МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля) «Основы проектирования приборов и систем»

Направление подготовки (специальность) 12.03.01 — Приборостроение Профиль (специализация) Приборостроение Квалификация выпускника <u>Бакалавр</u> Нормативный период обучения 4 года / 5 лет Форма обучения <u>Очная / Заочная</u> Год начала подготовки 2018 г.

Автор программы	M	_/Башкиров А.В./
Заведующий кафедрой конструирования и произ	вволства	
радиоаппаратуры	e de la constante de la consta	_/Башкиров А.В./
Руководитель ОПОП	Auf	_/Муратов А.В./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Состоит в изучении методологии разработки объемных и микроминиатюрных конструкций приборов и систем, организации процесса автоматизированного конструкторского проектирования с учетом требований технического задания, ограничений производства, обеспечения высокого качества, в том числе надежности, технологичности, экономической эффективности.

1.2. Задачи освоения дисциплины

Освоение методологии и организацию автоматизированного конструкторского проектирования, иерархического принципа в конструкции. Получение навыков проектирования с использованием стандартизации и элементов оригинальных разработок. Приобретение навыков разработки конструкции приборов и систем в целом, составляющих модулей, электрических соединений. Практическое освоение приемов конструирования сложных приборов и систем при одновременном воздействии механических и климатических факторов, воздействий электрических, магнитных и электромагнитных полей с учетом технологичности, экономичности, требований приборов и систем техники при использовании систем автоматизированного проектирования. Приобретение навыков, необходимых ДЛЯ оформления конструкторской документации согласно ЕСТП, ЕСКД, ОСТП и ГОСТ.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Основы проектирования приборов и систем» относится к дисциплинам обязательной части блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Основы конструирования приборов и систем» направлен на формирование следующих компетенций:

ПК-1 - способен анализировать поставленную задачу исследований в области приборостроения.

ПК-2 - Способен выполнять математическое моделирование физических процессов с использованием стандартных пакетов автоматизированного проектирования согласно техническому заданию

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-1	знать этапы проектирования, от постановки техническо-
	го задания и технического предложения, до оформления
	полного комплекта технической документации. Этапы
	компоновки радиоэлектронных модулей, узлов и прибо-
	ров и систем в целом

	_ _						
	уметь разрабатывать схемы, чертежи деталей, печатных плат, сборочных чертежей в соответствии с требованиями ЕСКД и применением современных САПР						
	владеть современными программными комплексами						
	разработки проектной и технической документации						
ПК-2	знать методы повышения надежности, обеспечения заданного теплового режима, электромагнитной совместимости и устойчивости к внешним неблагоприятным воздействиям						
	уметь применять методы и способы повышения надежности, электромагнитной совместимости и устойчивости конструкции к внешним, неблагоприятным факторам. Обосновать выбор конструкции						
	владеть современными методами проектирования приборов и систем с учетом всех технических требований. Навыками 3D моделирования конструкции, позволяющими увидеть результат проведенных расчетов						

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Основы проектирования приборов и систем» составляет 9 зачетных единиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы		Семестры			
	часов	6	7		
Аудиторные занятия (всего)	180	90	90		
В том числе:					
Лекции	72	36	36		
Практические занятия (ПЗ)	36	18	18		
Лабораторные работы (ЛР)	72	36	36		
Самостоятельная работа	108	54	54		
Курсовой проект	+		+		
Контрольная работа					
Вид промежуточной аттестации – зачет с	+	+			
оценкой					
Вид промежуточной аттестации – экзамен	+		+		
Общая трудоемкость час	288	144	144		
экзам. ед.			36		

Заочная форма обучения

Вид учебной работы	Всего	Семестры			
	часов	6	7		
Аудиторные занятия (всего)	42	22	20		
В том числе:					
Лекции	16	8	8		
Практические занятия (ПЗ)	8	4	4		
Лабораторные работы (ЛР)	18	10	8		
Самостоятельная работа	269	154	115		
Курсовой проект	+		+		
Контрольная работа					
Вид промежуточной аттестации – зачет с	+	+			
оценкой					
Вид промежуточной аттестации – экзамен	+		+		
Общая трудоемкость час	324	180	144		
зач. ед.	4	4			
экзам. ед.	9		9		

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Все го, час
1	Структура и классификация приборов и систем	Конструкция приборов и систем как система. Свойства конструкций приборов и систем. Структурные уровни и дробление конструкции приборов и систем. Классификация приборов и систем.	4	2	4	4	14
2	Факторы, определяющие построение приборов и систем	Факторы окружающей среды. Системные факторы, определяющие построение приборов и систем. Факторы, определяющие компоновку приборов и систем. Факторы взаимодействия в системе «человек-машина». Человекомашинные системы, их классификация и свойства. Психологические характеристики и параметры человека-оператора. Рабочая зона оператора, форма рабочих зон. Размещение органов управления и средств отображения приборов и систем. Выбор типа индикаторных приборов. Рекомендации по изготовлению лицевой панели.	8	4	8	12	32
3	Конструкторское про- ектирование приборов и систем. Выбор ме- тода конструирования.	Характер и вид конструкторских работ и организация творческой работы. Общая методология конструирования приборов и систем. Стадии разработки приборов и систем. Выбор методы конструирования. Конструкторская документация.	8	4	8	12	32

4	Современные и перспективные конструкции приборов и систем	Компоновочные схемы функциональных ячеек цифровых приборов и систем четвертого и пятого поколений. Компоновочные схемы блоков цифровых микроприборов и систем четвертого и пятого поколений. Компоновочные схемы приемоусилительных функциональных ячеек микроприборов и систем четвертого и пятого поколений Компоновочные схемы модулей СВЧ и АФАР.	8	4	8	12	32
5	Системы базовых несущих конструкций	Конструкционные системы и иерархическая соподчиненность уровней приборов и систем. Основные виды конструкционных систем. Выбор несущих конструкций и корпусирование блоков и устройств. Проблемы развития базовых несущих конструкций для современных ПРИБОРОВ И СИСТЕМ.	4	2	4	8	18
6	Унификаций конструкций приборов и систем	Государственная система стандартизации (ГСС). Единая система конструкторской документации (ЕСКД). Разновидности стандартизации. Унификация приборов и систем.	8	4	8	12	32
7	Обеспечение надежности приборов и систем.	Показатели надежности приборов и систем. Эксплуатационная надежность приборов и систем. Безотказность, долговечность, сохраняемость, ремонтопригодность. Методы резервирования. Испытания на отказ.	8	4	8	12	32
8	Механические характеристики приборов и систем. Электромагнитная совместимость приборов и систем.	Механические воздействия на электронные средства. Защита блоков приборов и систем от механических воздействий. Проблема электромагнитной совместимости (ЭМС). Факторы, влияющие на ЭМС элементов и узлов приборов и систем. Наиболее вероятные источники и приемники наводимых напряжений (наводок). Основные виды паразитных связей. Экранирование. Фильтрация. Заземление. Виды линий связи и их электрические параметры. Конструирование электрического монтажа.	12	6	12	16	46
9	Влагозащита и герметизация приборов и систем.	Вание электрического монтажа. Выбор способа защиты металлических деталей и узлов с учетом требований по электропроводности корпуса изделий. Герметизация. Примеры конструкций средств защиты. Выбор способа защиты от взрыво- и пожароопасной среды.		2	4	8	18
10	Особенности конструирования приборов и систем различного назначения.	Конструирование наземных стационарных при- боров и систем. Конструирование подвижных наземных приборов и систем. Конструирование бортовых приборов и систем. Конструирование морских приборов и систем.	8	4	8	12	32
		Итого	72	36	72	108	288

заочная форма обучения

№	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Bce
п/п				зан.	зан.		го,
							час
1	Структура и классификация приборов и систем	Конструкция приборов и систем как система. Свойства конструкций приборов и систем. Структурные уровни и дробление конструкции приборов и систем. Классификация приборов и систем.	1	-	1	24	26
2	Факторы, определяющие построение приборов и систем	Факторы окружающей среды. Системные факторы, определяющие построение приборов и систем. Факторы, определяющие компоновку приборов и систем. Факторы взаимодействия в системе «человек-машина». Человекомашинные системы, их классификация и свойства. Психологические характеристики и параметры человека-оператора. Рабочая зона оператора, форма рабочих зон. Размещение органов управления и средств отображения приборов и систем. Выбор типа индикаторных приборов. Рекомендации по изготовлению лицевой панели.	2	-	1	26	29

	Конструкторское про-	Характер и вид конструкторских работ и орга-					
3	ектирование приборов и систем. Выбор метода конструирования.	низация творческой работы. Общая методология конструирования приборов и систем. Стадии разработки приборов и систем. Выбор методы конструирования. Конструкторская документация.	1	-	1	26	28
4	Современные и перспективные конструкции приборов и систем	Компоновочные схемы функциональных ячеек цифровых приборов и систем четвертого и пятого поколений. Компоновочные схемы блоков цифровых микроприборов и систем четвертого и пятого поколений. Компоновочные схемы приемоусилительных функциональных ячеек микроприборов и систем четвертого и пятого поколений Компоновочные схемы модулей СВЧ и АФАР.	2	-	2	26	30
5	Системы базовых несущих конструкций	1	-	2	26	29	
6	Унификаций конструкций приборов и систем	Государственная система стандартизации (ГСС). Единая система конструкторской документации (ЕСКД). Разновидности стандартизации. Унификация приборов и систем.	1	-	2	26	29
7	Обеспечение надежности приборов и систем.	Показатели надежности приборов и систем. Эксплуатационная надежность приборов и систем. Безотказность, долговечность, сохраняемость, ремонтопригодность. Методы резервирования. Испытания на отказ.	1	1	2	28	32
8	Механические характеристики приборов и систем. Электромагнитная совместимость приборов и систем.	Механические воздействия на электронные средства. Защита блоков приборов и систем от механических воздействий. Проблема электромагнитной совместимости (ЭМС). Факторы, влияющие на ЭМС элементов и узлов приборов и систем. Наиболее вероятные источники и приемники наводимых напряжений (наводок). Основные виды паразитных связей. Экранирование. Фильтрация. Заземление. Виды линий связи и их электрические параметры. Конструирование электрического монтажа.	2	2	3	39	46
9	Влагозащита и герметизация приборов и систем.	Выбор способа защиты металлических деталей и узлов с учетом требований по электропроводности корпуса изделий. Герметизация. Примеры конструкций средств защиты. Выбор способа защиты от взрыво- и пожароопасной среды.	1	1	2	28	32
10	Особенности конструирования приборов и систем различного назначения.	Конструирование наземных стационарных при- боров и систем. Конструирование подвижных наземных приборов и систем. Конструирование бортовых приборов и систем. Конструирование морских приборов и систем.	2	-	2	26	30
		Итого	14	4	18	275	311

5.2 Перечень лабораторных работ

- 1. Конструирование функциональных узлов на печатной плате;
- 2. Выбор и обоснование элементной базы;
- 3. Компоновка элементов и блоков ПРИБОРОВ И СИСТЕМ на печатной плате и в корпусе;
- 4. Расчет надежности приборов и систем на ЭВМ;
- 5. Расчет теплового режима приборов и систем на ЭВМ;
- 6. Расчет механических воздействий блоков ПРИБОРОВ И СИСТЕМ на ЭВМ;
- 7. Оформление комплекта конструкторской документации.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта в 7 семестре.

Примерная тематика курсового проекта: «Разработка конструкции радиоэлектронного модуля».

Темой курсового проекта может являться как разработка конструкции наземного, бортового или морского радиоэлектронного устройства различного функционального назначения, так и задачи, связанные с исследовательской работой в области конструирования приборов и систем. По конструктивной сложности разрабатываемое устройство должно относиться к изделиям второго и более высоких уровней. Курсовые проекты исследовательского профиля связаны с теоретическими и экспериментальными исследованиями в области конструирования приборов и систем.

Задачи, решаемые при выполнении курсового проекта:

- произвести анализ электрической принципиальной схемы и технических требований, выданных в задании на курсовой проект с выбором современной элементной базы;
- произвести расчет компоновки на плате и в корпусе;
- разработать сборочные чертежи и чертежи деталей, произвести выбор электрических соединений и соединителей, материалов и покрытий;
- выполнить конструкторские расчеты: обеспечение теплового режима, электромагнитной совместимости, электрической и механической прочности.

Курсовой проект включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетенция	Результаты обучения,, характеризующие сформированность ком- петенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	знать этапы проектирования, от постановки технического задания и технического предложения, до оформления полного комплекта технической документации. Этапы компоновки радиоэлектронных модулей, узлов и приборов и систем в целом	Активная работа на лабораторных и практических занятиях, отвечает на теоретические вопросы при защите курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь разрабатывать схемы, чертежи деталей, печатных плат, сборочных чертежей в соответствии с требованиями ЕСКД и применением современных САПР	Решение стандартных практических задач, написание курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть современ- ными программными комплексами разра- ботки проектной и технической доку- ментации	Решение прикладных задач в конкретной предметной области, выполнение плана работ по разработке курсового проекта	Выполнение ра- бот в срок, пре- дусмотренный в рабочих про- граммах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-2	знать методы повышения надежности, обеспечения заданного теплового режима, электромагнитной совместимости и устойчивости к внешним неблагоприятным воздействиям	Активная работа на лабораторных и практических занятиях, отвечает на теоретические вопросы при защите курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь применять методы и способы повышения надежности, электромагнитной совместимости и устойчивости конструкции к внешним, неблагоприятным факторам. Обосновать выбор конструкции	Решение стандартных практических задач, написание курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть современ- ными методами про- ектирования прибо- ров и систем с уче- том всех техниче- ских требований. Навыками 3D моде- лирования конструк- ции, позволяющими увидеть результат	Решение прикладных задач в конкретной предметной области, выполнение плана работ по разработке курсового проекта	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

проведенных расче-		
TOB		

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6 и 7 семестрах для очной и заочной форм обучения по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компетенция	Результаты	Критерии	Отлично	Хорошо	Удовл	Неудовл
	обучения,	оценивания		•		•
	характери-					
	зующие					
	сформиро-					
	ванность					
	компетенции					
ПК-1	знать этапы	Тест	Выполнение	Выполнение тес-	Выполнение	В тесте менее
	проектирова-		теста на 90-100%	та на 80-90%	теста на 70-80%	70% правиль-
	ния, от поста-		100141143010070	14 114 00 7070	1001411470 0070	ных ответов
	новки техни-					пых ответов
	ческого зада-					
	ния и техниче-					
	ского предло-					
	жения, до					
	оформления					
	полного ком-					
	плекта техни-					
	ческой доку-					
	ментации.					
	Этапы компо-					
	новки радио-					
	электронных					
	модулей, узлов					
	и приборов и					
	систем в целом					
	уметь разра-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	батывать		теста на 90-	теста на 80-90%	теста на 70-	нее 70% пра-
	схемы, черте-		100%		80%	вильных от-
	жи деталей,					ветов
	печатных					
	плат, сбороч-					
	ных чертежей					
	в соответст-					
	вии с требо-					
	ваниями					
	ЕСКД и при-					
	менением					
	современных					
	САПР	Т	D	D	D	D =========
	владеть со-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	временными программны-		теста на 90-	теста на 80-90%	теста на 70-	нее 70% пра-
	ми комплек-		100%		80%	вильных от-
	сами разра-					ветов
	ботки проект-					
	ной и техни-					
	ческой доку-					
	ментации					
ПК-2	знать методы	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
1111-2	повышения	1001	теста на 90-	теста на 80-90%	теста на 70-	нее 70% пра-
	надежности,			1001а на 00-90%		-
	обеспечения		100%		80%	вильных от-
						ветов

_	1					,
	заданного					
	теплового					
	режима, элек-					
	тромагнитной					
	совместимо-					
	сти и устой-					
	чивости к					
	внешним					
	неблагопри-					
	ятным воздей-					
	ствиям					
	уметь приме-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	нять методы и		теста на 90-	теста на 80-90%	теста на 70-	нее 70% пра-
	способы по-		100%	1001411400 9070	80%	вильных от-
	вышения		10070		00/0	
	надежности,					ветов
	электромаг-					
	нитной со-					
	вместимости и					
	устойчивости					
	конструкции к					
	внешним,					
	неблагопри-					
	ятным факто-					
	рам. Обосно-					
	вать выбор					
	конструкции					
	владеть со-	Тест	Выполнение	Выполнение	Выполнение	В тесте ме-
	временными	1001	теста на 90-	теста на 80-90%	теста на 70-	нее 70% пра-
	методами		100%	1001а на 60-7070	80%	вильных от-
	проектирова-		10070		8070	
	ния приборов					ветов
	и систем с					
	учетом всех					
	технических					
	требований.					
	Навыками 3D					
	моделирова-					
	ния конструк-					
	ции, позво-					
	ляющими					
	увидеть ре-					
	зультат про-					
	веденных					
	расчетов					
	расчетов					

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. Что представляет собой методология решения задач конструирования приборов и систем?

Варианты ответа (выберите один или несколько правильных):

- а) комплексная структура мероприятий, способствующая решению задачи в процессе успешного ее применения;
- б) это набор действий, приводящий к решению задачи;
- в) это учение о логической организации, методах и средствах какой-либо деятельности, логика познания чего-либо, логика использования методов, моделей, средств для достижения необходимого результата;

г) все ответы неправильные.

2. Вместо одновременного проектирования подсистем в практике производят последовательное проектирование подсистем с...

Варианты ответа (выберите один или несколько правильных):

- а) запаздыванием;
- б) возвратом;
- в) последовательной обратной связью;
- г) все варианты правильные.

3. Особый вид проектирования, когда объектом действия является конструкция приборов и систем это:

Варианты ответа (выберите один или несколько правильных):

- а) конструирование приборов и систем;
- б) разработка техпроцесса;
- в) тепловой расчет;
- г) расчет прочности.

4. Какими характеристиками оценивают жизнь приборов и систем?

Варианты ответа (выберите один или несколько правильных):

- а) прочность приборов и систем, качество приборов и систем;
- б) механическая стойкость приборов и систем, качество конструкции;
- в) проектирование и конструирование;
- г) качество приборов и систем, способность приборов и систем удовлетворять потребностям общества по функционированию, задержка удовлетворения потребности общества в приборов и систем.

5. Для чего необходима систематизация и классификация факторов, влияющих на проектирование приборов и систем?

Варианты ответа (выберите один или несколько правильных):

- а) чтобы наиболее эффективно организовать моделирование;
- б) для контроля над качеством конструкций приборов и систем;
- в) для выявления ошибок при проектировании;
- г) чтобы наиболее эффективно организовать процесс проектирования при определенном уровне знаний о нем.

6. Какие факторы влияют на процесс проектирования и определяют результат?

Варианты ответа (выберите один или несколько правильных):

- а) системные и условия эксплуатации;
- б) факторы окружающей среды;
- в) человеческие факторы;
- г) все перечисленные факторы.

7. Основные проблемы конструирования и производства радиоприборов и систем:

Варианты ответа (выберите один или несколько правильных):

- а) миниатюризация;
- б) повышение КПД;
- в) увеличение размеров радиоэлектронных модулей;
- г) повышение потребляемой мощности радиоприборов и систем.

8. Этапы развития конструкций приборов и систем:

Варианты ответа (выберите один или несколько правильных):

- а) системотехнический;
- б) математический;
- в) схемотехнический;
- г) конструкторско-технологический;
- д) инновационный.

9. Показатели приборов и систем:

Варианты ответа (выберите один или несколько правильных):

- а) транспортно-заготовительные;
- б) конструктивные;
- в) технологические;
- г) инновационные
- д) экономические;
- е) эксплуатационные.

10. Сколько существует категорий размещения приборов и систем на объекте?

Варианты ответа (выберите один или несколько правильных):

- a) 3;
- б) 4;
- в) 5;
- г) 6.

11. Наличие паразитных связей в приборах и системах обусловлено:

Варианты ответа (выберите один или несколько правильных):

- а) увеличением плотности токов в схемах;
- б) применением систем на кристалле;
- в) повышение плотности электромонтажа в пределах полупроводниковых ИМС;
- г) применение многоуровневой разводки;
- д) снижение напряжения питания.

12. ТЗ на изготовление приборов и систем формируется на основании ...

Варианты ответа (выберите один или несколько правильных):

- а) назначения изделия;
- б) заявки на разработку;
- в) технических требований;
- г) желания заказчика.

13. Какие из групп факторов, определяющих Т3, не являются системными факторами?

Варианты ответа (выберите один или несколько правильных):

- а) назначения;
- б) объект-носитель;
- в) условия и ограничения технологии производства;
- г) человек-оператор.

14. Места установки приборов и систем, характеризующиеся наименьшим и наибольшим коэффициентом влияния на надежность.

Варианты ответа (выберите один или несколько правильных):

- а) лабораторные благоустроенные помещения и мощная ракета;
- б) лабораторные благоустроенные помещения и самолет;
- в) стационарные наземные помещения и мощная ракета;
- г) защищенные отсеки кораблей и управляемый снаряд.

15. Под механическим колебанием элементов аппаратуры или конструкции в целом понимается:

Варианты ответа (выберите один или несколько правильных):

- а) перегрузка;
- б) вибрация;
- в) тряска;
- г) толчки.

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Выступающая часть монтажного провода над поверхностью платы не должна превышать:

Варианты ответа (выберите один или несколько правильных):

- a) 0,5-1,6 mm;
- б) 1,6-4 мм;
- в) 0,2 мм;
- г) 4-56 мм.

2. Сколько Мбит/сек без потерь способна пропускать волокнистооптическая линия:

Варианты ответа (выберите один или несколько правильных):

- а) до 20;
- б) до 2000;
- в) до 500;
- г) до 2.

3. Назовите металл с самой высокой коррозийной стойкостью:

Варианты ответа (выберите один или несколько правильных):

- a) медь (Cu);
- б) железо (Fe);
- в) алюминий (Al);
- г) свинец (Рb).

4. Защиты полыми оболочками приводит к:

Варианты ответа (выберите один или несколько правильных):

- а) повышению трудоемкости в 2-3 раза по сравнению с монолитными;
- б) стоимость оболочек составляет 20-45% стоимости изделия;
- в) все ответы правильные;
- г) значительному уменьшению плотности компоновки.
- 5. Влияние влаги на приборы приводит к изменению свойств материалов элементов Г конструкции S, в свою очередь приводящие к изменению:

Варианты ответа (выберите один или несколько правильных):

- а) свойств самих элементов Γ , а затем систем S;
- б) свойств системы S, а затем элементов Γ ;
- в) повышению расходов на эксплуатацию;
- г) все ответы неправильные.

6. Нормальными климатическими условиями принято считать температуру...

Варианты ответа (выберите один или несколько правильных):

- а) от -1 C^0 до 10 C^0 ;
- б) от -15 C^0 до 45 C^0 ;
- в) от $+3 \, \mathrm{C}^0$ до $+25 \, \mathrm{C}^0$;
- Γ) от 15 C^0 до 30 C^0 .

7. К чему приводит наличие влажности на поверхности полупроводниковых приборов?

Варианты ответа (выберите один или несколько правильных):

- а) к электрохимической и химической коррозии;
- б) к накоплению зарядов в полупроводнике под влиянием поверхностных ионов;
- в) к увеличению диэлектрической проницаемости;
- г) к потере и утечке в диэлектриках.

8. Виброчастотная характеристика объекта позволяет:

Варианты ответа (выберите один или несколько правильных):

- а) определить собственную частоту;
- б) определить коэффициент передачи колебаний;
- в) при известном диапазоне внешних воздействий определить защищенность объекта и предложить способ повышения защищенности;
- г) все ответы не полные.

9. Нормальными условиями принято считать

- a) p=101325 Ha, T=273,15 K
- б) p=760 мм.рт.ст, t=0 °С
- в) p=101325 Па, t=20°С
- г) p=101,325 Па, T=273,15 К

10. Вибрацию свыше 140 дБ считают:

Варианты ответа (выберите один или несколько правильных):

- а) полигармонической вибрацией;
- б) линейным ускорением;
- в) гармонической вибрацией;
- г) акустическим шумом.

7.2.3 Примерный перечень заданий для решения прикладных задач

1. В процессе приработки приборов и систем из 120 штук вышло из строя 10. Требуется вычислить вероятность исправной работы и вероятность отказа приборов и систем на начальном этапе эксплуатации.

Варианты ответа:

```
а) 0,68 и 0,02;б) 0,72 и 0,04;в) 0,76 и 0,05;
```

г) 0,82 и 0,07;

д) 0,92 и 0,08.

2. Известно, что вероятность исправной работы приборов и систем на интервале времени от 100 до 200 часов составила 0,98. Число испытываемых изделий N_{θ} =1000 шт., число отказов в указанном интервале – 5. Требуется найти число приборов и систем, исправных к моменту 100 и 200 часов.

Варианты ответа:

- а) 220 и 215;
- б) 225 и 235;
- в) 230 и 240;
- г) 240 и 240;
- д) 250 и 245.
- 3. Интенсивность отказов радиоэлектронных компонентов зависит от времени и выражается функцией ожидаемой интенсивности отказа
- $\lambda(t) = \frac{\pi}{1 + kt}$. Требуется найти зависимость от времени вероятности безотказной работы изделия. Определить вероятность безотказной работы за 100 часов, если $k=2\cdot10^{-4}$ ч⁻¹.

Варианты ответа:

- a) 0,975;
- б) 0,897;
- в) 0,998;
- г) 0,796;
- д) 0,97.
- 4. Время восстановления приборов и систем равно 5 часам при вероятности безотказной работы 0,9 и времени выполнения задания $P(t_3)$ =0,81. Требуется рассчитать: время работы; коэффициент готовности; время наработки на отказ.

Варианты ответа:

- а) 32 часа; 0,485; 10,3 часа;
- б) 47 часов; 0,562; 12 часов;
- в) 64 часа; 0,729; 13,5 часов;
- г) 72 часа; 0,853; 15,5 часов;
- д) 82 часа; 0,922; 17,5 часов.
- 5. Радиоэлектронная система состоит из пяти резервных блоков. Вероятность отказа каждого из блоков за время t равна 0,25. Требуется определить вероятность того, что за время t будет исправен хотя бы один блок; откажут все пять блоков.

Варианты ответа:

a) 0,011; 0,002;

```
б) 0,013; 0,011;
в) 0,012; 0,001;
г) 0,015; 0,022;
д) 0,015; 0,001.
```

6. Радиоэлектронное средство состоит из трех модулей, с интенсивностями отказов: $\lambda_1 = 10^{-6} \text{ ч}^{-1}$; $\lambda_2 = 10^{-5} \text{ ч}^{-1}$; $\lambda_3 = 10^{-4} \text{ ч}^{-1}$. Второй модуль проработал исправно 100 часов, а третий 200 часов. Первый модуль работал исправно 300 часов. Требуется найти вероятность безотказной работы всего радиоэлектронного средства за 300 часов работы.

Варианты ответа:

```
а) 0,967;б) 0,972;в) 0,981;
```

г) 0,985; д) 0,992.

7. Амперметр с пределами измерений I_n показывает I_x . Погрешность от подключения амперметра в цепь Δ_s . Среднее квадратическое отклонение показаний прибора σ_I . Требуется рассчитать доверительный интервал для истинного значения измеряемой силы тока цепи с вероятностью P = 0.9544 ($t_p = 2$). Исходные данные: $I_n = 10$ A, $I_n = 9$ A, $\Delta_s = +0.4$ A, $\sigma_I = 0.4$ A.

Варианты ответа:

```
a) [6,2; 7,8];
б) [6,9; 8,3];
в) [7,8; 9,4];
г) [8,4; 8,9];
д) [9,0; 9,9].
```

8. Определите потери в свободном пространстве сигнала с частотой 30 ГГц при распространении на расстояние 1 км в разах и дБ. Варианты ответа:

```
а) 1,12 \cdot 10^{10} раз и 251,1 дБ;
```

б)
$$1,58 \cdot 10^{12}$$
 раз и $121,98$ дБ;

в)
$$1,22 \cdot 10^9$$
 раз и 96,33 дБ;

- г) $1,22 \cdot 10^{14}$ раз и 144,11 дБ;
- д) 1,58 · 10^{12} раз и 121,98 дБ.
- 9. Требуется изолировать плоскую поверхность таким образом, чтобы потеря тепла с единицы поверхности в единицу времени была не больше $450~\mathrm{Bt/m^2}$. Под изоляцией температура поверхности $450~\mathrm{^{0}C}$, а температура внешней поверхности теплоизоляции $50~\mathrm{^{0}C}$. Требуется определить толщину изоляции если: а) изоляция сделана из совелита $(\lambda=0,09+0,0000872 \cdot t~\mathrm{Bt/(m\cdot K)})$; б) изоляция сделана из асботермита $(\lambda=0,109+0,000146 \cdot t~\mathrm{Bt/(m\cdot K)})$.

Варианты ответа:

- a) δ_1 =0,0994 m; δ_2 =0,129 m;
- б) δ_1 =0,0788 м; δ_2 =0,11 м;
- в) δ_1 =0,12 м; δ_2 =0,33 м;
- г) δ_1 =1,2998 м; δ_2 =0,312 м;
- д) δ_1 =0,0054 м; δ_2 =0,009 м.
- 10. Пластинчатый радиатор длиной I=0,2 м, шириной a=0,15 м охлаждается обтекаемым потоком воздуха с температурой $t_0=20^{\circ}$ С. Скорость набегающего потока воздуха $w_0=3$ м/с. Температура поверхности радиатора $t_p=90^{\circ}$ С. Найдите коэффициент теплоотдачи радиатора и количество отдаваемой теплоты. Следует считать режим движения воздушной среды ламинарным и охлаждается только одна сторона радиатора.

Варианты ответа:

- а) \tilde{K} оэффициент теплоотдачи δ =2,65 Bт/($M^2 \cdot K$); Q=8 Bт;
- б) Коэффициент теплоотдачи $6=4,87 \text{ Bt/}(\text{м}^2 \cdot \text{K}); Q=10 \text{ Bt;}$
- в) Коэффициент теплоотдачи 6=5,32 Bт/($M^2 \cdot K$); Q=12 Bт;
- г) Коэффициент теплоотдачи $6=6.12 \text{ Bt/(м}^2 \cdot \text{K)}$; Q=14 Bt;
- д) Коэффициент теплоотдачи $6=7,52 \text{ BT/(м}^2 \cdot \text{K)}$; Q=15 Bт.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Конструкция приборов и систем как система. В чём разница понятий "радиоэлектронные средства" и "электронные средства"? Дайте понятие конструированию приборов и систем.
- 2. Свойства конструкций приборов и систем. Структурные уровни. Что характеризует структура конструкции приборов и систем? Чем она определяется?

- 3. Как можно представить абстрактную модель конструкции приборов и систем? Почему формализация процесса конструирования приборов и систем с математической точки зрения является плохо формулируемой задачей?
- 4. Каковы разновидности функциональной внутренней связи конструкции? С какими составными частями в системе должна быть согласована конструкция приборов и систем?
 - 5. Классификация приборов и систем.
- 6. Факторы окружающей среды влияющие на работу приборов и систем. Как влияет температура и влажность на приборов и систем?
- 7. Требования к приборам летательных аппаратов. Каким образом влияет пыль и песок на приборы?
- 8. Разновидности фонового излучения. Вредные факторы биологической среды.
 - 9. Системные факторы, определяющие построение приборов и систем.
- 10. Факторы взаимодействия в системе «человек-машина». Человекомашинные системы, их классификация и свойства. Психологические характеристики и параметры человека-оператора.
- 11. Рабочая зона оператора. Форма рабочих зон. Размещение органов управления. Размещение средств отображения. Выбор типа индикаторных приборов.
- 12. Характер и вид конструкторских работ и организация творческой работы при проектировании приборов и систем.
- 13. Характер и вид конструкторских работ. Организация творческой работы конструктора. Что включает в себя поисковая стадия творческой работы конструктора?
- 14. Общая методология конструирования приборов и систем. Каким целям служит стадия вариационного анализа? Охарактеризуйте геометрический метод конструирования приборов и систем.
- 15. Эвристический метод конструирования приборов и систем. Этапы автоматического конструирования приборов и систем.
- 16. Стадии разработки приборов и систем. Техническое задание как стадия разработки приборов и систем.
- 17. Всегда ли существует этап технического предложения? какие виды работ выполняются на этом этапе? Какова цель технического проекта?
 - 18. Выбор метода конструирования.
- 19. Конструкторская документация. Какие Вы знаете графические КД? текстовые КД?
- 20. Какие типы корпусов ИС отвечают требованиям "поверхностного монтажа"? Особенности блоков кассетной компоновки.
- 21. Конструкционные системы и иерархическая соподчиненность уровней приборов и систем.
 - 22. Основные виды конструкционных систем.
 - 23. Выбор несущих конструкций и корпусирование блоков и устройств.
 - 24. Проблемы развития БНК для современных приборов и систем.

- 25. Государственная система стандартизации (ГСС). Дайте определение "стандартизации". Цели и задачи стандартизации.
- 26. Дайте характеристику Государственной системе стандартизации. Какова цель комплексной стандартизации?
- 27. Единая система конструкторской документации (ЕСКД). Какие группы стандартов ЕСКД вы знаете?
 - 28. Разновидности стандартизации.
- 29. Унификация приборов и систем. Что такое типизация? Дайте определение понятию агрегатирование.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Механические воздействия на приборы. Защита блоков приборов и систем от механических воздействий. Приведите АЧХ амортизационной системы.
- 2. Дайте определения вибропрочности и виброустойчивости приборов и систем. ФУ на ПП вошёл в механический резонанс, предложите конструктивные мероприятия, которые позволят выйти из резонанса. Какие типы амортизаторов Вы знаете?
- 3. Проблема ЭМС. Факторы, влияющие на ЭМС элементов и узлов приборов и систем.
- 4. Наиболее вероятные источники и приемники наводимых напряжений (наводок).
- 5. Дайте определение электромагнитной совместимости приборов и систем. Что такое «статическая помехоустойчивость» цифровых ИС?
- 6. Перечислите вероятные источники помех, вероятные приемники (рецепторы) помех. Начертите принципиальную схему ВИПа.
- 7. Приведите факторы, влияющие на кондуктивные помехи на высоких и низких частотах.
- 8. Основные виды паразитных связей. Паразитная связь через общее сопротивление.
- 9. Паразитная индуктивная связь. Паразитная связь через электромагнитное поле и волноводная связь.
 - 10. Экранирование. Принцип экранирования электрического поля.
- 11. Принцип экранирования магнитного поля. Почему действие экрана в электрическом поле бывает отрицательно?
- 12. Какой материал используют для экрана в постоянных и медленно изменяющихся полях и в ВЧ магнитных полях? Что такое «скин —слой», где он учитывается в экранировании?
 - 13. Фильтрация помех в приборов и систем.
- 14. Заземление. Почему каждый корпус цифровых ИС в ТЭЗе по питанию шунтируется конденсатором? Какие схемы заземления Вы знаете?
 - 15. Виды линий связи и их электрические параметры.
- 16. Волоконно-оптические линии связи. На каких частотах используются коаксиальные кабели, микрополосковые линии?

- 17. Конструирование электрического монтажа. Классификация электромонтажа приборов и систем.
- 18. Требования к электрическому монтажу приборов и систем. Требования к контактным узлам (разъёмным и неразъёмным).
- 19. Конструирование электромонтажа объёмным проводом. Преимущества печатного, шлейфового и плёночного монтажа.
 - 20. Разъёмы в приборах. Виды, типы и их характеристики.
- 21. Выбор способа защиты металлических деталей и узлов с учетом требований по электропроводности корпуса изделий. Приведите покрытие корпуса для аппаратуры, работающей в условиях влажных тропиков.
- 22. Что такое воронение? Какие металлы им защищаются? Приведите примеры записи воронения в КД.
- 23. Какие вы знаете неметаллические покрытия? Приведите примеры. Как их записывают в КД?
- 24. К какому виду покрытия относится анодное оксидированное? Что покрывается и как записывается в КД?
 - 25. К какому виду покрытия относится хромирование? Запись его в КД.
- 26. Защита изделий изоляционными материалами. Расскажите суть пропитки, заливки, обволакивания, опрессовки?
- 27. Герметизация с помощью герметичных корпусов. На какие группы разделяются способы герметизации? Какими способами обеспечивается герметизация?
- 28. Каким критерием оценивается герметичность корпуса? Приведите формулу. Какие вы знаете способы определения герметичности корпуса?

Выбор способа защиты от взрыво- и пожароопасной среды. Какой наиболее технологичен способ защиты от взрыво- и пожароопасной среды? Какие вы знаете категории производств по взрывной, взрывопожароопасной и пожарной опасности?

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 10 вопросов, 10 стандартных задач и 10 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов -30.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 16 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 16 до 20 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 21 до 25 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 26 до 30 баллов.

7.2.7 Паспорт оценочных материалов

№	Контролируемые разде-	Код контролируемой	Наименование
Π/Π	лы (темы) дисциплины	компетенции (или ее	оценочного сред-
		части)	ства
1	Структура и классифи-	ПК-1, ПК-3	Тест, зачет, уст-
	кация приборов и систем		ный опрос
2	Факторы, определяющие	ПК-1, ПК-3	Тест, зачет, уст-
	построение приборов и		ный опрос, КП
	систем		
3	Конструкторское проек-	ПК-1, ПК-3	Тест, зачет, уст-
	тирование приборов и		ный опрос, КП
	систем. Выбор метода		
	конструирования.		
4	Современные и перспек-	ПК-1, ПК-3	Тест, зачет, уст-
	тивные конструкции		ный опрос, КП
	приборов и систем		
5	Системы базовых несу-	ПК-1, ПК-3	Тест, зачет, уст-
	щих конструкций		ный опрос
6	Унификаций конструк-	ПК-1, ПК-3	Тест, экзамен,
	ций приборов и систем.		устный опрос, КП
7	Обеспечение надежно-	ПК-1, ПК-3	Тест, экзамен,
_	сти приборов и систем		устный опрос, КП
8	Механические характе-	ПК-1, ПК-3	Тест, экзамен,
	ристики приборов и сис-		устный опрос, КП
	тем. Электромагнитная		
	совместимость приборов		
-	и систем.		
9	Влагозащита и гермети-	ПК-1, ПК-3	Тест, экзамен,
	зация приборов и сис-		устный опрос, КП
1.0	тем.		T.
10	Особенности конструи-	ПК-1, ПК-3	Тест, экзамен,
	рования приборов и сис-		устный опрос, КП
	тем различного назначе-		
	ния.		

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на

бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Пестряков В.Б., Аболтина-Аболинь Г.Я., Гаврилов Б.Г. Конструирование радиоприборов и систем: Учебник для вузов. Под ред. В.Б. Пестрякова. М.: Радио и связь, 1992. 432 с.
- 2. Уварова А.С. Проектирование и конструирование приборов и систем. Издательство: Горячая Линия Телеком, 2004 г.-760 с.
- 3. Романычева Э.Т., Иванова А.К., Куликов А.С., Новикова Т.П. Разработка и оформление конструкторской документации РЭА Справочное пособие. М.: Радио и связь 1984г.-256 с.
- 4. Иванова Н.Ю., Романова Е.Б. Инструментальные средства конструкторского проектирования приборов и систем Санкт-Петербург: НИУ ИТМО, 2013. 121 с.
- 5. Кологривов В. А. Основы автоматизированного проектирования радиоэлектронных устройств (часть 1): Учебное пособие / Томск : ТУСУР 2012. 120 с. URL: http://e.lanbook.com/books/element.php?pl1 id=4930
- 6. Кологривов В. А. Основы автоматизированного проектирования радиоэлектронных устройств (часть 2): Учебное пособие / Томск : ТУСУР – 2012. 132 c. URL: http://e.lanbook.com/books/element.php?pl1_id=4929
- 7. Башкиров А.В., Чирков О.Н. Учебно-методический комплекс дисциплины «Основы конструирования приборов и систем»: учеб. пособие [Электронный ресурс]. / Воронеж: ФГБОУ ВПО "ВГТУ", 2015. 113 с.
- 8. Башкиров А.В., Соболев А.А. Пособие по курсовому по дисциплине «Основы проектирования приборов и систем», Воронеж : ВГТУ, 2008. 147 с.
- 9. Астахов Н.В., Башкиров А.В. Методические указания к практическим занятиям по дисциплине «Основы конструирования приборов и систем» для направления 211000.62 "Конструирование и технология приборов и систем",

профиль «Проектирование и технология радиоприборов и систем» для всех форм обучения, - Воронеж : ВГТУ, 2014. - 49 с.

- 10. Методические указания по выполнению СРС по дисциплине «Основы конструирования приборов и систем» для направления 211000.62 "Конструирование и технология приборов и систем", профиль «Проектирование и технология радиоприборов и систем» для всех форм обучения, Воронеж : ВГТУ, 2014. 44 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Microsoft Word, Microsoft Excel, Internet Explorer, программный комплекс «Компас 3D LT», расчетная программа на ЭВМ «D5.exe для проведения расчета надежности и виброустойчивости различных конструкций ПРИБОРОВ И СИСТЕМ И СИСТЕМ».

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная видеопроектором с экраном и пособиями по профилю.

Компьютерный класс, оснащенная ПЭВМ с установленным программным обеспечением, ауд. 234/3, 226/3.

Видеопроектор с экраном в ауд. 234/3.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Основы конструирования приборов и систем» читаются лекции, проводятся лабораторные и практические занятия, выполняется курсовой проект.

Лекции представляет собой систематическое, последовательное изложение учебного материала. Это – одна из важнейших форм учебного процесса и один из основных методов преподавания в вузе. На лекциях от студента требуется не просто внимание, но и самостоятельное оформление конспекта. Качественный конспект должен легко восприниматься зрительно, в эго тексте следует соблюдать абзацы, выделять заголовки, пронумеровать формулы, подчеркнуть термины. В качестве ценного совета рекомендуется записывать не каждое слово лектора (иначе можно потерять мысль и начать писать авто-

матически, не вникая в смысл), а постараться понять основную мысль лектора, а затем записать, используя понятные сокращения.

- Практические занятия позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности практических занятий для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
- Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:
- работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;
 - выполнение домашних заданий и типовых расчетов;
 - работа над темами для самостоятельного изучения;
 - участие в работе студенческих научных конференций, олимпиад;
 - подготовка к зачетам и экзаменам.

Кроме базовых учебников рекомендуется самостоятельно использовать имеющиеся в библиотеке учебно-методические пособия. Независимо от вида учебника, работа с ним должна происходить в течение всего семестра. Эффективнее работать с учебником не после, а перед лекцией.

При ознакомлении с каким-либо разделом рекомендуется прочитать его целиком, стараясь уловить общую логику изложения темы. При повторном чтении хорошо акцентировать внимание на ключевых вопросах и основных теоремах (формулах). Можно составить их краткий конспект.

Степень усвоения материала проверяется следующими видами контроля:

- текущий (опрос, контрольные работы, типовые расчеты);
- рубежный (коллоквиум);
- промежуточный (курсовая работа, зачет, зачет с оценкой, экзамен).

Коллоквиум – форма итоговой проверки знаний студентов по определенным темам.

Зачет – форма проверки знаний и навыков, полученных на лекционных и практических занятиях. Сдача всех зачетов, предусмотренных учебным планом на данный семестр, является обязательным условием для допуска к экзаменационной сессии.

Экзамен – форма итоговой проверки знаний студентов.

Для успешной сдачи экзамена необходимо выполнить следующие рекомендации —готовиться к экзамену следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяцполтора до экзамена. Данные перед экзаменом три-четыре дня эффективнее всего использовать для повторения.

Вид учебных занятий	Деятельность студента
	, , , , , , , , , , , , , , , , , , ,
Лекция	Написание конспекта лекций: кратко, схематично, последовательно
	фиксировать основные положения, выводы, формулировки, обобще-
	ния; помечать важные мысли, выделять ключевые слова, термины.
	Проверка терминов, понятий с помощью энциклопедий, словарей,
	справочников с выписыванием толкований в тетрадь. Обозначение
	вопросов, терминов, материала, которые вызывают трудности, поиск
	ответов в рекомендуемой литературе. Если самостоятельно не удает-
	ся разобраться в материале, необходимо сформулировать вопрос и
	задать преподавателю на лекции или на практическом занятии.
Практические	Конспектирование рекомендуемых источников. Работа с конспектом
занятия	лекций, подготовка ответов к контрольным вопросам, просмотр ре-
	комендуемой литературы. Прослушивание аудио- и видеозаписей по
	заданной теме, выполнение расчетно-графических заданий, решение
	задач по алгоритму.
Подготовка к	При подготовке к зачету и экзамену необходимо ориентироваться на
дифференциро-	конспекты лекций, рекомендуемую литературу и решение задач на
ванному зачету и	практических занятиях.
экзамену	

КИЦАТОННА

к рабочей программе дисциплины «Основы конструирования приборов и систем»

Направление подготовки (специальность) 12.03.01 — Приборостроение Профиль (специализация) Приборостроение Квалификация выпускника Бакалавр Нормативный период обучения 4 года / 5 лет Форма обучения Очная / Заочная Год начала подготовки 2018 г.

Цель изучения дисциплины: изучить методы конструирования приборов и систем, обеспечивающих их функционирование в соответствии с требованиями надежности и условиями эксплуатации, получить знания и навыки конструировании радиоприборов и систем.

Задачи изучения дисциплины:

Формирование знаний в областях изучения: Структура и классы приборов и систем. Конструкторское проектирование. Типовые несущие конструкции. Защита приборов и систем от дестабилизирующих факторов. Конструирование приборов и систем с учетом электромагнитной совместимости и радиационной стойкости. Системные критерии технического уровня и качества изделий. Основные понятия в теории надежности. Номенклатура и свойства показателей безотказности невосстанавливаемых приборов. Показатели безотказности приборов и систем для законов распределения, используемых в теории надежности. Показатели безотказности приборов и систем с мгновенным восстановлением. Расчет показателей безотказности невосстанавливаемых приборов и систем. Повышение надежности приборов и систем с помощью резервирования. Планирование и расчет запасных элементов. Прогнозирование надежности приборов и систем. Общая характеристика теплои массообмена в радиоэлектронных системах. Основные понятия и законы переноса энергии и вещества. Уравнения теплопроводности и краевые условия. Элементы теории тепловых цепей. Стационарное тепловое поле температур с источниками энергии. Основы теории подобия. Нестационарный тепловой режим тела с равномерным полем температур. Массо - и влагообмен. Методы обеспечения тепловых и влажностных режимов приборов и систем. Конструирование приборов и систем с учетом механических и тепловых воздействий.

Перечень формируемых компетенций:

ПК-1 - Способен анализировать поставленную задачу исследований в области приборостроения.

ПК-2 — Способен выполнять математическое моделирование физических процессов с использованием стандартных пакетов автоматизированного проектирования согласно техническому заданию

Общая трудоемкость дисциплины ЗЕТ: 9 з.е	
Форма итогового контроля по дисциплине: _	ЭКЗАМЕН (зачет, зачет с оценкой, экзамен)