МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

Кафедра управления

РАЦИОНАЛЬНОЕ РАЗМЕЩЕНИЕ РАБОТ ПО ВРЕМЕНИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям и самостоятельной работе по дисциплине «Организационно-технологическое проектирование» для студентов направления подготовки 08.03.01 «Строительство» всех форм обучения, профилей

Составители:

д-р техн. наук, проф. С. А. Баркалов, д-р техн. наук, проф. П. Н. Курочка

Рациональное размещение работ по времени: методические указания к проведению практических занятий и самостоятельной работе по дисциплине «Организационно-технологическое проектирование» ДЛЯ студентов подготовки 08.03.01 «Строительство» всех обучения, направления форм ФГБОУ «Воронежский государственный профилей BO технический университет»; сост.: С. А. Баркалов, П. Н. Курочка. Воронеж: Изд-во ВГТУ, 2022, 21 c.

Основной целью методических указаний является подготовка материала к проведению практического занятия, связанного с выбором рационального размещения выполняемых работ по времени и выработка навыков самостоятельной работы на основе структуризации изучаемого материала по разделам и темам.

Предназначены для студентов направления подготовки 08.03.01 «Строительство» всех форм обучения, профилей.

Методические указания подготовлены в электронном виде и содержатся в файле Рацразмещ_08.03.01. pdf.

Ил. 7. Табл. 2. Библиогр. 7 назв.

УДК 657(075.8) ББК 65.052.9(2)2я7

Рецензент – В. П. Морозов, д-р техн. наук, доц. кафедры управления ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

ВВЕДЕНИЕ

Цель изучения дисциплины «Организационно-технологическое проектирование»:

- подготовка квалифицированных специалистов строительства, знающих теоретические основы организации и планирования строительного производства и умеющих их использовать в практической деятельности строительной фирмы;
- формирование знаний и навыков современного специалиста в области современных алгоритмов организационно-технологического проектирования.

Задачами дисциплины «Организационно-технологическое проектирование» являются:

- получение студентами знаний и навыков формирования организационно-технологических решений;
- освоение математических методов, используемых при моделировании задач организационно-технологического проектирования;
- формирование практических навыков и ознакомление с основными приёмами и методиками, необходимыми для эффективной организации и планирования строительного производства и их использование для получения обоснованной системы показателей, с помощью которых выявляются имеющиеся резервы роста эффективности производства и прогноз тенденций его развития.

Результатом освоения дисциплины является освоение следующих компетенций:

по направлению подготовки 08.03.01 «Строительство»:

- ПК-1 Способность участвовать в управлении строительными проектами;
- ПК-2 Владение навыками стратегического и оперативного планирование деятельности строительной организации и ее подразделений
- ПК-6 Владение навыками подготовки организационных и распорядительных документов, необходимых для управления деятельностью строительного предприятия
- ПК-9 Способность осуществлять деятельность по обеспечению производственных подразделений предприятия материально-техническими ресурсами и организации их рационального использования

Основными разделами изучаемой дисциплины «Организационнотехнологическое проектирование» являются:

Тема № 1. «Организация проектно-изыскательских работ и предпроектная стадия в строительстве».

Тема № 2. «Модели строительного производства. Методы организации строительного производства. Сетевое моделирование».

Тема № 3. «Планирование производственной деятельности строительной организации».

Тема № 4. «Организационно-технологическое проектирование в строительстве».

Тема № 5. «Комплексная оценка организационно-технологических решений».

Тема № 6. «Модели оценки состояния производственных систем».

Организация практических занятий и самостоятельной работы по курсу «Организационно-технологическое проектирование»

Практические занятия по данному курсу предполагают закрепление знаний, полученных на лекциях. Данные методические указания направлены на обеспечение выполнения практической работы по определению организационно-технологических параметров строительства при помощи статистических методов, основанных на теории массового обслуживания.

Необходимость привлечения статистических методов диктуется тем, что строительство представляет собой сложную, динамическую, систему изменение которой происходит по вероятностным законам. В этом случае повышение надежности принимаемых организационно-технологических решений лежит в области учета стохастической природы применяемых параметров. Именно на это и нацелено данное практическое занятие.

С другой стороны, материал методических указаний может быть использован и для организации самостоятельной работы студентов.

Место самостоятельной работы в курсе «Организационно-технологическое проектирование» заключается в том, что согласно учебному плану половина времени, отводимое на изучение предмета, должно приходится на самостоятельную работу студентов вне стен учебного заведения. Таким образом, весь спектр занятий, предусмотренный учебным планом, студент должен осуществлять не только на занятиях согласно расписанию, но также и самостоятельно. Следовательно, прослушав лекцию, студент должен, придя домой, разобрать конспект лекции, почитать то, что на тему, рассмотренную на лекции, написано в рекомендованном учебнике и ответить на контрольные вопросы.

При подготовке к практическому или лабораторному занятию студент долен повторить лекционный материал, разобрать примеры, приведенные в методических указаний и решить то, что было задано на практическом или лабораторном занятии. Здесь следует обратить внимание на то, что целесообразность выполнения данного практического занятия в ходе аудиторных занятий целиком определяется преподавателем, ведущим эту дисциплину. Вполне возможен вариант передачи данного материала для самостоятельной работы студентов.

Использование методических указаний предполагает, что студент изучил лекционный материал и, если у него возникли вопросы, то можно просмотреть рекомендации, содержащиеся в данных методических указаниях по конкретной теме. Методические указания ни в коем случае не должны заменять материал лекционных, практических и лабораторных занятий.

В данном случае совершенно справедливо утверждение о том, что если преподаватель привел своих студентов на берег реки знаний, то это не означает, что он сможет заставить их что-то из этой реки зачерпнуть. Необходима воля и труд, самих обучающихся. Таким образом, учеба является достаточно тяжелым и напряженным трудом, сопряженным со значительными затратами времени и ограничиться только посещением занятий совершенно недостаточно.

Тема практического занятия «Рациональное размещение работ по времени»

Цель работы: изучить модели организационно-технологического проектирования по определению потребности в ресурсах типа мощности под имеющийся объем работ.

Время выполнения работы: 4 часа.

Теоретические основы

Рассмотрим задачу рационального размещения работ, подлежащих выполнению во времени.

Допустим, что проект состоит из **n** комплексов работ. В общем случае технология выполнения работ, то есть возможная очередность их выполнения, задана сетевым графиком, вершины которого соответствуют работам, а дуги – зависимостям между работами. Для каждой работы определены ранние допустимые сроки начала \mathbf{a}_i , поздние допустимые сроки окончания \mathbf{b}_i и продолжительность работы $\mathbf{\tau}_i$. Очевидно,

$$\tau_i \leq b_i - a_i$$

Кроме того, для каждой работы задан график $\{q_{ij}^t\}$ потребности в ресурсах относительно начала работы, то есть $t_i^{\scriptscriptstyle H} \leq t \leq t_i^{\scriptscriptstyle H} + \tau_i$. Предполагая также, что задан вектор наличия ресурсов $\{Q_j^t\}$, $j=\overline{1,m}$ (m- число видов ресурсов) определяемый на всем горизонте планирования. Требуется определить календарный план выполнения работ в заданные сроки так, чтобы минимизировать перегрузку ресурсов. В такой постановке задача относится к классу NP — трудных задач и не имеет эффективных методов решения.

Мы представили эту задачу в более простом виде, учитывая определенную гибкость назначения исполнителей на работы. А именно, примем, что плановый период разбит на T интервалов определенной длины Δ (недели, месяцы, кварталы и т.д.)

Обозначим \mathbf{R}_i - множество интервалов в которых может выполняться работа \mathbf{i} , \mathbf{P}_s - множество работ, которые могут выполняться в \mathbf{s} -ом интервале. Заданы ограничения \mathbf{Q}_{ij} на объем работ каждого вида в каждом интервале. Для каждой работы, в свою очередь, задан объем работ, выполняемый ресурсами каждого вида. Более того, примем, что каждая работа выполняется только одним видом ресурсов. Таким образом, все работы разбиты на \mathbf{m} подмножеств, так, что работы \mathbf{j} -го подмножества выполняющиеся ресурсами \mathbf{j} -го вида. Обозначим через \mathbf{x}_{is} - объем \mathbf{i} -ой работы, выполняемый в \mathbf{s} -ом интервале. \mathbf{C}_{is} - максимальный объем \mathbf{j} -ой работы, который можно выполнить в \mathbf{s} -ом интервале. За-

дача заключается в определении $\{x_{is}\}$, $i=\overline{1,n}$, $s=\overline{1,T}$, так, чтобы все работы были выполнены, то есть

$$X_{is} \le C_{is}$$
, $i \in P_s$, $s = \overline{1,T}$

$$\sum_{s \in R_i} x_{is} = W_i, \ i = \overline{1,n}$$

где W_i - объем i-ой работы, а перегрузка исполнителей, то есть превышение объема работ над тем объемом, который могут выполнить исполнители, работал по нормативам, была минимальной. Если обозначить через α - относительный уровень перегрузки ресурсов, то формально критерий можно записать в виде

$$\alpha \rightarrow \min$$

при ограничениях

$$\sum_{i \in R_i} x_{is} = \alpha Q_{sj}, \ j = \overline{1,m}$$

Фактически мы перешли от задачи календарного планирования к задаче объемно-календарного планирования.

Если перегрузка ресурсов недопустимо велика, то естественно снизить её за счёт передачи части работ на субподряд. Обозначим через ${\it P}$ множество работ , передаваемых на субподряд, ${\it C}_i$ - стоимость i-й работы при передаче её на субподряд. Задача заключается в определении множества ${\it P}$, такого, чтобы стоимость субподрядных работ

$$C(P) = \sum_{i \in P} C_i \tag{1}$$

была минимальной при ограничениях

$$x_{is} \le C_{is}, \quad i \in P_s, s = \overline{1,T},$$
 (2)

$$\sum_{s \in R_i} x_{is} = W_i, \quad i = \overline{1, n}, \tag{3}$$

$$\sum_{i \in R_i} x_{is} \le \alpha Q_{sj}, \quad j = \overline{1, m}, \tag{4}$$

для всех $i \not\in P$ (при этом $\alpha=1$). Другими слова, требуется минимизировать за-

траты на субподрядные работы при условии, что остальные работы могут быть выполнены своими силами без перегрузки ресурсов (либо при допустимой перегрузке ресурсов $\alpha \leq \alpha_{\text{поп}}$).

В условиях ограниченных ресурсов для выполнения производственного плана в заданные сроки приходится привлекать другие организации.

В условиях ограниченных ресурсов для выполнения договорных обязательств в заданные сроки приходится привлекать другие организации.

Рассмотрим первоначально случай, независимых работ, то есть могут выполняться одновременно.

Начнем рассмотрение с простейшего случая, когда зависимость скорости работы w_i от количества ресурсов u_i имеет вид

$$w_i = u_i, \ i = \overline{1, n} \ . \tag{5}$$

В этом случае каждый вид проектных работ можно рассматривать отдельно. Пусть количество ресурсов рассматриваемого вида равно N. В этом случае продолжительность выполнения всех проектных работ определяется выражением

$$T = \frac{W}{N},\tag{6}$$

где
$$W = \sum_{i=1}^n W_i$$
 .

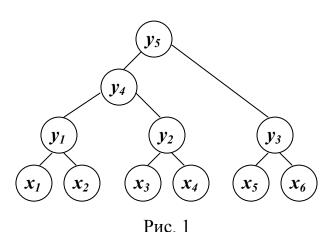
Если $T > T_{\theta}$ (T_{θ} — заданный срок выполнения проектных работ), то часть работ необходимо передать другим организациям, которые смогут выполнить эти работы за время не больше T_{θ} . Обозначим c_i стоимость выполнения i-й работы на субподряде. Для формальной постановки задачи обозначим $x_i = 1$, если работа i передается на субподряд, $x_i = 0$ - в противном случае. Задача заключается в определении $\{x_i\}$ таких, что сумма

$$C(x) = \sum_{i} c_i x_i \tag{7}$$

минимальна при ограничении

$$\sum_{i} w_{i} x_{i} \ge b, \tag{8}$$

где $b = W - T_0 N$.

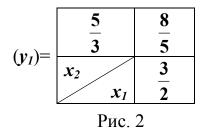

Это классическая «задача о ранце», для которой существуют эффективные методы решения. Рассмотрим для её решения метод дихотомического программирования.

Пример

Рассмотрим численный пример. Пусть имеется шесть проектных работ, данные о которых приведены в табл. 1.

	Таблиі						
i	1	2	3	4	5	6	
W_i	3	5	7	9	10	12	
c_i	2	3	4	7	9	10	

Общий объём работ W = 46. Пусть N=3, $T_0=9$. Тогда b=46-27=19.. Рассмотрим следующую структуру дихотомического представления ограничения (8) (рис. 1).



Сначала объединяются работа 1 и работа 2 (обозначено y_1), работа 3 с работой 4 (обозначено y_2) и работа 5 с работой 6 (обозначено y_3). Затем результат объединения y_1 и y_2 (то есть y_4) объединяется с y_3 .

Алгоритм состоит из двух этапов. На первом этапе строятся матрицы дихотомического представления. На втором – определяется оптимальное решение.

1 этап. Построим последовательно матрицы дихотомического представления.

Шаг 1. Строим матрицу y_1 (рис. 2).

Верхнее число в каждой клетке равно объёму работ, отдаваемых на субподряд в соответствующем варианте, а нижнее — стоимости. Так, например, если работа 1 отдается на субподряд, а работа 2 не отдается, то объём субподрядных работ составит 3, а стоимость -2.

Шаг 2. Строим матрицу y_2 (рис. 3).

$$(y_2) = \begin{array}{|c|c|}\hline \frac{9}{7} & \frac{16}{11} \\ \hline x_4 & \frac{7}{4} \\ \hline Puc. 3 \\ \hline \end{array}$$

Шаг 3. Строим матрицу y_3 (рис. 4).

$$(y_3) = \begin{array}{|c|c|} \hline 12 & 22 \\ \hline 10 & 19 \\ \hline x_6 & 10 \\ \hline x_5 & 9 \\ \hline \end{array}$$

Шаг 4. Строим матрицу (y_4) (рис. 5), пустые клетки соответствуют вариантам, которые не могут быть оптимальными.

	16	19		
	11	13		
(y ₄)=	9	12	14	17
	$\frac{9}{7}$	9	$\overline{10}$	$\overline{12}$
	7	10	12	15
	4	6	7	9
	y_2	3	5	8
	y_1	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{8}{5}$

Рис. 5

Шаг 5. Строим матрицу (y_5) (рис. 6). Заметим, что число столбцов матрицы (y_5) равно 11, так как b=19 и поэтому столбцы с величинами объёмов 21 и 24 можно не рассматривать.

	22 19										
	12 10	15 12	17 13	19 14							
$(y_5)=$	<u>10</u> 9	13 11	15 12	17 13	18 14	20 15					
	<i>y</i> ₃ / <i>y</i> ₄	3 2	<u>5</u> 3	7/4	8 5	10 6	12 7	15 9	16 11	17 12	19 13

Рис. 6

Кроме того, вариант W=9, C=7 доминируется вариантом W=10, C=6, так как большему объёму субподрядных работ соответствуют меньшие затраты. Аналогично вариант W=14, C=10 доминируется вариантом W=15, C=9, а вариант W=12, C=9 доминируется вариантом W=12, C=7. Незаполненные клетки матрицы не рассматриваются, поскольку соответствующие варианты не могут быть оптимальными.

2 этап

- **Шаг 1.** В матрице (y_5) рис. 6 находим клетку с минимальной стоимостью субподрядных работ среди всех клеток с объёмом субподрядных работ не меньше **19**. Это клетка $y_3 = 0$, $y_4 = 19$ с величиной стоимости C=13.
- **Шаг 2.** В матрице (y_4) рис. 5 находим клетку с объёмом субподрядных работ **W=19** и стоимостью **C=13.** Ей соответствует $y_1 = 3$ (стоимость 2) и $y_2 = 16$ (стоимость 11).
- **Шаг 3.** В матрице (y_3) рис. 4 находим клетку с объёмом $y_3 = 0$ (стоимость также равна 0). Ей соответствует, очевидно, $x_5 = x_6 = 0$, то есть работы 5 и 6 выполняются собственными силами.
- **Шаг 4.** В матрице (y_2) рис. З находим клетку со значением $y_2 = 16$ (стоимость также равна 11). Ей соответствует вариант, в котором $x_3 = x_4 = 1$, то есть работы 3 и 4 отдаются на субподряд.
- **Шаг 5.** В матрице (y_1) рис.2 находим клетку со значением $y_1 = 3$ (стоимость равна 2). Ей соответствует вариант $x_1 = 1$, $x_2 = 0$, то есть работа 1 отдаётся на субподряд, а работа 2 нет.

Окончательно получаем оптимальный вариант, в котором на субподряд отдаются работы 1, 3 и 4 суммарного объёма **19** и суммарной стоимостью **13**.

Построенные матрицы (рис. 2 - 6) позволяют решить задачу при любом $b \le 19$, применяя второй этап алгоритма. Так, например, при b = 12, получаем решение, в котором $x_2 = 1$, $x_3 = 1$, C = 7.

Рассмотрим один частный случай задачи, для которого удаётся получить эффективный метод решения. Пусть имеется m проектов, каждый из которых состоит из двух типов работ, выполняемых последовательно, сначала первая, а затем вторая. Все работы первого типа выполняются одной группой проектировщиков (или одним проектировщиком). Поэтому они не могут выполняться одновременно. Для выполнения работ второго типа имеется достаточное количество специалистов. Поэтому они могут вестись параллельно. Обозначим через a_i продолжительность работы первого типа для проекта i, через b_i - продолжительность работы второго типа для проекта i. Рассмотрим сначала случай, когда ни одна работа не отдаётся на субподряд.

Определим очередность выполнения работ первого типа, минимизирующую время выполнения всех работ. Для рассматриваемого случая оптимальное решение получается по следующему правилу: pаботы выполняются в очередности убывания b_i .

Рассмотрим численный пример. Имеются пять проектов. Значения a_i и b_i приведены в табл. 2.

				Таблица 2				
i	1	2	3	4	5			
$\mathbf{a_{i}}$	5	6	3	4	9			
$\mathbf{b_{i}}$	25	20	18	16	9			

Заметив, что проекты пронумерованы по убыванию b_i , вычисляем продолжительность выполнения всех проектных работ:

$$T_{\min} = \max_{j=1,m} \left(\sum_{i=1}^{j} a_i + b_j \right) = \max(30;31;32;34;36) = 36$$

Рассмотрим следующую задачу: определить множество работ первого типа, отдаваемых на субподряд, так, чтобы все проекты были выполнены за время T, и стоимость субподрядных работ была минимальной. Далее без ограничения общности будем предполагать следующее условие:

$$au_i + b_i \leq T$$
, для всех $m{i}$

(τ_i - время окончания выполнения работы первого типа проекта i).

Это условие означает, что если работа первого типа проекта i выполняется на субподряде, то проект будет выполнен за время, не большее требуемого T. Если это условие нарушается, то очевидно соответствующая работа не может быть отдана на субподряд. Далее примем, что $T < T_{min}$, где T_{min} — минимальная продолжительность выполнения всех проектов при условии, что ни одна работа первого типа не отдается на субподряд. Как и ранее, в примере будем предполагать, что все проекты пронумерованы по убыванию b_i . Пусть R — множество проектов, работы первого типа которых не отданы на субподряд. Очевидно, что эти работы должны выполняться в очередности их номеров. Имея это ввиду, обозначим x_i =0, если работа первого типа проекта i отдана на субподряд, x_i =1 - в противном случае. На переменные x_i имеются следующие ограничения:

$$\sum_{j=1}^{i} x_i a_j + b_i \le T, \quad i = \overline{1, m}$$

ИЛИ

$$\sum_{j=1}^{i} x_i a_j \le d_i, \quad i = \overline{1, m}, \tag{9}$$

где $d_i = T - b_i$.

Задача заключается в определении $\{x_i\}$ максимизирующих

$$C(x) = \sum_{i} c_i x_i \tag{10}$$

 $(c_i$ – стоимость на субподряде работы первого типа проекта i) при ограничениях (9).

Для решения этой задачи применим метод динамического программирования. Для этого рассмотрим декартову систему координат на плоскости (рис. 7).

На горизонтальной оси отмечены номера проектов, а на вертикальной величины $\sum_{j=1}^i x_i a_j$. Сеть строится следующим образом: из начала координат про-

водятся две дуги в точки (0,1) и (a_1 ;1), если $a_1 \le d_1$. Первая дуга соответствует тому, что работа первого типа проекта 1 отдана на субподряд, а вторая тому, что эта работа не отдана на субподряд.

Из каждой полученной точки также проводятся две дуги, соответствующие двум возможным вариантам для проекта Z (работа первого типа либо отдана на субподряд, либо не отдана). Так, из точки (0;1) получаются две точки (0;2) и $(a_2;2)$, если конечно $a_2 \le d_2$. Соответственно из точки $(a_1;1)$ получаются две точки $(a_1;2)$ и $(a_1+a_2;2)$, если $a_1+a_2 \le d_2$. Продолжая таким образом, получаем сеть (см. рис. 7). Эта сеть тесно связана с допустимыми решениями задачи (9),

(10). А именно каждый путь сети, соединяющий начальную вершину с одной из конечных, определяет некоторое допустимое решение задачи. Верно и обратное, каждому допустимому решению задачи соответствует некоторый путь в сети, соединяющий начальную вершину с одной из конечных. На рис. 7 изображена сеть для случая T = 26.

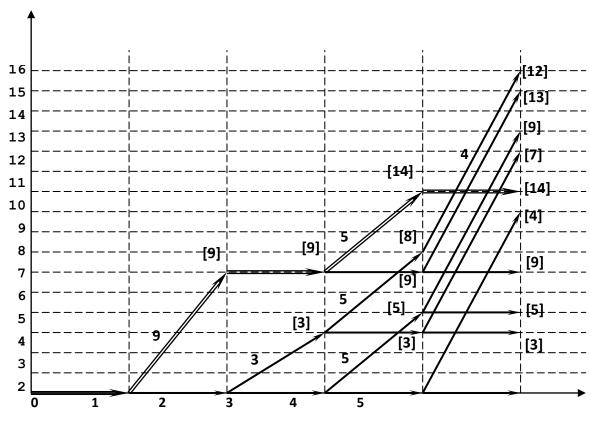


Рис. 7

Примем длины горизонтальных дуг равными **0**, а длины наклонных - стоимости соответствующих работ на субподряде. В этом случае длина любого пути, соединяющего начало координат с одной из конечных вершин сети равна разности суммарной субподрядной стоимости всех работ и стоимости работ, передаваемых на субподряд для соответствующего решения. Таким образом, решение задачи свелось к определению пути, соединяющего начальную вершину с одной из конечных и имеющего максимальную длину. Стоимости субподрядных работ указаны у наклонных дуг на рис. 7. Путь максимальной длины выделен толстыми дугами. Этому пути соответствует решение, в котором на субподряд передаются работы 1, 3 и 5.

Задание

- 1. Проект состоит из 8 независимых работ. При этом считается, что зависимость скорости работы w_i от количества ресурсов u_i имеет следующий вид: $w_i = u_i$, $i = \overline{1,8}$. Рассматривается один вид ресурсов, его производительность N единиц объёма на единицу времени указана в табл. 5. Объёмы W_i каждой работы i, а также стоимость c_i передачи её на субподряд также приведены в таблице. Требуется выяснить, какие работы необходимо передать на субподряд, чтобы проект завершился за время, не большее T1, а стоимость работ, переданных на субподряд, была минимальна.
- 2. Пусть имеется **8** проектов, каждый из которых состоит из двух типов проектных работ, выполняемых последовательно, сначала первая, а затем вторая. Все работы первого типа выполняются одной группой проектировщиков (или одним проектировщиком). Поэтому они не могут выполняться одновременно. Для выполнения работ второго типа имеется достаточное количество специалистов. Поэтому они могут вестись параллельно. a_i продолжительность работы первого типа для проекта i; b_i продолжительность работы второго типа для проекта i и c_i стоимость передачи работы первого типа проекта i на субподряд приведены в табл. 5. Требуется определить проекты, работы первого типа которых передаются на субподряд так, чтобы стоимость субподрядных работ была минимальна, а все 8 проектов были завершены не позже момента времени T_2 .

Номер			Но	мер ј	рабо	гы (п	роек	та)		N	T_1	Т
варианта		1	2	3	4	5	6	7	8	1N	11	T_2
1	w_i	78	54	66	66	72	24	60	78			
	a_i	11	15	13	12	3	2	2	8	6	43	35
	b_i	37	27	17	11	9	6	4	3			
	c_i	40	32	48	49	18	12	29	32			
	w_i	24	56	8	8	20	8	32	56		36	24
2	a_i	2	2	6	3	3	8	2	1	4		
2	b_i	54	33	20	15	13	10	8	6	•		
	c_i	10	18	5	5	9	3	20	21			
	w_i	78	24	18	72	54	60	78	60			
3	a_i	4	13	11	11	14	3	9	5	6	44	50
3	b_i	94	64	44	32	21	13	8	5		44	30
	c_i	23	17	7	23	38	17	32	29			

Номер]	Номе	ep pa6	боты	(прое	кта)		N.T	Т	Т
варианта		1	2	3	4	5	6	7	8	N	T_1	T_2
	w_i	108	36	117	63	45	90	36	108			
4	a_i	3	9	14	14	6	2	10	13	9	43	54
4	b_i	86	61	50	43	28	23	14	10	9	43	34
	c_i	63	15	65	21	29	44	23	36			
	w_i	27	6	30	9	9	21	6	27			
5	a_i	7	9	13	8	3	8	9	11	3	23	44
	b_i	112	97	64	42	35	25	17	12		23	44
	c_i	16	3	19	5	7	6	4	17			
	w_i	88	64	80	104	104	8	40	16			
6	a_i	7	3	8	4	2	10	4	1	8	41	24
	b_i	52	35	29	23	18	13	10	7			24
	c_i	55	31	44	57	38	2	12	4			
7	w_i	110	80	100	20	100	20	150	110			
	a_i	15	10	12	4	12	8	8	2	10	41	61
	b_i	73	63	40	27	20	16	13	9			
	c_i	56	50	32	10	75	7	88	31			
	w_i	28	14	28	8	10	26	8	10		44	
8	a_i	8	2	14	3	12	8	7	2	2		55
	$\boldsymbol{b_i}$	128	81	71	48	43	33	22	14	_		33
	c_i	10	8	14	5	3	13	4	3			
	w_i	52	48	44	12	8	20	20	36			
9	a_i	8	6	4	4	5	1	10	14	4	33	42
	b_i	124	85	56	46	29	19	15	14			74
	c_i	14	34	23	8	2	8	11	22			
	w_i	112	56	48	64	24	88	56	24			
10	a_i	4	8	3	11	4	5	3	11	8	36	30
10	b_i	54	37	26	19	15	11	9	6			
	c_i	61	22	31	43	13	55	32	12			
	w_i	32	48	28	44	36	56	24	40			
11	a_i	11	8	12	7	1	7	10	3	4	39	44
11	b_i	101	79	67	42	29	20	14	11			
	c_i	16	26	16	25	26	39	12	13			
	w_i	108	90	117	45	63	99	27	45			
12	a_i	12	8	4	13	11	14	5	2	9	37	36
12	b_i	17	14	12	11	7	6	4	3			50
	c_i	41	54	58	14	26	69	17	12			

Номер			Ном	ер р	абот	ы (пр	оект	a)		N	т	Т
варианта		1	2	3	4	5	6	7	8	N	T_1	T_2
	w _i	72	108	27	126	63	108	27	72			
13	a_i	8	6	14	15	4	3	10	4	9	40	49
	b_i	95	67	43	28	24	15	11	8			.,
	c_i	47	80	19	74	29	70	16	49			
	w_{i}	70	20	20	20	45	20	20	55			
14	a_i	13	9	12	12	4	11	6	11	5	35	60
	b_i	124	96	74	50	33	25	22	15			
	c_i	37	14	5	5	18	7	6	30			
	w_i	21	15	36	21	12	24	33	3			
15	a_i	11	10	7	10	14	9	10	4	3	41	42
	b_i	34	31	21	13	8	7	5	3			
	c_i	8	8	16	10	5	17	24	2			
16	w_i	96	24	16	64	112	88	64	16			
	a_i	3	10	8	10	8	2	3	6	8	44	36
	b_i	55	36	23	19	16	10	8	5			
	c_i	30	15	8	24	53	32	39	10			
	w_i	64	8	64	16	24	72	104	32		34	58
17	a_i	11	11	6	8	14	10	14	1	8		
	b_i	75	63	48	30	25	18	11	7			
	c_i	46	6	37	10	14	46	49	10			
	w_i	56	105	35	84	63	14	42	98			
18	a_i	9	6	11	3	7	14	7	5	7	39	42
	b_i	22	18	13	8	6	5	4	3			
	c_i	39	40	15	57	38	6	29	73			
	w_i	14	105	49	14	56	91	49	105			
19	a_i	13	4	15	1	4	5	6	9	7	45	43
	b_i	125	91	63 35	49	41	35 57	23	15			
	c_i	8	60		6	31		26	75			
	w_i	77	63	84	49	56	42	98	49			
20	a_i	4	7	8	12	5	11	7	5 8	7	40	39
	b_i	79 33	65 20	48	30 14	21 23	18 12	12 42	19			
	w_i	28	70	84	77	42	42	77	21			
		20	15	5	8	7	10	13	1	_	2.0	49
21	b_i	82	61	49	33	25	19	14	11	7	38	
	c_i	18	48	28	53	24	16	42	12			
	c_l	10	1 10	20	55	_ 4-7	10	12	14		l	

Номер			Н	Іоме	p pat	боты	(про	эект	a)	N	T_1	T_2
варианта		1	2	3	4	5	6	7	8	11	1]	12
	w_i	27	6	21	27	9	39	27	9		40	46
22	a_i	4	11	12	11	10	10	3	11	3		
22	b_i	65	53	33	23	15	10	6	4	3		40
	c_i	8	4	9	15	6	14	7	6			
	w_i	126	18	9	108	117	45	18	126		40	
23	a_i	6	5	5	9	9	12	1	2	9		40
25	b_i	79	66	54	37	26	17	13	10			
	c_i	87	10	4	70	51	33	6	65			
	w_i	25	70	15	55	40	60	40	40			
24	a_i	8	9	1	14	5	2	8	15	5	45	38
24	b_i	138	95	59	38	27	20	15	11			30
	c_i	18	48	10	31	18	33	30	13			
	w_i	30	42	27	15	36	45	36	33			
25	a_i	11	2	14	12	7	8	8	14	3	48	53
23	b_i	92	75	47	35	32	25	19	12		40	33
	c_i	18	28	17	7	20	29	16	19			

Контрольные вопросы

- 1. Дайте определений последовательного и параллельного множества дуг сетевого графика?
 - 2. В каком случае сеть называется агрегируемой?
- 3. Сформулируйте теорему о величине максимального потока и теорему двойственности для агрегируемой сети.
- 4. Сформулируйте следствие из теоремы двойственности для агрегируемой сети, а также необходимые и достаточные условия оптимальности потока в такой сети.
- 5. Как строятся матрицы дихотомического представления в задаче оптимизации субподрядных работ с независимыми работами?
- 6. По какому правилу получают оптимальное решение в задаче оптимизации субподрядных работ, минимизирующее время выполнения проекта **Z**, если он состоит из **m** проектов, каждый из которых включает два типа работ (при этом первый тип работ может выполняться только последовательно из-за нехватки ресурсов, а второй тип работ может выполняться параллельно, так как для него собственных ресурсов достаточно)?

Заключение

Методические указания к проведению практических занятий и самостоятельной работе по дисциплине «Организационно-технологическое проектирование» для студентов, обучающихся по направлению подготовки 08.03.01 – «Строительство» всех форм обучения, профилей и специализаций содержат краткий обзор основных понятий по теме «Модели оценки состояния производственных систем». Подчеркивается, что строительство – это стохастическая динамическая система, для исследования которой необходимо применять методы исследования операций, позволяющие сформировать близкое к оптимальному, рациональное управленческое решение. В данных методических указаниях описывается одна из моделей формирования производственной программы предприятия, предполагающая передачу части работ на субподряд. По теме приводится краткий теоретический материал, пример определения набора работ, передаваемых на субподряд при условии минимизации дополнительных расходов, приводятся данные для самостоятельного решения и вопросы для самоконтроля. Всем интересующимся более глубоким изучением предмета может быть рекомендовано обращение к литературе, приведенной в конце методических указаний.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Курочка П. Н. Моделирование задач организационнотехнологического проектирования строительного производства. Воронеж: ВГАСУ, 2004. - 204 с.
- 2. Баркалов С. А., Курочка П. Н. и др. Основы научных исследований по организации и управлению строительным производством. В 2-х частях. Воронеж: ВГАСУ, 2002. 422 с.; 285 с.
- 3. Баркалов С. А., Курочка П. Н., Федорова И. В Исследование операций в экономике. Лабораторный практикум. ВГАСУ, 2006. 343 с.
- 4. Баркалов С. А. и др. Основы научных исследований по управлению строительным производством. Воронеж: ВГАСУ, 2011. 188 с.
- 5. Рыжевская, М. П. Организация строительного производства [Электронный ресурс] : учебник / М. П. Рыжевская. Электрон. текстовые данные. Минск : Республиканский институт профессионального образования (РИПО), 2016. 308 с. 978-985-503-611-2. Режим доступа: http://www.iprbookshop.ru/67685.html
- 6. Михайлов, А. Ю. Организация строительства. Календарное и сетевое планирование [Электронный ресурс]: учебное пособие / А. Ю. Михайлов. Электрон. текстовые данные. М.: Инфра-Инженерия, 2016. 296 с. 978-5-9729-0134-0. Режим доступа: http://www.iprbookshop.ru/51728.html
- 7. Михайлов, А. Ю. Организация строительства. Стройгенплан [Электронный ресурс] / А. Ю. Михайлов. Электрон. текстовые данные. М. : Инфра-Инженерия, 2016. 172 с. 978-5-9729-0113-5. Режим доступа: http://www.iprbookshop.ru/51729.html

ОГЛАВЛЕНИЕ

Введение	3
Практические занятия и самостоятельная работа по курсу	1
«Организационно-технологическое проектирование»	4
Тема практического занятия: «Рациональное размещение работ	5
по времени»	3
Теоретические основы	5
Пример	
Задание	14
Контрольные вопросы	17
Заключение	18
Библиографический список	19

РАЦИОНАЛЬНОЕ РАЗМЕЩЕНИЕ РАБОТ ПО ВРЕМЕНИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям и самостоятельной работе по дисциплине «Организационно-технологическое проектирование» для студентов направления подготовки 08.03.01 «Строительство» всех форм обучения, профилей

Составители:

Баркалов Сергей Алексеевич **Курочка** Павел Николаевич

Издается в авторской редакции

Подписано к изданию 19.01.2022. Уч.-изд. л. 1,3.

ФГБОУ ВО «Воронежский государственный технический университет» 394006 Воронеж, ул. 20-летия Октября, 84