МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Кафедра графики, конструирования и информационных технологий в промышленном дизайне

569-2021

САПР И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ДИЗАЙНЕ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

к выполнению лабораторных работ для обучающихся по направлению 54.03.01 «Дизайн» (профиль «Промышленный дизайн») всех форм обучения

Воронеж 2021

Составители:

А. В. Кузовкин, А. П. Суворов, Ю. С. Золототрубова

САПР и информационные технологии в дизайне: методические рекомендации к выполнению лабораторных работ для обучающихся по направлению 54.03.01 «Дизайн» (профиль «Промышленный дизайн») всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: А. В. Кузовкин, А. П. Суворов, Ю. С. Золототрубова. – Воронеж: Изд-во ВГТУ, 2021. – 35 с.

Приводится описание выполнения лабораторных работ по дисциплине «САПР и информационные технологии в дизайне».

Предназначены для студентов, обучающихся по направлению 54.03.01 «Дизайн» (профиль «Промышленный дизайн»), всех форм обучения.

Методические указания подготовлены в электронном виде и содержатся в файле ЛР_САПРиИТвД.pdf.

Ил. 42.

УДК 681.3(07) ББК 30.18я7

Рецензент - А. А. Болдырев, канд. техн. наук, доцент кафедры технологии машиностроения ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

1. ЛАБОРАТОРНАЯ РАБОТА № 1. НАЧАЛО РАБОТЫ

1.1. Запуск и настройка

Перед началом работы мы рекомендуем настроить некоторые параметры программы.

Для настройки графических параметров вашего компьютера:

- 1. Щелкните правой кнопкой мыши на рабочем столе Windows и выберите Свойства.
- 2. В диалоговом окне *Свойства: Экран* перейдите на вкладку Параметры.
- 3. В группе «Качество цветопередачи» выберите *Самое высокое (32 бита)* и нажмите *ОК.*

Совместимость графической карты

Поскольку Autodesk Inventor является высокопроизводительным приложением для трехмерного моделирования, его функции весьма интенсивно используют вычислительные ресурсы компьютера и в особенности графической карты. Поэтому очень важно, чтобы ваш компьютер был оборудован совместимой графической картой и соответствующим драйвером. Получить дополнительную информацию о совместимых графических картах и загрузить нужные драйверы к ним можно на сайте *www. certified. com / graphics* по ссылке *Card Certification.*

Для запуска Autodesk Inventor:

1. Сделайте двойной щелчок на ярлыке *Autodesk Inventor* Рабочем столе.

2. Выберите «Запустить продукт» и нажмите Далее.

Открывается Стартовая панель Autodesk Inventor. На ней пользователю предлагается ознакомиться с разнообразными справочными и учебными материалами.

В стартовой панели нажмите *Отмена* для закрытия окна. Программа Autodesk Inventor запущена и готова к работе.

Настройка цвета графической области

В Autodesk Inventor можно выбрать различные цветовые схемы. Для первых шагов в Autodesk Inventor рекомендуется выбрать простейшую цветовую схему с белым фоном графической области.

- 1. Из меню Сервис выберите Настройка.
- 2. На вкладке Цвета выберите цветовую схему Презентация.
- 3. Нажмите Применить, а затем Закрыть.

Рис. 1.1. Настройка цвета

Для организации файлов, относящихся к проекту, в Autodesk Inventor используются так называемые файлы проектов.

1.2. Создание проектов

Для создания проекта:

1. Выберите в меню Файл пункт Проекты.

Новый проект можно создать, даже если Autodesk Inventor не запущен. Нажмите $\Pi yc\kappa$ в Microsoft Windows, затем выберите Programs> Inventor > Tools > Project Editor. 2. В диалоговом окне Проекты щелкните мышью на кнопке Создать

	Расположение проекта	
Default		
Designs	C:\Program Files\Autodesk\Vault 2008\Samples\Inventor 2008\Padlock\	
MY Inventor	F:\Inventor\MY\	
MyInv	C: \Documents and Settings\Пользователь \Мои документы \Inventor \MУInv \	
🗸 номер группы	C: Documents and Settings Пользователь Мои документы Inventor номер г	руп
samples	C:\Program Files\Autodesk\Inventor 2008\Samples\	
tutorial_files	C:\Program Files\Autodesk\Inventor 2008\Tutorial Files\	
Использовать библис Библиотеки	этеку стилей = Только чтение ые папки ки	
 Часто используем Специальные папи 		

Рис. 1. 2. Диалоговое окно «Проекты»

- 3. В диалоговом окне *Мастер создания проектов Inventor*, следуя приглашениям ответьте на вопросы:
- *Тип создаваемого проекта.* Выберите Новый однопользовательский проект
- Имя проекта.
- Именем файла проекта будет номер учебной группы, например, Э-18051. Файл проекта будет использовать это имя с расширением .*ipj*. Он помещается в папку, заданную в поле *Папка проекта*.

ип создаваем	ого проекта		
О Новый п	роект хранилиц	ца	
💿 Новый о	днопользовате	льский проект	

Рис. 1.3. Тип создаваемого проекта

Mur.						
аня Э-18051						
	екта (пабочего)	пространст	rea)			
C:\Docum	ents and Setting	s\Пользова	тель\Мои д	окументы\Іп∨	entor\Э-1	
Толный пу	ть					
C:\Docum	ents and Setting	s\Пользова	тель Мои д	окументы\Inv	entor\3-1805	i1∖∋
						- 8

Рис.1.4. Имя проекта, папка проекта

е проекты:		Новый проект:	
Логическое имя ibrary	Расположение C:\Program Fil	Логическое имя	Расположение
сположение биб.	лиотеки:		

Рис. 1.5. Выбор библиотек

Имя проекта	Расположение проекта	
Default		
Designs	C:\Program Files\Autodesk\Vault 2008\Samples\Inventor 2008\Padlock\	
Имя проекта	C:\pocuments and Settings\Пользователь\Мои документы\Inventor\Имя проект	a\
MY Inventor	F: Inventor MY	
MyInv	C:\Documents and Settings\Пользователь\Мои документы\Inventor\MУInv\	
номер группы	C: \Documents and Settings \Пользователь \Мои документы \Inventor \номер груп	пы
> 3-18051	C:\Documents and Settings\Пользователь\Мои документы\Inventor\3-18051\	
samples	C:\Program Files\Autodesk\Inventor 2008\Samples\	
tutorial_files	C:\Program Files\Autodesk\Inventor 2008\Tutorial Files\	
Вложенный файл =	сителіз and settings і іользователь імой документы univentor у імя проекта і еку стилей = Только чтение	1 1

Рис. 1.6. Созданный файл проекта Э-18051

1.3. Редактирование проектов

Для редактирования проекта:

- 1. Выберите пункт *Проекты* в меню *Файл* (все открытые файлы Autodesk Inventor нужно закрыть).
- 2. В верхней части диалогового окна *Проекты* дважды щелкните мышью на имени проекта, чтобы сделать его текущим.
- 3. В нижней части диалогового окна *Проекты* щелкните правой кнопкой мыши в редактируемой строке и выберите пункт меню. Можно также выделить редактируемую область, а затем выбрать знак

Редактировать выбранный элемент **1** правой части диалогового окна.

4. Чтобы отредактировать порядок поиска каталогов, выделите путь каталога и щелкните на стрелке вверх или вниз в правой части диалогового окна.

1.4. Информация о файлах

При создании деталей, сборок, файлов презентаций и видов чертежа данные сохраняются в отдельных файлах с разным расширением.

_	іл			len en e
По умолчанию	Британские	Метрические		
DWG		B		B
Обычный.dw	ıg Обычный.idv	w Сварка.iam	Обычный.ipt	Обычный.iam
P				
Обычный.ір	n ЛистМат.ipt	ŧ		
Файл п	роекта:	Э-18051.ipj		Проекты
Файл п Быстр	роекта: рый запуск	Э-18051.ipj		Проекты

Рис. 1.7. Диалоговое окно «Новый файл»

В Autodesk Inventor можно создавать файлы следующих типов.

Деталь (.ipt)

Файлы деталей содержат только одну деталь и могут быть двух- или трехмерными.

Сборка (.iam)

Файлы сборок могут состоять из одной детали, нескольких деталей или входящих сборок. Сами детали сохраняются в собственных файлах, и файл

сборки может ссылаться на них.

Презентации (.ipn)

Файлы презентации показывают детали сборки отдельно друг от друга. Файл презентации подключается к сборке так же, как файлы деталей. Файлы презентации бывают анимационными и показывают, как собирается или разбираются сборки.

Деталь из тонколистового материала (.ipt)

Файлы деталей из тонколистового материала – это файлы, для которых загружена среда моделирования листового материала.

Чертежи (.idw)

Файлы чертежей могут содержать изображения деталей, сборок и/или файлы презентаций. К чертежам разрешается добавлять размеры и обозначения. Детали и сборки в файлах чертежей подключаются также, как детали и сборки в файлах сборки и презентации.

1.5. Интерфейс программы

Познакомимся с интерфейсом Autodesk Inventor. Он может показаться уже знакомым, поскольку построен по стандартам Windows.

По умолчанию среда работы с деталью в Autodesk Inventor выглядит так, как показано на рис. 1. 8.

Экран разделен на следующие области:

Меню

В верхней части экрана расположена строка падающих меню, каждое из которых состоит из различных пунктов. Например, меню «Файл» состоит из пунктов «Открыть», «Сохранить», «Выход». В меню «Вид» сгруппированы команды работы с экраном, такие как «Повернуть», «Зуммировать» и др.

Стандартная панель инструментов

Под строкой меню расположена Стандартная панель инструментов Autodesk Inventor. Кнопки на этой панели выполняют самые распространенные операции, в том числе Открыть, Сохранить, Эскиз, Возврат, Повернуть.

Mathematical Autodesk Inventor Simulation 2008 - HE3APEFM	ИСТРИРОВАННАЯ ВЕ	РСИЯ - [Деталь1]			
🚰 Файл Правка <u>В</u> ид Вс <u>т</u> авка Формат Сервис Прек	о <u>б</u> разовать Прило <u>ж</u> ен	ия О <u>к</u> но <u>И</u> нтернет <u>С</u> правка	2 🦞 🕂		_ 8 ×
🗅 - 🔯 🥀 🔚 🗘 🖓 🔯 Выбор - 🏎 В	Возврат 🔹 📝 [🖄 🖓	Обновить - 🔍 🔍 🔍 🤹	• • • • • • • • • • • • • • • • • • • •		
2D эскиз *					
/ Отрезок [L] •					
Окружность: центр [C] ▼					
🌈 Дуга: 3 точки 👻					
Прямоугольник: 2 точки 🔹					
• Сопряжение [F] •					
Точка, центр					
• Многоугольник					
р Отражение					
р.е Прямоугольный массив					
қ <mark>о</mark> р Круговой массив					
🚇 Смещение [0]					
Разместить элемент					
++ Размеры [D] 					
х Модель → ?					
Ф Деталь 1	1				
Начало					
Конец детали					
	-				
	••				
		-			
🛃 ЛУСК 📁 1 🔛 Зап	туск и настройка	Mutodesk Inventor Si		Q	õ 🛢 🏀 16:40

Рис. 1.8. Экран работы с деталью

Инструментальная палитра

В инструментальной палитре располагаются специальные инструменты проектирования, состав которых меняется в зависимости от режима, в котором идет работа. Например, при создании нового изделия в инструментальной палитре располагаются инструменты для создания и вставки компонентов. При создании нового компонента в палитре располагаются инструменты для построения эскизов. При завершении построения эскиза инструменты на палитре автоматически меняются на другие, используемые для превращения эскиза в конструктивный элемент.

Инструментальная палитра имеет два режима: обычный и Эксперт. По умолчанию палитра находится в обычном режиме, когда в ней отображаются и значки инструментов, и их названия. В режиме Эксперт, который предназначен для опытных пользователей, отображаются только значки инструментов. Для перевода инструментальной палитры в режим Эксперт щелкните в ее пределах правой кнопкой мыши и выберите Эксперт.

Браузер

Браузер по умолчанию располагается под инструментальной палитрой. При работе с изделиями в браузере отображается структура деталей и узлов

проектируемого изделия. При работе с деталями браузер показывает компоненты данной детали.

Изменение вида модели

Для изменения текущего вида на стандартный изометрический вид:

• Щелкните правой кнопкой мыши в графической области и выберите Изометрический вид (F6).

Модель ориентируется на экране в соответствии со стандартным изометрическим видом.

Для возврата к предыдущему виду модели:

• Щелкните правой кнопкой мыши в графической области и выберите Предыдущий вид (F5).

Для возврата к предыдущему виду удобно пользоваться функциональной клавишей *F5*.

Для увеличения фрагмента модели:

- 1. В Стандартной панели инструментов выберите Показать рамкой
- 2. В графической области щелкните мышью выше и левее изображения, а второй раз ниже и правее.

2. ЛАБОРАТОРНАЯ РАБОТА № 2. ПОСТРОЕНИЕ ЭСКИЗА ВТУЛКИ

Рассмотрим построение модели втулки, показанной на рис. 2.1.

Рис. 2.1. Модель втулки

2.1. Построение первого эскиза

Первый элемент детали имеет цилиндрическую форму, поэтому мы начинаем с построения окружности.

- 1. В панели «2D эскиз» выберите Окружность: центр
- 2. Поместите курсор в графическую область. Курсор превращается в желтую точку.
- 3. Подведите курсор к пересечению главных координатных осей.
- 4. Щелчком мыши задайте положение центра окружности и переместите курсор вправо вверх.

При перемещении курсора вслед за ним динамически показывается будущая окружность, в нижнем правом углу экрана отображается радиус.

- 5. Перемещайте курсор вправо вверх, пока значение радиуса не станет равным примерно 12.
- 6. Щелкните в этом месте мышью.

Окружность готова. Инструмент «Окружность: центр» по-прежнему активен.

7. В графической области щелкните правой кнопкой мыши и выберите

Завершить.

Рис. 2.2. Эскиз окружности

2.2. Нанесение размеров

Когда базовая геометрическая форма определилась, можно задать точный размер. Autodesk Inventor позволяет наносит размеры различных типов: линейные, угловые, радиальные и др.

Задание значений размеров

При построении эскиза мы задавали размер окружности лишь приблизительно. Теперь зададим точное значение.

Для задания точного диаметра окружности:

1. Выберите размер диаметра окружности.

Открывается диалоговое окно, в котором выделяется текущее значение диаметра.

2. Наберите 24 и щелкните по зеленой галочке справа от поля ввода (или нажмите *Enter*). Поскольку эскиз в Autodesk Inventor управляется размером, геометрия эскиза автоматически изменяется.

Рис. 2.3. Нанесение размера

2.3. Принятие эскиза

Для принятия эскиза:

- *1.* Измените текущий вид на изометрический, щелкнув правой кнопкой мыши в графической области, и выберите *Изометрический вид*.
- 2. В графической области щелкните правой кнопкой мыши и выберите *Завершить.*
- 3. В графической области щелкните правой кнопкой мыши и выберите Принять эскиз.

Обратите внимание, что в графической области пропала координатная сетка, а в инструментальной палитре инструменты эскизирования заменились на инструменты работы с объемными моделями.

Рис. 2.4. Изометрический вид

2.4. Создание первого конструктивного элемента

Вызываем инструмент «Выдавливание»

1. В инструментальной палитре выберите инструмент Выдавливание

Открывается диалоговое окно «Выдавливание».

- 2. В графической области укажите выдавливаемый контур: окружность.
- 3. В диалоговом окне «Выдавливание» нажмите для выбора направления выдавливания.

В графической области появляются контуры будущего результата.

4. В графической области захватите мышью контур будущего выдавливания и перетащите его, динамически увеличив глубину выдавливания на некоторую величину.

Заметьте, что при перетаскивании значение в диалоговом окне «Выдавливание» изменяется. Можно ввести и точное значение.

5. В диалоговом окне «Выдавливание» выделите текущее значение и наберите 10, а затем нажмите ОК.

Рис. 2.5. Выдавливание окружности

2.5. Построение второго эскиза

Теперь добавим к модели цилиндрическую проточку. Начнем с построения эскиза. Прежде всего зададим плоскость эскиза.

- 1. В Стандартной панели инструментов выберите 2D эскиз
- 2. В графической области выберите верхнюю грань детали.

В графической области появляется сетка, а на палитре – инструменты для эскизирования. Обратите внимание, что в браузере все элементы, кроме Эскиз 2, помечаются серым цветом, показывая, что все остальные элементы неактивны.

Рис. 2.6. Плоскость эскиза

Показ нормали к плоскости

Перед тем, как начать построение эскиза проточки нужно изменить ориентацию вида на перпендикулярную плоскость эскиза:

- 1. В Стандартной панели инструментов выберите Вид на объект
- 2. В графической области выберите верхнюю грань детали.

Изменение стандартного поведения эскиза

Стандартное поведение эскиза в Autodesk Inventor можно изменить в любое время. Например, можно изменить параметры отображения координатной сетки и выбрать редактирование размеров при их нанесении.

Для изменения стандартного поведения двумерного эскиза:

- 1. Из меню «Сервис» выберите Настройка.
- 2. Перейдите на вкладку Эскиз.
- 3. Снимите флажки Дополнительные сетки и Оси.
- 4. Поднимите флажок Редактировать размеры при нанесении.
- 5. Нажмите ОК.

Обратите внимание, что внешний вид сетки на экране изменился.

			10	14 H		
Общие	Сохранение	Файлы	Цвета	Экран	Оборудование	Запрось
ертеж	Примечания	Эскиз	Деталь	Параметр	ические элементы	Изделие
) эскиз						
Приори	итет наложения з	ависимосте	й	Отображат	ь на экране	
(• Па	раллельно-перпе	ндикулярно	·	Г Линии с	етки	
C For	ризонтально-вер	тикально		Г Дополн	ительные линии сет	ки
C He	т			Госи		
Избыт	очные размеры			П Знак си	стемы координат	
С Де	лать контрольнь	ши				
🤄 Вы	водить предупре	ждения		Помертка	K VEREM CETKIN	
				(provision		
І♥ Реда	ктировать разме	ры при нане	сении			
П Авто	проецирование р	ебер при со	здании кри	зой		
🗸 Авто	проецирование р	ебер при со	здании и ре	дактирован	ии эскизов	
🗐 Вид в	з плане нового эс	киза				
П Авто	проекция исходн	ой точки ле	тали на ног	зый эскиз		
nen strift.						

Рис. 2.7. Настройка

Привязка к существующей геометрии

Эскиз проточки должен быть точно позиционирован относительно геометрии существующей модели. Это можно сделать путем проецирования геометрии на текущую плоскость эскиза.

Для проецирования наружного контура модели:

- 1. В инструментальной палитре выберите инструмент Проецировать геометрию
- 2. В графической области выберите наружный контур модели.

На плоскости эскиза создаются окружность и точка центра. Эти геометрические фигуры полностью ассоциированы с наружным контуром детали, то есть эта геометрия автоматически обновляется при изменении контура детали.

3. В графической области щелкните правой кнопкой мыши и выберите *Завершить.*

Рис. 2.8. Проецирование геометрии

2.5. Построение эскиза проточки

Построим эскиз цилиндрической проточки:

- 1. В панели «2D эскиз» выберите Окружность: центр 🕜
- Поместите в графическую область.
 Курсор превращается в желтую точку.
- 3. Подведите курсор к точке центра.

4. Щелчком мыши задайте положение центра окружности и переместите курсор вправо вверх.

При перемещении курсора вслед за ним динамически показывается будущая окружность, в нижнем правом углу экрана отображается радиус.

- 5. Перемещайте курсор вправо вверх, пока значение радиуса не станет равным примерно 10.
- 6. Щелкните в этом месте мышью.

Окружность готова. Инструмент «Окружность: центр» по-прежнему активен.

7. В графической области щелкните правой кнопкой мыши и выберите

Завершить.

Рис. 2.9. Построение окружности проточки

8. Нанести размер:

Для задания точного диаметра окружности:

• Выберите размер диаметра окружности.

Открывается диалоговое окно, в котором выделяется текущее значение диаметра.

- Наберите 21 и щелкните по зеленой галочке справа от поля ввода (или нажмите *Enter*). Геометрия эскиза автоматически изменяется.
- 9. Перейти в изометрический вид, нажав F6.
- 10. Принять эскиз.

Рис. 2.10. Изометрический вид

2.6. Создание конструктивного элемента проточки

Эскиз проточки превратим в конструктивный элемент:

1. В инструментальной палитре выберите инструмент Выдавливание

Открывается диалоговое окно «Выдавливание».

2. В графической области укажите выдавливаемый контур: окружность.

для

3. В диалоговом окне *Выдавливание* нажмите выбора направления выдавливания.

В графической области появляются контуры будущего результата.

4. В диалоговом окне *Выдавливание* выделите текущее значение и наберите 2, а затем нажмите *ОК*.

Рис. 2.11. Выдавливание 18

Рис. 2.12. Проточка

2.7. Построение третьего эскиза шестиугольника

Теперь добавим к модели шестигранник. Начнем с построения эскиза. Прежде всего зададим *плоскость эскиза*.

1. В Стандартной панели инструментов выберите *2D* эскиз

2. В графической области выберите верхнюю грань детали.

В графической области появляется сетка, а на палитре – инструменты для эскизирования. Обратите внимание, что в браузере все элементы, кроме Эскиз 3, выделяется серым цветом, показывая, что все остальные элементы неактивны.

Рис. 2.13. Эскизная плоскость для шестиугольника

Третий элемент детали имеет форму шестигранника, поэтому начинаем с построения шестиугольника.

- 1. В панели 2D эскиз выберите Многоугольник
- 2. Открывается диалоговое окно *Многоугольник*. Наберите 6 число сторон и *Описанный*.
- 3. Поместите курсор в графическую область.

Курсор превращается в желтую точку.

4. Подведите курсор к пересечению главных координатных осей. Щелчком мыши задайте положение центра шестиугольника ипереместите курсор вверх.

При перемещении курсора вслед за ним динамически показывается будущий шестиугольник, в нижнем правом углу экрана отображается радиус окружности, вокруг которой описан шестиугольник.

Рис. 2.14. Диалоговое окно «Многоугольник»

- 5. Перемещайте курсор вправо вверх, пока значение радиуса не станет равным примерно 15.
- 6. Щелкните в этом месте мышью.

Шестиугольник готов. Инструмент «Многоугольник» по-прежнему активен.

- 7. В диалоговом окне Многоугольник выберите Готово.
- 8. В графической области щелкните правой кнопкой мыши и выберите Принять эскиз.
- 9. Нанести размер.

Для задания точного размера шестиугольника:

1. Выберите размер под ключ шестиугольника, равный диаметру окружности, вокруг которой описан шестиугольник.

Открывается диалоговое окно, в котором выделяется текущее значение размера.

2. Наберите 15 и щелкните по зеленой галочке справа от поля ввода (или нажмите Enter). Геометрия эскиза автоматически изменяется.

Рис. 2.15. Эскиз шестиугольника

2.8. Создание конструктивного элемента шестигранник

Эскиз шестиугольника превратим в конструктивный элемент: Вызываем инструмент «Выдавливание»

1. В инструментальной палитре выберите инструмент Выдавливание.

Открывается диалоговое окно Выдавливание.

- 2. В графической области укажите выдавливаемый контур: шестиугольник.
- 3. В диалоговом окне *Выдавливание* нажмите выбора направления выдавливания.

для

- В графической области появляются контуры будущего результата.
- 4. В диалоговом окне «Выдавливание» выделите текущее значение и наберите 8, а затем нажмите *OK*.

Рис. 2.16. Выдавливание шестиугольника

Рис. 2.17. Конструктивный элемент шестигранник

2.9. Построение четвертого эскиза

Добавим к модели цилиндр. Начнем с построения эскиза. Прежде всего зададим *плоскость* эскиза.

1. В Стандартной панели инструментов выберите *2D* эскиз

2. В графической области выберите верхнюю грань детали.

В графической области появляется сетка, а на палитре – инструменты для эскизирования. Обратите внимание, что в браузере все элементы, кроме элемента Эскиз 4, выделяются серым цветом, показывая, что все остальные элементы неактивны.

Рис. 2.18 Новая плоскость эскиза

3. Привяжите к существующей геометрии шестигранник и цилиндрические поверхности.

Появляется точка центра и шестиугольник.

Рис. 2.19. Проецирование геометрии

- 4. Создайте окружность.
- 5. Нанести точный размер окружности.

Для задания точного диаметра окружности:

• Выберите размер диаметра окружности.

Открывается диалоговое окно, в котором выделяется текущее значение диаметра.

• Наберите 27 и щелкните по зеленой галочке справа от поля ввода (или нажмите *Enter*).

2.10. Создание конструктивного элемента цилиндр

Эскиз окружности превратим в конструктивный элемент:

1. В инструментальной палитре выберите инструмент Выдавливание

Открывается диалоговое окно «Выдавливание».

- 2. В графической области укажите выдавливаемый контур: окружность.
- 3. В диалоговом окне «Выдавливание» нажмите для выбора направления выдавливания.
- 4. В диалоговом окне «Выдавливание» выделите текущее значение и наберите 40, а затем нажмите ОК.

Рис. 2.20. Выдавливание

Рис. 2.21. Модель

2.11. Завершение конструирования детали

Построение рабочих осей

Построим рабочие оси и рабочую плоскость, по которым будут ориентированы отверстия во втулке.

Для построения первой рабочей оси:

1. В инструментальной панели выберите инструмент Рабочая ось

2. В графической области выберите цилиндрическую поверхность (1).

Первая рабочая ось построена.

Построим вторую рабочую ось на правом ребре шестигранника.

- 1. Еще раз выберите инструмент Рабочая ось
- 2. Выберите правое ребро шестигранника (2).

-1	
-1.	1
- 24	
1	

Рис. 2.22. Рабочие оси

Построение рабочей плоскости

Построим рабочую плоскость, проходящую через две только что созданные оси.

1. В инструментальной панели выберите инструмент Рабочая плоскость

2. Выберите две рабочие оси.

Рабочая плоскость рассекает деталь пополам и проходит через две оси.

Рис.2.23. Рабочая плоскость

Построение следующего эскиза

Построим эскиз на новой рабочей плоскости

- 1. В стандартной панели инструментов выберите 2D эскиз.
- 2. В графической области выберите только что построенную плоскость.

Показ плоскости эскиза

Сейчас плоскость эскиза пересекает модель детали. Для удобства дальнейшей работы можно временно отсечь часть детали по этой плоскости.

Для отсечения части детали:

• В графической области щелкните правой кнопкой мыши и выберите **Разрезать модель.**

Рис. 2.24. Разрезанная модель

Построение эскиза внутреннего отверстия

Внутреннее отверстие построим вращением с вычитанием профиля отверстия.

Ориентируем плоскость перпендикулярно направлению взгляда.

1. В стандартной панели инструментов выберите Вид на объект

и укажите рабочую плоскость.

Рис. 2.25. Вид на объект

Позиционирование эскиза относительно детали

Эскиз внутреннего профиля должен быть точно позиционирован относительно геометрии существующей модели. Это можно сделать путем проецирования геометрии на текущую плоскость эскиза.

Для проецирования оси и наружного контура модели:

1. В инструментальной палитре выберите инструмент Проецировать

геометрию 🚄

2. В графической области выберите ось и наружный контур модели.

На плоскости эскиза создаются прямая и контур. Эти геометрические фигуры полностью ассоциированы с наружным контуром детали, то есть эта геометрия автоматически обновляется при изменении контура детали.

3. В графической области щелкните правой кнопкой мыши и выберите *Завершить.*

Рис. 2.26. Проецирование геометрии

1. В инструментальной палитре выберите инструмент

Отрезок.

Создайте контур, соответствующий половине двух цилиндров с общей осью диаметрами 15 и 20. Нарисуйте отрезок, который станет осевой линией.

2. Для выхода из команды «Линия» нажмите клавишу Esc.

Рис. 2.27. Контур внутреннего отверстия

Зададим размеры контура

При вращении эскиза вместо радиальных размеров в большинстве случаев желательно задавать диаметральные размеры. Задаваемые в эскизе размеры применяются в чертежных видах. Чтобы добавить в эскиз диаметральный размер, нужно выделить осевую линию.

Для выделения осевой линии щелкните по ней, а затем в Стандартной панели нажмите Центральная направляющая ____

Рис. 2. 28. Эскиз профиля внутреннего отверстия

Для создания диаметрального размера:

1. В инструментальной палитре выберите Общие размеры

2. Выделите ось и правую кромку и поместите размер внизу.

При выделении осевой линии убедитесь, что выделяется вся ось, а не только ее конечная точка

- 3. В диалоговом окне *Редактирование размера* наберите *15* и нажмите *Enter*.
- 4. Выберите ось и крайнюю правую кромку и поместите размер снизу.

5. В диалоговом окне *Редактирование размера* наберите 20 и нажмите *Enter*.

6. Отредактируйте размер между осью и левой вертикальной кромкой, наберите 0.

Ось вращения совместится с левой стороной контура.

- 7. И далее проверьте остальные размеры контура.
- 8. Для выхода из команды Размеры нажмите Esc.

Рис. 2.29. Точные размеры контура

Позиционирование эскиза относительно детали

Это можно сделать путем наложением зависимости коллинеарности. Позиционирование замкнутого контура относительно оси и ребра детали.

- 1. Выделите в браузере РабПлоскость 1, выберите Наложить зависимость, а затем Коллинеарность
- 2. Выберите ось детали, а затем ось контура.

Эскиз контура выравнивается относительно детали по вертикали.

Рис. 2.30. Выравнивание контура вдоль оси

3. Щелкните правой клавишей мыши в графической области и выберите Изометрический вид (или F6).

4. При активном инструменте «Коллинеарность» выберите нижнюю сторону контура эскиза, а затем горизонтальную линю проекции детали. Теперь эскиз находится в правильном положении относительно втулки.

5. Для выхода из команды «Коллинеарность» нажмите Esc.

Рис. 2.31. Выравнивание контура по высоте

Создание элемента вращения

Построение эскиза завершено. Теперь создадим конструктивный элемент путем вращения контура.

1. Для вызова команды Вращение нажмите английскую клавишу R.

Поскольку в эскизе есть только один замкнутый контур, автоматически подсвечивается построенный контур.

2. Задайте ось вращения, выбрав рабочую ось в центре втулки.

3. В диалоговом окне *Вращение* выберите *Вычитание* Затем *ОК*.

Рис. 2.32. Вращение с вычитанием

Рис. 2.33. Конструктивный элемент

Изменение видимости эскиза

Вы, вероятно, заметили, что в браузере появилось несколько новых элементов. В дереве модели отображаются все этапы построения модели.

Посмотрите, как элементы браузера соотносятся с геометрией детали.

• Перемещайте курсор поверх названий элементов. Соответствующая геометрия подсвечивается в графической области.

Так как нам больше не нужны две рабочая ось, проходящая через ребро шестигранника, и рабочая плоскость, отключим их при помощи браузера.

- 1. В браузере щелкните на значке *плюс* (+) рядом с элементом *РабПлоскость* 1.
- 2. Удерживая клавишу *Ctrl*, выберите элементы *РабПлоскость 1*, *РабОсь2*.

Оба элемента подсвечиваются в браузере.

3. Щелкните правой клавишей мыши на любом из подсвеченных элементов и выберите *Видимость*.

Рабочая ось и плоскость в графической области становятся невидимыми, а их значки в браузере из цветных становятся серыми.

Рис. 2.34. Модель с внутренним отверстием

ОГЛАВЛЕНИЕ

1. Лабораторная работа № 1. Начало работы	3
2. Лабораторная работа № 2. Построение эскиза втулки	11

САПР И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ДИЗАЙНЕ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

к выполнению лабораторных работ для обучающихся по направлению 54.03.01 «Дизайн» (профиль «Промышленный дизайн») всех форм обучения

> Составители: Кузовкин Алексей Викторович Суворов Александр Петрович Золототрубова Юлия Сергеевна

> > В авторской редакции

Подписано к изданию 15.11.2021. Уч.-изд. л. 2,2.

ФГБОУ ВО «Воронежский государственный технический университет» 396026 Воронеж, Московский просп., 14