МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета Небольсин В.А.

«31» августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Системы автоматизированного проектирования медицинской техники»

Направление подготовки 12.03.04 <u>Биотехнические системы и технологии</u> Профиль «Биотехнические и медицинские аппараты и системы» Квалификация выпускника <u>бакалавр</u> Нормативный период обучения <u>4 года / 4 года и 11 м</u> Форма обучения очная / заочная

Год начала подготовки 2021

Автор программы

Заведующий кафедрой Системного анализа и управления в медицинских системах

Руководитель ОПОП

Новикова Е.И.

Новикова Е.И.

Новикова Е.И.

Новикова Е.И.

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

приобретение студентами навыков проектирования медицинской техники с применением автоматизированного проектирования.

1.2. Задачи освоения дисциплины

- изучение базовых понятий, предмета, методов и принципов автоматизированного проектирования;
- изучение математических моделей элементов электронных схем и основ автоматизированного проектирования технологических процессов разработки, проектирования и производства приборов и аппаратов;
 - формирование навыков схемотехнического проектирования;
- приобретение навыков конструирования изделий в подсистемах машинной графики и геометрического моделирования.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Системы автоматизированного проектирования медицинской техники» относится к дисциплинам части, формируемой участниками образовательных отношений блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Системы автоматизированного проектирования медицинской техники» направлен на формирование следующих компетенций:

- ПК-2 Готовностью к участию в проведении медико-биологических, экологических и научно-технических исследований с применением технических средств, информационных технологий и методов обработки результатов.
- ПК-3 Способностью к внедрению технологических процессов производства, метрологического обеспечения и контроля качества медицинских изделий и биотехнических систем.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
	знать модели и параметры, используемые при автоматизированном проек-
	тировании; виды обеспечения систем автоматизированного проектирования;
	уметь проводить моделирование и анализ устройств; проводить модели-
	рование с помощью тел и с помощью поверхностей;
	владеть методами структурного и параметрического синтеза в системах ав-
	томатизированного проектирования.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ПК-3	знать процедуры синтеза проектных решений; методики концептуального
	проектирования медицинской техники;
	уметь проводить схемотехническое проектирование;
	владеть навыками подготовки чертежной документации в системах авто-
	матизированного проектирования и создании трехмерных моделей.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Системы автоматизированного проектирования медицинской техники» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий:

очная форма обучения

Duran varabusă nabatu	Воого насов	Семестры
Виды учебной работы	Всего часов	8
Аудиторные занятия (всего)	48	48
В том числе:		
Лекции	24	24
Лабораторные работы (ЛР)	24	24
Самостоятельная работа	96	96
Курсовой проект	+	+
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач. ед.	5	5

заочная форма обучения

Виды учебной работы	Всего	Семестры
виды учеоной работы	часов	10
Аудиторные занятия (всего)	12	12
В том числе:		
Лекции	4	4
Лабораторные работы (ЛР)	8	8
Самостоятельная работа	159	159
Курсовой проект	+	+
Часы на контроль	9	9
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач. ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	Наименование	Содержание раздела	Лекц	Лаб.	CPC	Всего,
п/п			,	зан.		час
1	Введение в автоматизированное проектированние (АП)	Предмет и задачи курса. Виды проектирования. Подходы к проектированию систем. Понятие инженерного проектирования. Принципы системного подхода. Иерархическая структура проектных спецификаций и иерархические уровни проектирования. Классификация моделей и параметров, используемых при АП. Структура процесса проектирования. Стадии проектирования. Содержание технических заданий на проектирование. Типовые проектные процедуры. Системы автоматизированного проектирования (САПР) и их место среди других автоматизированных систем. Структура САПР. Разновидности САПР.		2	22	30
2	лингвистиче-	Структура технического обеспечения САПР. Требования, предъявляемые к техническому обеспечению. Лингвистическое обеспечение САПР. Классификация языков САПР.	4	2	30	36
3		Компоненты математического обеспечения. Математический аппарат в моделях разных иерархических уровней. Место процедур формирования моделей в маршрутах проектирования. Математические модели в процедурах анализа на макроуровне. Характеристика методов формирования ММС. Узловой метод. Методы и алгоритмы анализа на макроуровне. Выбор методов анализа во временной области. Методы решения систем нелинейных и линейных алгебраических уравнений. Математическое обеспечение анализа на микроуровне уровне. Математические модели на микроуровне. Методы анализа на микроуровне. Математическое обеспечение анализа на функционально-логическом уровне. Моделирование и анализ аналоговых устройств. Математические модели дискретных устройств. Методы логического моделирования.	10	16	20	46

$N_{\underline{0}}$	Наименование	Содержание раздела	Лекц	Лаб.	CPC	Всего,
Π/Π	темы	содержание раздела	держание раздела лекц		CIC	час
4	Математиче-	Постановка задач параметрического синтеза.				
	ское обеспе-	Место процедур синтеза в проектировании.				
	чение синтеза	Критерии оптимальности.	4	4	24	32
	проектных	Постановка задач структурного синтеза. Про-	+	4	∠ 4	32
	решений	цедуры синтеза проектных решений. Методы				
		структурного синтеза в САПР.				
		Итого	24	24	96	144

заочная форма обучения

$N_{\underline{0}}$	Наименование	Concerns months	Похих	Лаб.	СРС	Всего,
Π/Π	темы	Содержание раздела	Лекц	зан.	CPC	час
1	автоматизи-	Предмет и задачи курса. Виды проектирования. Подходы к проектированию систем. Понятие инженерного проектирования. Принципы системного подхода. Иерархическая структура проектных спецификаций и иерархические уровни проектирования. Классификация моделей и параметров, используемых при АП. Структура процесса проектирования. Стадии проектирования. Содержание технических заданий на проектирование. Типовые проектные процедуры. Системы автоматизированного проектирования и их место среди других автоматизированных систем. Структура САПР. Разновидности САПР.	1	1	37	39
2	Техническое и лингвистиче- ское обеспе- чение САПР	Структура технического обеспечения САПР. Требования, предъявляемые к техническому	1	1	43	45
3		Компоненты математического обеспечения. Математический аппарат в моделях разных иерархических уровней. Место процедур формирования моделей в маршрутах проектирования. Математические модели в процедурах анализа на макроуровне. Характеристика методов формирования ММС. Узловой метод. Методы и алгоритмы анализа на макроуровне. Выбор методов анализа во временной области. Методы решения систем нелинейных и линейных алгебраических уравнений. Математическое обеспечение анализа на	1	5	38	44

№	Наименование	Содержание раздела	Лекц	Лаб.	CPC	Всего,
п/п	темы	оодоржание раздела	010111	зан.	01 0	час
		микроуровне уровне. Математические модели				
		на микроуровне. Методы анализа на микро-				
		уровне.				
		Математическое обеспечение анализа на				
		функционально-логическом уровне. Модели-				
		рование и анализ аналоговых устройств. Ма-				
		тематические модели дискретных устройств.				
		Методы логического моделирования.				
4	Математиче-	Постановка задач параметрического синтеза.				
	ское обеспе-	Место процедур синтеза в проектировании.				
	чение синтеза	Критерии оптимальности.				
	проектных	Постановка задач структурного синтеза.	1	1	41	43
	решений	Процедуры синтеза проектных решений. Ме-				
		тоды структурного синтеза в системах авто-				
		матизированного проектирования.				
		Итого	4	8	159	171

5.2 Перечень лабораторных работ

Очная форма обучения:

Лабораторная работа № 1. «Моделирование схем фильтров с использованием пакета автоматизированного проектирования».

Лабораторные работы № 2. «Измерение статистических характеристик транзистора в пакете автоматизированного проектирования».

Лабораторные работы № 3. «Моделирование избирательного усилителя и амплитудного детектора с использованием пакета автоматизированного проектирования».

Лабораторные работы № 4. «Расчет параметров математической модели аналоговых компонентов с помощью программы MODEL».

Лабораторная работа № 5. Оформление чертежа (2D) в пакете AutoCAD. Лабораторная работа № 6. Создание трехмерных моделей (3D) в пакете AutoCAD.

Заочная форма обучения:

Лабораторная работа № 1. Лабораторная работа № 1. «Моделирование схем фильтров с использованием пакета автоматизированного проектирования».

Лабораторная работа № 2. Создание трехмерных моделей (3D) в пакете AutoCAD.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта в 8 семестре для очной формы обучения, в 10 семестре для заочной формы обучения.

Тематика курсового проекта: «Автоматизированное проектирование электрической схемы медицинской техники».

Задачи, решаемые при выполнении курсового проекта:

- -закрепления, расширения и углубления теоретических знаний;
- приобретение практических навыков использования системных методов при решении практических задач, связанных с проектированием систем;
- получение навыков решения практических задач на различных стадиях проектирования;
- изучение и овладение навыками использования современных автоматизированных систем;
- получение самостоятельных навыков использования различных информационных источников: специальной литературой, стандартами, справочниками.

Курсовой проект включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕ-ЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, ха- рактеризующие сформиро- ванность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-2	знать модели и параметры,	Контрольная работа, напи-	Выполнение работ	Невыполнение
	используемые при автомати-	сание курсового проекта	в срок, преду-	работ в срок,
	зированном проектировании;		смотренный в ра-	предусмотренный
	виды обеспечения систем ав-		бочих программах	в рабочих про-
	томатизированного проекти-			граммах
	рования;			
	уметь проводить моделирова-	Контрольная работа. Ре-	Выполнение работ	Невыполнение
	ние и анализ устройств; про-	шение стандартных прак-	в срок, преду-	работ в срок,
	водить моделирование с по-	тических задач на лабора-	смотренный в ра-	предусмотренный
	мощью тел и с помощью по-	торных занятиях, написа-	бочих программах	в рабочих про-
	верхностей;	ние курсового проекта		граммах

лнение
ODOTA
срок,
тренный
их про-
мах
лнение
срок,
тренный
их про-
мах
лнение
срок,
тренный
их про-
мах
лнение
срок,
тренный
тренныи их про-
их ма лн

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 8 семестре для очной формы обучения и в 10 для заочной формы обучения по четырех-балльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-2	знать модели и пара- метры, используемые при автоматизирован- ном проектировании; виды обеспечения си- стем автоматизирован- ного проектирования;	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% пра- вильных ответов
	уметь проводить мо- делирование и анализ устройств; проводить моделирование с по- мощью тел и с помо- щью поверхностей;	-	Задачи ре- шены в пол- ном объеме и получены верные отве- ты	Продемонстрирован верный ход решения всех, но не получен верный ответ во всех задачах	верный ход решения в	Задачи не решены
	•	Решение при- кладных задач в конкретной предметной области	Задачи ре- шены в пол- ном объеме и получены верные отве- ты	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован вер- ный ход ре- шения в большинстве задач	Задачи не решены

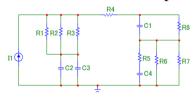
ПК-3	знать процедуры син-	Тест	Выполнение	Выполнение	Выполнение	В тесте
	теза проектных реше-		теста на 90-	теста на 80- 90%	теста на 70-	менее
	ний; методики концеп-		100%		80%	70%
	туального проектиро-					пра-
	вания медицинской					вильных
	техники;					ответов
	уметь проводить	Решение	Задачи ре-	Продемонстри-	Продемон-	Задачине
	схемотехническое	стандартных	шены в пол-	рован верный ход		решены
	проектирование;	практических	ном объеме и	решения всех, но	верный ход	
		задач	получены	не получен вер-	решения в	
			верные отве-	ный ответ во всех	большинстве	
			ТЫ	задачах	задач	
	владеть навыками под-	Решение при-	Задачи ре-	Продемонстр	Продемонстр	Задачи не
	готовки чертежной до-	кладных задач	шены в пол-	ирован верный	ирован вер-	решены
	кументации в системах	в конкретной	ном объеме и	ход решения	ный ход ре-	
	автоматизированного	предметной	получены	всех, но не по-	шения в	
	проектирования и со-	области	верные отве-	лучен верный	большинстве	
	здании трехмерных		ТЫ	ответ во всех	задач	
	моделей.			задачах		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

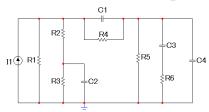
7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1) Какое определение понятия "проектирование" Вы считаете правильным?
 - 1. совокупность работ, включающих расчеты и моделирование;
- 2. совокупность работ, направленных на получение принципиального решения или облика будущего изделия;
- 3. совокупность работ, имеющих целью создание, преобразование и представление в принятой форме образа некоторого еще не существующего объекта;
- 4. совокупность работ, имеющих целью обосновать принятые конструктивные решения.
 - 2) Чем обусловлен итерационный характер проектирования?
 - 1. разделением проектных работ между группами проектировщиков;
 - 2. недостаточной определенностью исходных данных;
- 3. недостаточной производительностью вычислительных средств в используемых САПР;
 - 4. применением нисходящего стиля проектирования.
- 3) Укажите размер матрицы контуров и сечений в математических моделях на макроуровне:
 - 1. число хорд \times число хорд;
 - 2. число ветвей дерева × число дуг графа схемы;
 - 3. число хорд × число ветвей дерева;

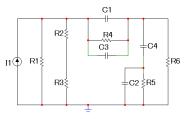
- 4. число вершин графа схемы × число дуг графа схемы.
- **4**) Почему в программах анализа на макроуровне для моделирования процессов во временной области преимущественно используют неявные методы интегрирования систем дифференциальных уравнений?
- 1. потому что в большинстве случаев система дифференциальных уравнений представлена в неявной форме (т.е. не может быть получена в форме Коши);
 - 2. потому что неявные методы более точные;
- 3. потому что неявные методы более экономичные (время решения меньше);
 - 4. потому что неявные методы более устойчивые.
- 5) Почему в программах анализа на макроуровне при моделировании во временной области решение систем дифференциальных уравнений, как правило, выполняют с переменным шагом?
- 1. потому что оптимальная величина шага зависит от характера изменения фазовых переменных, а этот характер существенно непостоянный;
 - 2. чтобы избежать накопления погрешностей интегрирования;
 - 3. для ограничения локальной погрешности интегрирования;
- 4. для адаптации к особенностям конкретной системы дифференциальных уравнений;
 - 5. чтобы обеспечить устойчивость вычислительного процесса.
- **6**) Каким образом в программах анализа на макроуровне обеспечивают сходимость решения систем алгебраических уравнений?
 - 1. применением метода Ньютона;
- 2. с помощью расчета собственных значений матрицы коэффициентов и пренебрежения элементами, приводящими к плохой обусловленности;
 - 3. применением метода продолжения решения по параметру;
 - 4. выбором начального приближения, близкого к корню системы;
 - 5. применением метода разреженных матриц.
- 7) Какие методы решения систем линейных алгебраических уравнений преимущественно используют в программах анализа на макроуровне?
 - 1. метод Гаусса;
 - 2. метод простой итерации;
 - 3. метод Зейделя;
 - 4. метод прогонки;
 - 5. метод разреженных матриц;
 - 6. градиентные методы.
 - 8) С какой целью выполняют анализ чувствительности?
 - 1. с целью выбрать лучший вариант структуры (схемы, формы и т.п.)


из имеющихся альтернатив;

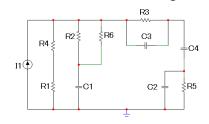
- 2. с целью определить аргументы, наиболее сильно влияющие на выходные параметры, и направления их изменения при доработке проекта;
- 3. с целью определения области работоспособности проектируемого объекта;
- 4. с целью декомпозиции модели системы на автономно проектируемые подсистемы.
- **9)** Что является главной отличительной особенностью событийного метода моделирования?
- 1. выполнение вычислений в модели некоторого компонента, только в том случае, если произошли изменения фазовых переменных на входах этого компонента;
 - 2. имитация событий, происходящих в моделируемом объекте;
- 3. переход на упрощенную модель при выполнении некоторых заранее заданных условий моделирования;
- 4. использование в качестве математической модели системы логических уравнений.
- **10**) Что называют базовыми элементами формы в методах конструктивной геометрии?
 - 1. модели параллелепипеда, сферы, цилиндра, призмы;
 - 2. точки, линии, поверхности;
 - 3. сплайны, кривые и поверхности Безье.


7.2.2 Примерный перечень заданий для решения стандартных задач

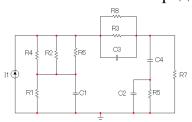
- **1)** Отметьте параметры из нижеследующего списка, которые Вы считаете выходными в модели электронного усилителя:
 - 1. коэффициент полезного действия;
 - 2. разделительная емкость между первыми двумя каскадами;
 - 3. коэффициент усиления на средних частотах;
 - 4. напряжение источника питания;
 - 5. входное сопротивление;
 - 6. сопротивление резистора в корректирующей RC-цепочке.
- 2) Отметьте параметры из нижеследующего списка, которые Вы считаете внутренними в модели электронного усилителя:
 - 1. коэффициент полезного действия;
 - 2. разделительная емкость между первыми двумя каскадами;
 - 3. коэффициент усиления на средних частотах;
 - 4. напряжение источника питания;
 - 5. входное сопротивление;


- 6. сопротивление резистора в корректирующей RC-цепочке.
- 3) Какие физические величины могут быть базисными переменными в моделях, полученных обычным (немодифицированным) узловым методом?
 - 1. электрические напряжения;
 - 2. температуры;
 - 3. силы;
 - 4. расходы;
 - 5. электрические токи.
 - 4) Сколько узлов эквивалентной схемы на представленном рисунке?

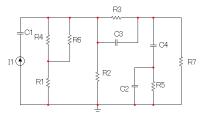
- 1. 4 узла,
- 2. 5 узлов,
- 3. 6 узлов,
- 4. 7 узлов,
- 5. 8 узлов.
- 5) Сколько узлов эквивалентной схемы на представленном рисунке?



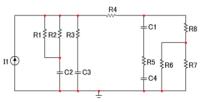
- 1. 4 узла,
- 2. 5 узлов,
- 3. 6 узлов,
- 4. 7 узлов,
- 5. 8 узлов.
- 6) Сколько узлов эквивалентной схемы на представленном рисунке?


- 1. 4 узла,
- 2. 5 узлов,
- 3. 6 узлов,
- 4. 7 узлов,
- 5. 8 узлов.

7) Сколько узлов эквивалентной схемы на представленном рисунке?


- 1. 4 узла,
- 2. 5 узлов,
- 3. 6 узлов,
- 4. 7 узлов,
- 5. 8 узлов.

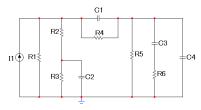
8) Сколько узлов эквивалентной схемы на представленном рисунке?


- 1. 4 узла,
- 2. 5 узлов,
- 3. 6 узлов,
- 4. 7 узлов,
- 5. 8 узлов.

9) Сколько узлов эквивалентной схемы на представленном рисунке?

- 1. 4 узла,
- 2. 5 узлов,
- 3. 6 узлов,
- 4. 7 узлов,
- 5. 8 узлов.

10) Сколько узлов эквивалентной схемы на представленном рисунке?



- 1. 4 узла,
- 2. 5 узлов,

- 3. 6 узлов,
- 4. 7 узлов,
- 5. 8 узлов.

7.2.3 Примерный перечень заданий для решения прикладных задач

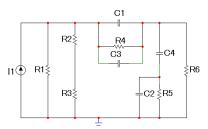
1) Матрица контуров и сечений для эквивалентной представленной на рисунке.

1.

Vonati	ветви дерева			
Хорды	C1	C3	R6	C2
R1	-1	-1	-1	0
R2	-1	-1	-1	+1
R3	0	0	0	-1
R4	-1	0	0	0
R5	0	-1	-1	0
C4	0	-1	-1	0
I	+1	+1	+1	0

2.

Vonari	ветви дерева			
Хорды	C1	C3	R6	C2
R1	0	0	0	0
R2	0	0	0	0
R3	0	0	0	-1
R4	0	0	0	0
R5	0	0	0	0
C4	0	0	0	0
I	0	0	0	0


3.

Vonati	ветви дерева			
Хорды	C1	C3	R6	C2
R1	+1	+1	+1	0
R2	+1	+1	+1	-1
R3	0	0	0	+1
R4	+1	0	0	0
R5	0	+1	+1	0
C4	0	+1	+1	0
I	+1	+1	+1	0

4.

Vonati	ветви дерева			
Хорды	C1	C3	R6	C2
R1	+1	+1	+1	0
R2	+1	+1	+1	-1
R3	0	0	0	+1
R4	+1	0	0	0
R5	0	+1	+1	0
C4	0	+1	+1	0
I	-1	-1	-1	0

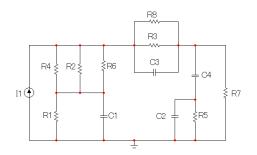
2) Матрица контуров и сечений эквивалентной схемы представленной на рисунке.

1.

Хорды	ветви дерева			
Морды	R2	R3	R4	R5
C1	0	0	-1	0
C2	0	0	0	-1
C3	0	0	-1	0
C4	-1	-1	+1	+1
R1	-1	-1	0	0
R6	-1	-1	+1	0
I	+1	+1	0	0

2.

Vonati	ветви дерева			
Хорды	R2	R3	R4	R5
C1	0	0	+1	0
C2	0	0	0	+1
C3	0	0	+1	0
C4	+1	+1	-1	-1
R1	+1	+1	0	0
R6	+1	+1	-1	0
I	-1	-1	0	0


3.

Vonaria	ветви дерева			
Хорды	R2	R3	R4	R5
C1	0	0	-1	0
C2	0	0	0	-1
C3	0	0	-1	0
C4	0	0	0	0
R1	0	0	0	0
R6	0	0	0	0
I	0	0	0	0

4.

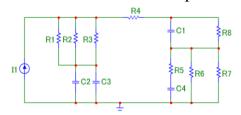
Vonuu	ветви дерева			
Хорды	R2	R3	R4	R5
C1	0	0	+1	0
C2	0	0	0	+1
C3	0	0	+1	0
C4	0	0	0	0
R1	0	0	0	0
R6	0	0	0	0
I	0	0	0	0

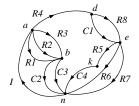
3) Матрица контуров и сечений эквивалентной схемы представленной на рисунке.

Vonu	ветви дерева			
Хорды	C1	C2	C3	C4
R1	-1	0	0	0
R2	+1	-1	-1	-1
R3	0	0	-1	0
R4	+1	-1	-1	-1
R5	0	-1	0	0
R6	+1	-1	-1	-1
R7	0	-1	0	-1
R8	0	0	-1	0
I	0	+1	+1	+1

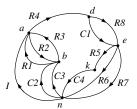
2.

Vonaria	ветви дерева			
Хорды	C1	C2	C3	C4
R1	+1	0	0	0
R2	-1	+1	+1	+1
R3	0	0	+1	0
R4	-1	+1	+1	+1
R5	0	+1	0	0
R6	-1	+1	+1	+1
R7	0	+1	0	+1
R8	0	0	+1	0
I	0	-1	-1	-1

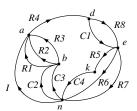

3.

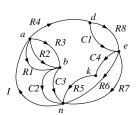

J.				
Vonstr	уории ветви дерева			
Хорды	C1	C2	C3	C4
R1	-1	0	0	0
R2	0	0	0	0
R3	0	0	-1	0
R4	0	0	0	0
R5	0	-1	0	0
R6	0	0	0	0
R7	0	0	0	0
R8	0	0	-1	0
I	0	0	0	0

4.

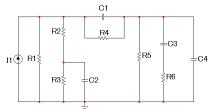

Vonuu	ветви дерева			
Хорды	C1	C2	C3	C4
R1	+1	0	0	0
R2	0	0	0	0
R3	0	0	+1	0
R4	0	0	0	0
R5	0	+1	0	0
R6	0	0	0	0
R7	0	0	0	0
R8	0	0	+1	0
I	0	0	0	0

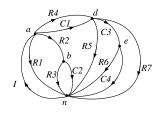
4) Определить граф эквивалентной схемы представленной на рисунке?

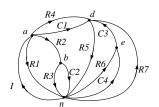


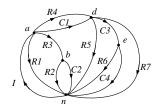

1.

2.

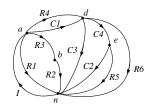

3.

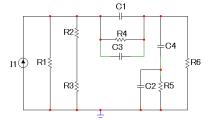


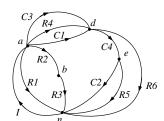

4.

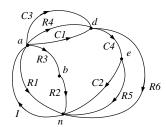

1.

5) Определить граф эквивалентной схемы представленной на рисунке?

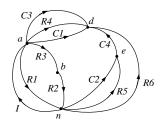


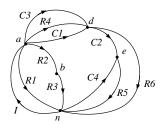


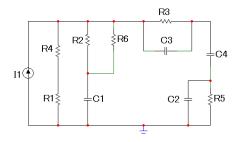

3.

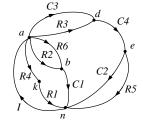

4.

6) Определить граф эквивалентной схемы представленной на рисунке?

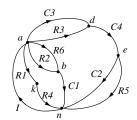



1.

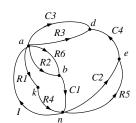

2.

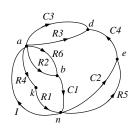


3.

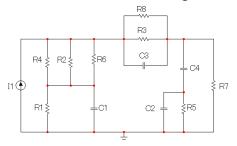


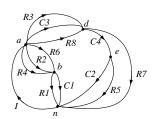
7) Определить граф эквивалентной схемы представленной на рисунке?

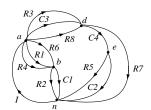



1.

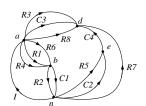
2.

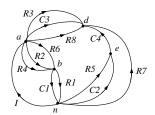



3.

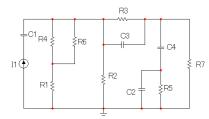


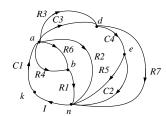
4.

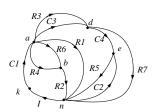

8) Определить граф эквивалентной схемы представленной на рисунке?



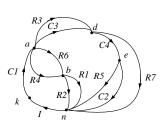
2.

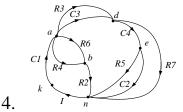


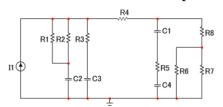

3.

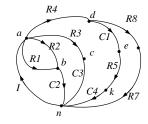

4

9) Определить граф эквивалентной схемы представленной на рисунке?

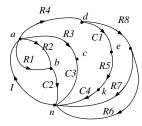



1.

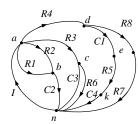

2.

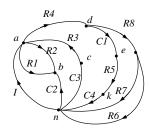


3.



10) Определить граф эквивалентной схемы представленной на рисунке?




1.

2.

3.

4

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом.

7.2.5 Примерный перечень заданий для решения прикладных задач

- 1. Автоматизированное проектирование.
- 2. Системный подход к проектированию. Понятие инженерного проектирования.
 - 3. Принципы системного подхода. Интерпретация и конкретизация си-

стемного подхода.

- 4. Основные понятия системотехники.
- 5. Блочно-иерархический подход к проектированию.
- 6. Стили проектирования.
- 7. Аспекты описания проектируемых объектов.
- 8. Стадии проектирования. Содержание технических заданий на проектирование.
 - 9. Классификация моделей и параметров, используемых при АП.
 - 10. Проектные процедуры. Классификация ЗПР.
 - 11. Структура систем автоматизированного проектирования (САПР).
 - 12. Разновидности САПР.
 - 13. Техническое обеспечение САПР.
 - 14. Лингвистическое обеспечение САПР.
 - 15. Структура ПО САПР.
- 16. Математический аппарат в моделях разных иерархических уровней. Требования, предъявляемые к математическим моделям и методам в САПР.
- 17. Исходные уравнения моделей в процедурах анализа на макроуровне. Компонентные и топологические уравнения
 - 18. Представление топологических уравнений.
- 19. Численное решение компонентных и топологических уравнений. Методы формирования ММС.
 - 20. Узловой и модифицированный метод формирования ММС.
- 21. Методы анализа на макроуровне. Выбор методов анализа во временной области.
- 22. Методы решения систем нелинейных и линейных алгебраических уравнений на макроуровне.
- 23. Многовариантный анализ и анализ в частотной области на макроуровне.
- 24. Математические модели на микроуроне. Методы анализа на микроуровне.
- 25. Моделирование и анализ аналоговых устройств на функционально-логическом уровне.
 - 26. Математические модели дискретных устройств.
 - 27. Статический и динамический риск сбоя.
- 28. Методы логического моделирования на функционально-логическом уровне.
 - 29. Математическое обеспечение анализа на системном уровне.
- 30. Математическое обеспечение подсистем машинной графики и геометрического моделирования. Компоненты математического обеспечения.

Геометрические модели.

- 31. Место процедур синтеза в проектировании. Критерии оптимальности.
- 32. Процедуры синтеза проектных решений. Методы структурного синтеза в САПР.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов, 5 стандартных задач и 5 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 3 баллов (3 баллов верное решение и 3 баллов за верный ответ). Максимальное количество набранных баллов – 40.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 28 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 28 до 31 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 32 до 35 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 36 до 40 баллов.

7.2.7	Паспорт	оценочных	материалов
-------	---------	-----------	------------

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Введение в автоматизированное про- ектирование	ПК-2, ПК-3	Тест, защита лабораторных работ, КП, экзамен
2	Техническое и лингвистическое обес- печение САПР		Тест, защита лаборатор- ных работ, КП, экзамен
3	Математическое обеспечение анализа проектных решений	ПК-2, ПК-3	Тест, защита лаборатор- ных работ, КП, экзамен
4	Математическое обеспечение синтеза проектных решений	ПК-2, ПК-3	Тест, защита лабораторных работ, КП, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на

бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕС-ПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1 Норенков И.П. Основы автоматизированного проектирования: учебник / И. П. Норенков. 3-е изд., перераб. и доп. М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. 448 с.
- 2 Коровин Е.Н. Лабораторный практикум по курсу "Основы САПР": учеб. пособие / Е. Н. Коровин, Е. И. Новикова, О. В. Родионов. Воронеж: ВГТУ, 2005. 176 с. 56-00.
- 3 Львович, И.Я. Применение САПР в медицине [Электронный ресурс]: учеб. пособие / И. Я. Львович, Т. А. Некравцева, Т. В. Корелина. Воронеж: Изд-во ВГТУ, 2001. 69 с.
- 4 Методическое руководство 242-2011 по выполнению курсового проекта «Разработка и анализ принципиальной электрической схемы с использованием пакета автоматизированного проектирования» / ФГБОУ ВПО «Воронежский государственный технический университет»; сост. О.В. Родионов, Е.И. Новикова. Воронеж, 2011.
- 5 Кореневский Н. А. Проектирование биотехнических систем медицинского назначения. Средства воздействия на биообъект [Текст]: учебник: рекомендовано Учебно-методическим объединением / Кореневский Н. А., Юлдашев З. М. Старый Оскол: ТНТ, 2018. 319 с.
- 6 Кореневский Н. А. Проектирование биотехнических систем медицинского назначения. Общие вопросы проектирования [Текст]: учебник: рекомендовано Учебно-методическим объединением / Кореневский Н. А., Юлдашев З. М. Старый Оскол: ТНТ, 2018. 309 с.
- 7 Кореневский Н. А. Проектирование биотехнических систем медицинского назначения. Средства обработки и отображения [Текст]: учебник:

рекомендовано Учебно-методическим объединением / Кореневский Н. А., Юлдашев З. М. - Старый Оскол: ТНТ, 2018. - 331 с.

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Microsoft Word, Microsoft Excel, Internet Explorer, программы автоматизированного проектирования и моделирования радиоэлектронных устройств из набора пакетов прикладных программ свободного доступа (например, Multisim Live).

Электронная информационная образовательная среда ВГТУ, код доступа: https://old.education.cchgeu.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лабораторных занятий необходим компьютерный класс, оснащенный персональными компьютерами с установленными на них программным обеспечением Microsoft Word, Microsoft Excel, AutoCAD а также с выходом в Интернет

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Системы автоматизированного проектирования медицинской техники» читаются лекции, проводятся лабораторные работы, выполняется курсовой проект.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсового проекта изложена в учебно-методическом пособии. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой работы, защитой курсового проекта. Освоение дисциплины оценивается на экзамене.

Вид учебных занятий	Деятельность студента	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.	
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и	
работа	источники, решить задачи и выполнить другие письменные задания. Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.	
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.	