
$N_{\underline{0}}$	Контролируемые раз-	Код контролиру-	Наименование оценоч-
Π/Π	делы (темы) дисципли-	емой компетен-	ного средства
	ны	ции	
1	Основы компьютерной	ПК-7, ПК-12	Задание, устный опрос;
	графики		тест, устный опрос.
2	Двухмерная графика.	ПК-7, ПК-12	Задание, устный опрос;
	Форматы растровой		тест, устный опрос.
	графики		
3	Форматы векторной	ПК-7, ПК-12	Задание, устный опрос;
	графики		тест, устный опрос.
4	Методы и алгоритмы	ПК-7, ПК-12	Курсовая работа, защи-
	компьютерной графики		та; Тест, устный опрос.
5	Создание моделей в	ПК-7, ПК-12	Курсовая работа, защи-
	CAD -системах		та; Тест, устный опрос.
6	Система КОМПАС 3D	ПК-7, ПК-12	Курсовая работа, защи-
			та; Тест, устный опрос.

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

К промежуточной аттестации допускаются обучающиеся, выполнившие и защитившие практические, лабораторные работы и курсовую работу.

Ответы на теоретические вопросы на зачетах 3, 4 семестра и на зачете с оценкой 5 семестра готовятся на компьютере и на бумажном носителе. Время подготовки ответов -30 мин. Преподавателем осуществляется проверка выполненных ответов, и выставляются оценки согласно методике выставления оценок при проведении промежуточной аттестации.

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тестовых заданий на бумажном носителе. Время тестирования 30 мин. Затем преподавателем осу-

ществляется проверка теста, и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартной задачи осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задачи 30 мин. Затем преподавателем осуществляется проверка ее решения, и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладной задачи осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задачи 30 мин. Затем преподавателем осуществляется проверка ее решения, и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты курсовой работы одним студентом составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Основная литература

- 1. Новокщенов, С.Л. Компьютерная графика [Электронный ресурс]: уч. пособие / С.Л. Новокщенов, Д.М. Черных. Воронеж: ФГБОУ ВО «ВГТУ», 2017. Режим доступа: http://bibl.cchgeu.ru/MarcWeb2/Found.asp
- 2. Прутских, Д.А. Введение в компьютерную графику [Электронный ресурс]: учеб. пособие. Электрон. текстовые и граф. данные (3,3 Мб) / Д.А. Прутских, Н.Н. Кожухов. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2015. Режим доступа: http://bibl.cchgeu.ru/MarcWeb2/Found.asp

Дополнительная литература

- 3. Компас-график 5X для Windows: практ. руководство пользователя. ACKOH, 2000.
 - Ч.1: Оптимальная настройка системы. Создание первого чертежа.
 - Ч.2.: Сборки и деталировки. Проектирование спецификации.
- 4. Иванов, М.Н. Детали машин: учебник для студ. машиностр. спец. вузов / М.Н. Иванов, В.А. Финогенов. М.: Высш. шк., 2007. 408 с.
- 5. Лукянчук, С.А. КОМПАС-3D. Версии 5.11-8. Практическая работа [Электронный ресурс] / С.А. Лукянчук. Москва: СОЛОН-ПРЕСС, 2008. 208 с.
- 6. Компьютерная графика [Электронный ресурс]: методические указания к выполнению лабораторных и практических работ для обучающихся по направлению 15.03.01 «Машиностроение» (профиль «Технологии, оборудо-

вание и автоматизация автоматизированных производств») всех форм обучения / сост.: Д.М. Черных. — Воронеж: ФГОУВО «ВГТУ», 2021. — Регистр. № 350-2021. — Режим доступа: http://bibl.cchgeu.ru/MarcWeb2/Found.asp

- 7. Компьютерная графика [Электронный ресурс]: методические указания к выполнению курсовой работы для студентов направления 15.03.01 «Машиностроение» (профиль «Технологии, оборудование и автоматизация машиностроительных производств») всех форм обучения / сост.: Д.М. Черных. Воронеж: ФГОУВО «ВГТУ», 2021. Регистр. № 585-2021. Режим доступа: http://bibl.cchgeu.ru/MarcWeb2/Found.asp
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Лицензионное программное обеспечение

Adobe Acrobat Reader

Google Chrome

LibreOffice

WinDjView

КОМПАС-3D Учебная версия

NX Academic Perpetual License

Ресурсы информационно-телекоммуникационной сети «Интернет»

http://www.edu.ru/

Образовательный портал ВГТУ

Информационные справочные системы

http://window.edu.ru

https://wiki.cchgeu.ru/

Современные профессиональные базы данных

Ресурс машиностроения

Адрес pecypca: http://www.i-mash.ru/

Машиностроение: сетевой электронный журнал

Адрес pecypca: http://indust-engineering.ru/archives-rus.html

Библиотека Машиностроителя Адрес ресурса: https://lib-bkm.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Наименование специальных* помещений и помещений для самостоятельной работы № 01.10/1~312/1

Электропечь

ИБП #3 INELT Smart Station RS600U

Коммутатор #3 Catalyst 2950 24 10|100 ports

Комплект сетевого оборудования #1 Интерактивная доска SMART board 680i2 со встроенным проектором Компьютер в составе: «ВаРИАНт-Стандарт» Компьютеры, мониторы — 10 шт.

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Компьютерная графика» читаются лекции, проводятся практические и лабораторные занятия, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на применение методов и алгоритмов компьютерной графики в процессе освоения дисциплины.

Выполнение лабораторных работ направлено на получение знаний и навыков работы с программным обеспечением, создание моделей изображений в CAD\CAM системах, оформление конструкторско-технологической документации.

Большое значение по закреплению и совершенствованию знаний, получению практических навыков и умений имеет самостоятельная работа студентов при выполнении практических и лабораторных работ, выполнении курсовой работы. Информацию о видах самостоятельной работы студенты получают на занятиях.

Методика выполнения курсовой работы изложена в учебнометодическом пособии. Поэтапное выполнение курсовой работы должно быть своевременным и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой работы и защитой курсовой работы.

Освоение дисциплины оценивается на зачете с оценкой.

Вид учебных	Деятельность студента		
занятий			
Лекция	Написание конспекта лекций:		
	кратко, схематично, последовательно фиксировать основ-		
	ные положения, выводы, формулировки, обобщения;		
	помечать важные мысли, выделять ключевые слова, тер-		
	мины. Проверка терминов, понятий с помощью энцикло		
	педий, словарей, справочников с выписыванием толкова		
	ний в тетрадь. Обозначение вопросов, терминов, материа-		
	ла, которые вызывают трудности, поиск ответов в реко-		
	мендуемой литературе. Если самостоятельно не удается		
	разобраться в материале, необходимо сформулировать во-		
	прос и задать преподавателю на лекции или на практиче-		
	ском занятии.		

Лабораторные занятия	Перед каждой лабораторной работой студент должен озна- комиться с методическими указаниями, изучить теоретиче- ский материал и рекомендованную литературу к данной лабораторной работе, ознакомиться с ее организацией; уяснить цели задания, подготовиться и познакомиться с нормативной, справочной и учебной литературой и обра- тить внимание на рекомендации преподавателя: какие ос- новные информационные данные извлечь из этих источни- ков.
Практические	Конспектирование рекомендуемых источников. Работа с
занятия	конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Самостоятель-	Самостоятельная работа студентов способствует глубоко-
ная работа	му усвоению учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: -работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; -выполнение домашних заданий и расчетов; -работа над темами для самостоятельного изучения; -участие в работе студенческих научных конференций, олимпиад; -подготовка к промежуточной аттестации.
Подготовка к	При подготовке к промежуточной аттестации необходимо
промежуточ-	ориентироваться на конспекты лекций, рекомендуемую
ной аттестации	литературу, решение задач лабораторных и практических работ, курсовую работу. Работа студента при подготовке к промежуточной аттестации должна включать: изучение учебных вопросов; распределение времени на подготовку; консультирование у преподавателя по трудно усвояемым вопросам; рассмотрение наиболее сложных из них в дополнительной литературе, или других информационных источниках, предложенных преподавателем.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

No	Перечень вносимых изменений	Дата вне-	Подпись заве-
Π/Π		сения из-	дующего кафед-
		менений	рой, ответствен-
			ной за реализа-
			цию ОПОП
1			