Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Кафедра конструирования и производства радиоаппаратуры

ИССЛЕДОВАНИЕ РАБОТЫ ПОНИЖАЮЩЕГО ПРЕОБРАЗОВАТЕЛЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине «Проектирование вторичных источников питания РЭС» для студентов направления 11.03.03 «Конструирования и технология электронных средств» (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения

УДК 621.3.049.7.002 (075) ББК 38.54

Составители:

канд. техн. наук И.С. Бобылкин, канд. техн. наук А. В. Турецкий.

Исследование работы понижающего преобразователя: методические указания к выполнению лабораторных работ по дисциплине «Проектирование вторичных источников питания РЭС» для студентов направления 11.03.03 «Конструирования и технология электронных средств» (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения/ ФГБОУ ВО «Воронежский государственный технический университет»; сост.: И.С. Бобылкин, А.В. Турецкий. Воронеж: Изд-во ВГТУ, 2021. 34 с.

Основной целью указаний является выработка навыков работы с преобразователями напряжения, уяснение их принципа действия, характеристик и параметров.

Предназначены для проведения лабораторных работ по дисциплине «Проектирование вторичных источников питания РЭС» для студентов 4 курса.

Методические указания подготовлены в электронном виде в текстовом редакторе MS Word 2003 и содержатся в LR1-2 P2IP.doc

Ил. 16 Библиогр.: 2 назв.

УДК 621.3.049.7.002 (075) ББК 38.54

Рецензент - О. Ю. Макаров, д-р техн. наук, проф. кафедры конструирования и производства радиоаппаратуры ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

Лабораторная работа №1

ИССЛЕДОВАНИЕ РАБОТЫ ПОНИЖАЮЩЕГО ПРЕОБРАЗОВАТЕЛЯ

1.ОБЩЕЕ ОПИСАНИЕ РАБОТЫ

1.1. Цель работы — изучение назначения, организации, функционирования и возможностей пакета LTspice. Исследование основных процессов при работе понижающего преобразователя.

1.2. Содержание работы

Лабораторная работа состоит из домашнего и лабораторного заданий. Домашнее задание заключается в изучении назначения и возможностей пакета LTspice, изучение принципа работы понижающих преобразователей. Лабораторное задание включает создание схемы электрической принципиальной и изучение процессов при работе понижающего преобразователя.

1.3. Используемое оборудование

Для выполнения лабораторной работы используется ПЭВМ.

2. ДОМАШНЕЕ ЗАДАНИЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЕГО ВЫПОЛНЕНИЮ

По методическому руководству ознакомится с назначением, организацией и возможностями пакета LTspice, принципом работы понижающего преобразователя.

2.1. Назначение и возможности пакета LTspice

Фирма Linear Technology выпустила программный продукт, предназначенный для моделирования различных схем РЭС. Основное окно программы LTspice представлено на рис. 1.

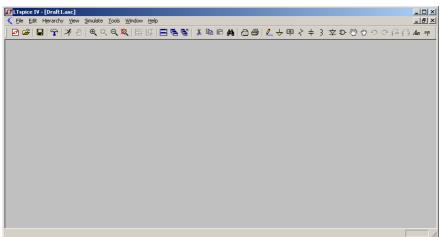


Рис.1. Основное окно программы LTspice

Основные пиктограммы меню представлены на рис. 2 и 3.

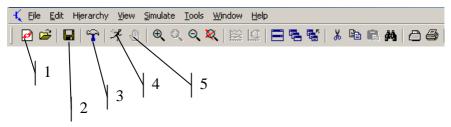


Рис. 2. Основные пиктограммы меню 1- создать новую схему; 2- сохранить схему; 3- контрольная панель установок моделирования; 4- запуск моделирования; 5- остановка моделирования.

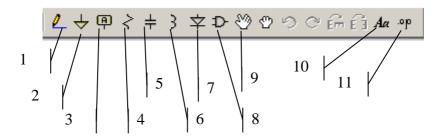


Рис. 3. Пиктограммы редактирования схемы: 1 - рисование проводника; 2 — "земля"; 3 — наименование проводника; 4 — установка резистора; 5 — установка конденсатора; 6 — установка индуктивности; 7 — установка диода; 8 — установка различных компонентов; 9 — перемещение компонентов; 10 - нанесение текста; 11 — задание Spice директив.

После прорисовки всей схемы и первоначального запуска на моделирование с помощью кнопки 4 (рис. 2), будет предложено ввести данные, изображенные на рис. 4.

После проведения моделирования окно программы будет выглядеть следующим образом (рис. 5). На рис. 5 видно кроме самой схемы появляется окно результатов моделирования. В этом окне можно вывести все сигналы, полученные в результате моделирования.

Edit Simulation Command	×			
Transient AC Analysis DC sweep Noise DC Transfer DC op pnt				
Perform a non-linear, time-domain simulation.				
Stop Time:	ı			
Time to Start Saving Data:	ı			
Maximum Timestep:	ı			
Start external DC supply voltages at 0V:	ı			
Stop simulating if steady state is detected:	ı			
Don't reset T=0 when steady state is detected: ☐	ı			
Step the load current source:	П			
Skip Initial operating point solution:	ı			
Syntax: .tran <tstop> [<option> [<option>]]</option></option></tstop>				
Cancel				

Рис. 4. Меню задания параметров моделирования

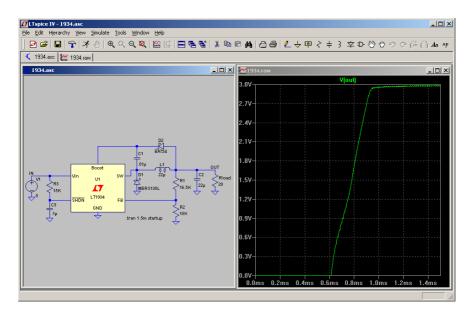


Рис. 5. Результаты моделирования

2.2. Понижающий прямоходовой преобразователь

Познакомимся с понижающим преобразователем, или конвертором buck-типа. Эта схема DC/DC-конвертора (постоянный ток/постоянный ток) обычно применяется для замены обычных аналоговых стабилизаторов, когда последние не могут обеспечить передачу больших значений токов, сохраняя при этом малые габариты. Например, преобразователь целесообразно использовать для стабилизации токов величиной 2...3 ампера и более.

Основные элементы силовой части преобразователя напряжения показаны на рис. б.

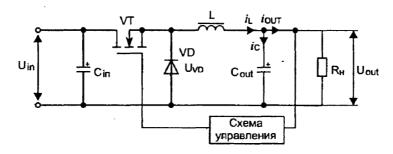


Рис. 6. Структурная схема понижающего преобразователя

Входное напряжения U_{in} подается на входной фильтрующий конденсатор C_{in} . Ключевой элемент VT, в качестве которого может быть использован транзистор любого типа (биполярный, MOSFET, IGBT), осуществляет высокочастотную коммутацию тока. Кроме этого, в составе преобразователя должны быть разрядный диод VD, дроссель L, конденсатор C_{out} , образующие выходной LC-фильтр, а также схема управления, осуществляющая стабилизацию напряжения или тока нагрузки с сопротивлением $R_{\rm H}$. Как видно из рисунка, ключе-

вой элемент VT, дроссель и нагрузка включены последовательно, поэтому этот стабилизатор относят к классу последовательных схем.

Как известно, ключевой элемент может стабильно находиться только в двух состояниях — полной проводимости и отсечки. Если указанные состояния сменяют друг друга с постоянной периодичностью, равной T, то, обозначив время нахождения ключа в проводящем состоянии — как время проводимости (t_u) , а время нахождения ключа в состоянии отсечки — как время паузы (t_n) , можно ввести понятие коэффициента заполнения (duty cycle), равного:

$$D = \frac{t_{_{\rm II}}}{t_{_{\rm II}} + t_{_{\rm II}}} = \frac{t_{_{\rm II}}}{T} = t_{_{\rm II}}f, \qquad (1)$$

где f – частота коммутации.

На рис. 7 показана графическая интерпретация коэффициента заполнения. Нулевое значение D характеризует постоянное нахождение ключевого элемента в состоянии отсечки, в то время как равенство его единице показывает режим постоянной проводимости. В состоянии отсечки напряжение на нагрузке равно нулю, в состоянии полной проводимости наблюдается равенство входного и выходного напряжений. В промежутке между «нулем» и «единицей» работа преобразователя складывается из двух фаз: накачки энергии и разряда. Рассмотрим эти фазы подробнее. Итак, фаза накачки энергии протекает на протяжении времени t_u, когда ключевой элемент VT открыт, то есть проводит ток (рис. 8, а). Этот ток далее проходит через дроссель L к нагрузке, шунтированной конденсатором С_{оит}. Накопление энергии происходит как в дросселе, так и в конденсаторе. Ток i_L увеличивается.

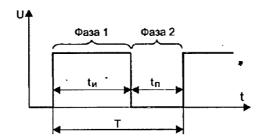
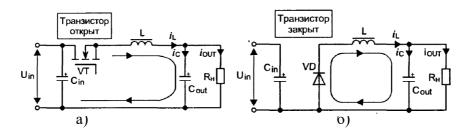
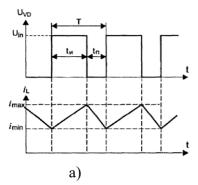


Рис. 7. Определение коэффициента заполнения




Рис. 8. Фазы работы понижающего преобразователя: а) фаза накачки энергии; б) фаза разряда

После того, как ключевой элемент VT переходит в состояние отсечки, наступает фаза разряда (рис. 8, 6), продолжающаяся время t_n . Поскольку любой индуктивный элемент стремится воспрепятствовать изменению направления и величины тока, протекающего через его обмотку, в данном случае ток дросселя i_L мгновенно уменьшиться до нуля не может, и он замыкается через разрядный диод VD. Источник питания в фазе разряда отключен, и дросселю неоткуда пополнять убыль энергии, поэтому разряд происходит по цепи «диод-нагрузка». Отсюда родилось название, диода — «разрядный».

По истечении времени Т процесс повторяется — вновь наступает фаза накачки энергии.

Поведение этой схемы в значительной степени зависит от качества элементов, в нее входящих. Считаем, что все элементы идеальны: они мгновенно включаются и выключаются, имеют нулевое активное сопротивление и т. д.

Прежде чем разобраться, каким образом осуществляется регулировка выходного напряжения при постоянстве входного (или изменении его в некоторых пределах), разберем вот какой вопрос: как будет меняться характер процессов в понижающем стабилизаторе при изменении величины индуктивности L. Мы можем сделать эту индуктивность достаточно большой, тогда ток, протекающий через нее, может не закончиться к моменту начала следующей фазы накачки энергии. Либо выбрать индуктивность маленькой — в этом случае ток каждый раз будет «набираться» от нулевого значения. Первый режим работы называется режимом неразрывных токов, а второй — режимом разрывных токов. В нагрузке ток не прерывается никогда в силу того, что конденсатор, выделяя постоянную составляющую, выполняет роль источника ЭДС. На рис. 9 показаны диаграммы напряжения на разрядном диоде U_{VD} и токи в индуктивном элементе i_L для обоих режимов. Отметим сразу, что режим разрывных токов практически используется редко, в специфических случаях, поэтому его не следует применять в практических конструкциях. Все внимание обратим на режим неразрывных токов.

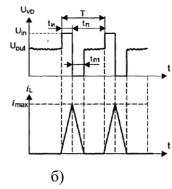


Рис. 9. Характеристики понижающего преобразователя: а) в режиме неразрывных токов дросселя; б) в режиме разрывных токов дросселя

Поясним необходимость наличия в схеме сглаживающего LC-фильтра. Представим, что мы на время исключили фильтр из схемы и, подключив нагрузку к точке соединения ключевого элемента и разрядного диода, наблюдаем по осциллографу за формой питающего напряжения. В таком случае напряжение на нагрузке будет иметь характер прямоугольных импульсов с амплитудой $U_{\rm in}$, что повторяет характер импульсов напряжения $U_{\rm VD}$, изображенных на рис. 9, а. Естественно, питать аппаратуру таким напряжением нельзя.

Что же нас выручает? Дело в том, что любой однополярный сигнал, как частный случай несимметричного двуполярного сигнала, имеет замечательное свойство: наличие в спектре постоянной составляющей, которую возможно выделить, пропустив этот сигнал через низкочастотный фильтр. На сегодняшний день известно великое множество фильтров разного качества и сложности. В нашем случае мы используем классическую Г-образную схему LC-фильтра.

Операция выделения постоянной составляющей эквивалентна определению среднего значения сигнала. Как мы уже выяснили, напряжение на входе фильтра имеет импульсный характер. Выделяя постоянную составляющую, мы как бы ус-

редняем сигнал, «размазываем» его по всему периоду Т. Если говорить еще проще, то необходимо представить, что импульсы — это горки песка, насыпанные на дорожке через равные промежутки. Мы берем в руки каток и разравниваем песок равномерно по всей поверхности. Конечно, высота сплошного слоя будет меньше высоты отдельных горок, зато дорожка получится гладкой.

Математически операция сглаживания выглядит следующим образом:

$$U_{\text{out}} = \frac{1}{T} \int_{0}^{T} U_{\text{in}}(t) dt, \qquad (2)$$

где $U_{in}(t)$ — мгновенное (определенное для конкретного момента) значение напряжения, подаваемого на вход фильтра.

Вычислив мгновенные значения входного напряжения для каждого момента времени внутри периода, необходимо затем сложить их и усреднить по времени периода. Не пугайтесь, вам снова не придется вычислять интеграл, поскольку мы воспользуемся допущением, которое упростит дальнейшие рассуждения.

Дело в том, что практически сглаживающие фильтры проектируются так, чтобы на их выходе остаточные пульсации напряжения были как можно меньше. Предполагаем, что наш фильтр полностью подавляет пульсации, вычислим среднее значение напряжения на нагрузке. Поскольку на протяжении фазы накачки энергии к фильтру подводится постоянно входное напряжение величиной $U_{\rm in}$, а в фазе разряда входное напряжение равно нулю, выражение (2) приводится к следующему виду:

$$U_{\text{out}} = \frac{t_{\text{II}}}{T} U_{\text{in}} = D \cdot U_{\text{in}}. \tag{3}$$

Как видно, напряжение на нагрузке прямо пропорционально ширине импульса $t_{\rm u}$, а значит, и величине коэффициента заполнения D.

Таким образом, при наличии хорошего сглаживающего фильтра, управляя только коэффициентом заполнения, то есть увеличивая или уменьшая длительность открытого состояния ключа, мы можем легко регулировать напряжение на нагрузке. Более детально принцип работы понижающего преобразователя изложен в [1].

3. ЛАБОРАТОРНОЕ ЗАДАНИЕ

3.1. Создать принципиальную схему понижающего преобразователя, изображенного на рис. 10 в пакете LTspice.

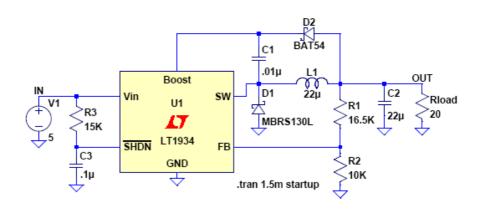


Рис. 10. Принципиальная схема понижающего преобразователя

- 3.2. После проведения моделирования вывести форму сигналов на катоде диода D1 и напряжения на нагрузке (Rload).
- 3.2.1. Изменить напряжение источника V1 10, 15, 20, 30 В и посмотреть как изменяется форма напряжения на катоде

- D1. Объяснить причину изменения.
- 3.2.2. Изменить сопротивление нагрузки на 33 и 330 Ом, посмотреть форму напряжения на катоде D1. Объяснить причину изменения формы напряжения.
- 3.2.3. Изменить номинал резисторов обратной связи R1, R2 на 1 МОм и 332 кОм соответственно и посмотреть величину напряжения на выходе источника.

Изменить номинал резисторов R1, R2 на 147 кОм и 332 кОм и посмотреть величину выходного напряжения.

Объяснить причину изменения.

4. УКАЗАНИЯ ПО ОФОРМЛЕНИЮ ОТЧЕТА И КОНТРОЛЬНЫЕ ВОПРОСЫ

- 4.1. Отчет по лабораторной работе должен содержать:
- наименование и цель работы;
- краткие теоретические сведения;
- результаты создания принципиальной схемы и работы понижающего преобразователя.

Лабораторная работа №2

ИССЛЕДОВАНИЕ РАБОТЫ ПОВЫШАЮЩЕГО ПРЕОБРАЗОВАТЕЛЯ

1.ОБЩЕЕ ОПИСАНИЕ РАБОТЫ

1.1. Цель работы – исследование основных процессов при работе повышающего преобразователя.

1.2. Содержание работы

Лабораторная работа состоит из домашнего и лабораторного заданий. Домашнее задание заключается в изучении принципа работы повышающего преобразователя. Лабораторное задание включает создание схемы электрической принципиальной и изучение процессов при работе повышающего преобразователя.

1.3. Используемое оборудование

Для выполнения лабораторной работы используется ПЭВМ.

2. ДОМАШНЕЕ ЗАДАНИЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЕГО ВЫПОЛНЕНИЮ

По методическому руководству ознакомиться с принципом работы повышающего преобразователя.

2.1. Устройство схемы повышающего преобразователя

Вторая схема DC/DC конвертора, с которой мы будем знакомиться, это повышающий стабилизатор (boost converter, step-up converter). Встречается такой стабилизатор не менее

часто, чем рассмотренный понижающий. Он находит применение в приборах, где имеется только низковольтное питание, например, 1-2 гальванических элемента напряжением 1,5 В, но требуется иметь повышенное стабильное напряжение 5...15 В для питания узлов с малым токовым потреблением. Другая «профессия» повышающего преобразователя — построение активных корректоров коэффициента мощности. Разберем основные принципы работы повышающего преобразователя изображенного на рис. 1.

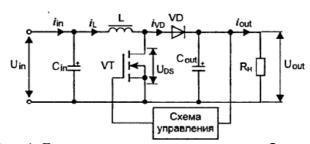


Рис. 1. Базовая схема повышающего стабилизатора

На рис. 1 показана базовая схема повышающего преобразователя. Входное напряжение U_{in} через фильтрующий конденсатор C_{in} прикладывается к последовательно включенному дросселю L и ключевому транзистору VT. К средней точке соединения этих элементов подключен диод VD, к другому выводу которого подключается выходной конденсатор C_{out} и шунтирующая его нагрузка $R_{\rm H}$. Ключевой транзистор VT работает в импульсном режиме с постоянной частотой преобразования. Диод VD блокирует нагрузку и конденсатор фильтра C_{out} от ключевого элемента в нужные моменты времени.

Если ключевой транзистор открыт, схема находится в фазе накопления энергии дросселя, ток от источника питания $U_{\rm in}$ протекает через дроссель L, запасая в нем энергию. Диод VD при этом блокирует нагрузку и не позволяет конденсатору фильтра разряжаться через замкнутый ключевой транзистор.

Ток в нагрузке в этот промежуток времени поддерживается только за счет энергии, запасенной в конденсаторе C_{out} .

Когда ключевой транзистор закрывается, схема переходит в фазу передачи энергии дросселя в нагрузку, ЭДС само-индукции суммируется с выходным напряжением и энергия, запасенная в дросселе, подзаряжает конденсатор C_{out} . При этом выходное напряжение U_{out} может стать больше входного U_{in} .

Следует запомнить, что, в отличие от понижающей схемы, в повышающей схеме дроссель L не является элементом фильтра, а выходное напряжение становится больше входного на величину, определяемую величиной индуктивности L и значением коэффициента заполнения, определяемого как отношение времени открытого состояния ключевого элемента к периоду коммутации (duty cycle).

Разберем чуть более подробно фазы работы повышающего преобразователя и сначала поговорим о фазе накопления энергии дросселя, в которой задействованы элементы согласно рис. 2, а.

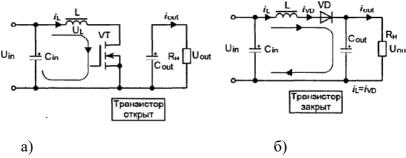


Рис. 2. Фазы работы повышающего стабилизатора: а) фаза накопления энергии дросселя; б) фаза передачи энергии дросселя в нагрузку

В этой фазе транзистор VT открыт и потенциал правого (по схеме) вывода дросселя L близок к потенциалу общего проводника схемы, левый вывод замкнут на «плюс» питающего напряжения. Конденсатор C_{out} считаем имеющим некоторый

заряд, поэтому диод VD «подперт» напряжением U_{out} , ток в нагрузке поддерживается только за счет энергии, накопленной в выходном конденсаторе. Но в данном случае нас больше интересуют процессы, происходящие в дросселе. А происходит в нем линейное нарастание тока i_L от нулевого значения по закону:

$$i_{L} = \frac{U_{in} \cdot t}{L}, \tag{1}$$

где t — продолжительность фазы накопления энергии.

Мы видим, что чем дольше длится фаза накопления, тем большую величину тока можно получить к моменту ее окончания. Если же налагается ограничение на длительность фазы накопления (что в реальных схемах чаще всего и бывает), то получить необходимую величину тока можно за счет выбора соответствующего значения индуктивности L. Чем меньшее значение индуктивности имеет дроссель, тем легче ему «набирать» ток. Этот простой, но очень важный вывод мы сделали исходя из того, что в полученном выражении индуктивность L стоит в знаменателе.

Переход к фазе передачи энергии в нагрузку происходит при размыкании ключевого транзистора VT. В этой фазе левый (по схеме) вывод дросселя L остается подключенным к «плюсу» источника питания, а вот правый — через открывшийся диод VD — приобретает потенциал «плюса» выходного напряжения схемы.

Мы уже хорошо знаем, что основное свойство индуктивного элемента — стремление к поддержанию величины и направления протекающего через него тока. Поэтому при размыкании ключа направление разрядного тока индуктивного элемента совпадет по направлению с зарядным током. Закон изменения тока дросселя в данной фазе записывается так:

$$i_{L} = \frac{U_{\text{out}} - U_{\text{in}}}{L} \cdot (T - t), \tag{2}$$

где Т — период коммутации.

Если переход между фазами происходит в некоторый момент t_u , то, подставляя это значение в формулы (1) и (2), приравнивая их правые части, мы получим регулировочную характеристику повышающего преобразователя:

$$U_{out} = U_{in} \cdot \frac{1}{1 - D}, \qquad (3)$$

где D — коэффициент заполнения (duty cycle).

Анализируя формулу (3), легко заметить, что теоретически можно увеличивать выходное напряжение преобразователя до бесконечности. Казалось бы, с помощью столь простых средств можно создать повышающий стабилизатор, имеющий на входе 1,5 В, то есть величину напряжения одного гальванического элемента, и выдающий на нагрузку 1,5 кВ! К сожалению, максимальный повышающий коэффициент преобразования, даже при наличии очень хороших элементов схемы, существенно ограничен. Его значение не превышает в типовых практических схемах значение 3...6. Почему так происходит, мы объясним далее.

Как и в случае понижающего стабилизатора, индуктивный элемент повышающего преобразователя также может работать в двух режимах — с неразрывным током и с разрывным током i_L . На рис. 3 приведены диаграммы, отражающие работу step-up конвертора. Режим неразрывных токов приведен на рис. 3, а. Поскольку диод VD в фазе разряда дросселя не закрывается вплоть до момента ее окончания, напряжение «стокисток» закрытого транзистора VT в этой фазе равно выходному напряжению U_{out} . Если режим тока дросселя разрывный (рис. 3, 6), ток i_L спадает к нулю до окончания разрядной фазы,

диод VD закрывается и напряжение «сток-исток» транзистора становится равным U_{in} . Если быть более точным, то в момент полного разряда дросселя возникает колебательный процесс (он показан на рис. 3 б), частоту которого можно определить по формуле:

$$f_o = \frac{1}{2 \cdot \pi \sqrt{L \cdot (C_{VT} + C_{VD})}},$$
(4)

где C_{VT} — емкость между стоком и истоком транзистора VT; C_{VD} — барьерная емкость закрытого p-n-перехода диода VD.

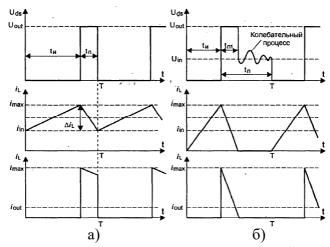


Рис. 3. Характеристики повышающего стабилизатора: а) в режиме неразрывных токов дросселя; б) в режиме разрывных токов дросселя

В режиме непрерывных токов, когда $\Delta i_L < 2i_{in}$, время открытого состояния ключевого транзистора UT определяется по формуле, являющейся следствием (3):

$$t_{_{\mathrm{H}}} = \frac{1}{f} \left(\frac{U_{\mathrm{out}} - U_{\mathrm{in}}}{U_{\mathrm{out}}} \right). \tag{5}$$

Амплитуда тока дросселя Δi_L рассчитывается по формуле:

$$\Delta i_{L} = \frac{1}{L} \cdot U_{in} \cdot t_{H}. \tag{6}$$

При расчете параметров повышающего преобразователя важно знать максимальную величину тока i_{max} дросселя L, и ее можно рассчитать по формуле:

$$i_{\text{max}} = i_{\text{in}} + \frac{1}{2}\Delta i_{\text{L}},\tag{7}$$

где входной ток i_{in} равен:

$$i_{in} = i_{out} \cdot \frac{U_{out}}{U_{in}}.$$
 (8)

Теперь приведем основные расчетные соотношения для режима разрывных токов, определяемого по условию $\Delta i_L > 2 i_{in}$. Время открытого состояния транзистора VT в этом режиме определяется так:

$$t_{_{\mathrm{H}}} = \sqrt{2 \cdot i_{\mathrm{out}} \cdot L \cdot \left(\frac{U_{\mathrm{out}} - U_{\mathrm{in}}}{f \cdot U_{\mathrm{in}}^{2}}\right)}. \tag{9}$$

Время спада до нулевого значения разрядного тока дросселя (рис. 3, б):

$$t_{HI} = t_{H} \cdot \left(\frac{U_{out}}{U_{out} - U_{in}}\right). \tag{10}$$

Амплитуда тока дросселя:

$$i_{\text{max}} = \frac{1}{L} \cdot U_{\text{in}} \cdot t_{\mu}. \tag{11}$$

Мы рассмотрели процессы, происходящие в идеализированном повышающем стабилизатором. Как было сказано ранее, реальные схемы повышающих преобразователей не позволяют значительно увеличивать напряжение на выходе из-за наличия некоторых паразитных параметров, о которых стоит поговорить немного подробнее. В схеме рис. 4 показаны основные паразитные параметры: активное сопротивление обмотки индуктивного элемента (r_L) , сопротивление ключевого элемента в открытом состоянии (r_{VT}) , дифференциальное сопротивление диода в прямом направлении (r_{VD}) . Для простоты будем считать, что сопротивления транзистора и диода примерно равны, тогда общее сопротивление зарядной и разрядной цепей преобразователя можно считать примерно одинаковым:

$$r = r_L + r_{VT} = r_L + r_{VD}.$$
 (12)

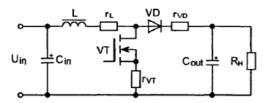


Рис. 4. Паразитные параметры в реальном повышающем преобразователе

Регулировочная характеристика преобразователя, ранее записанная нами в виде (3), для схемы с паразитными параметрами будет выглядеть так:

$$U_{\text{out}} = U_{\text{in}} \cdot \frac{1}{1 - D} \cdot \frac{1}{1 + \left(\frac{r}{R_{\text{H}}}\right) \cdot (1 - D)^2}.$$
 (13)

Выражение (13) справедливо для диапазона коэффициентов заполнения D в пределах от 0 до $D_{\kappa p}$, называемого критическим коэффициентом заполнения. Критический коэффициент заполнения определяет границу применимости формулы (13), при ее превышении регулировочная характеристика стабилизатора приобретает падающий характер. Это происходит потому, что падение напряжения на паразитном сопротивлении г уже не может быть скомпенсировано нарастанием тока в индуктивности.

Определить критический коэффициент заполнения можно по формуле:

$$D_{\kappa p} = 1 - \sqrt{\frac{r}{R_{_{\rm H}}}} \,. \tag{14}$$

Графически семейство регулировочных характеристик показано на рис. 5. Хорошо видно, что если необходимо получить достаточно протяженный начальный участок, и, следовательно, расширить диапазон регулирования выходного напряжения, необходимо уменьшать паразитные активные сопротивления зарядной и разрядной цепей. В практических схемах повышающих преобразователях максимальный коэффициент заполнения выбирается не более 0,8...0,9, чтобы не «выйти» на падающий участок регулировочной характеристики. Для этого в схему управления стабилизатором вводится специальный ограничитель.

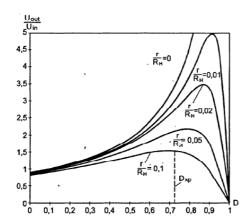


Рис. 5. Семейство регулировочных характеристик реальных повышающих преобразователей

4.2. Расчет параметров элементов повышающего преобразователя

Обычно, если повышающий преобразователь разрабатывается на основе готовой микросхемы, номиналы элементов можно просто взять из типовой схемы включения. Но бывают случаи, когда разработка ведется «с нуля», и тут не обойтись без расчетов.

Начнем с индуктивного элемента. Во-первых, желательно обеспечить работу схемы в режиме непрерывного тока дросселя, в противном случае возрастут пульсации напряжения в нагрузке. С другой стороны, преобразователь должен обеспечить передачу в нагрузку необходимой мощности, а это значит, что индуктивный элемент в фазе накопления энергии должен «запасать» ее столько, сколько нужно на поддержание расчетных выходных тока и напряжения. Казалось бы, стоит только выбрать величину индуктивности L сколь угодно малой, и мы, гарантированно повысив зарядный ток, обеспечим передачу необходимой мощности в нагрузку. Если это утверждение было справедливо, достаточным считалось бы заменить дроссель простым отрезком провода. Но на самом деле, согласно выражению (1), скорость нарастания тока в индуктивном элементе определяется ничем иным, как его индуктивностью! Следовательно, при заданной частоте коммутации, в какой-то момент времени величина тока i_{max} может просто «выскочить» за предельно допустимую величину тока ключевого транзистора, что, конечно, приведет к его разрушению.

Очевидно, существует минимально возможная величина индуктивности, при которой при любом действующем коэффициенте заполнения будет сохраняться непрерывный ток дросселя. Значит, необходимо так рассчитать индуктивность дросселя, чтобы обеспечить условие ${\rm Ai_L} < 2{\rm i_{in}}$, которое нам уже встречалось. Подставляя в названное неравенство выражения (6), (8) и (3), мы можем получить формулу для расчета минимально возможной величины индуктивности, при которой сохраняется режим непрерывности тока:

$$L_{\min} = \frac{U_{\text{out}} \cdot D \cdot (1 - D)^2}{2 \cdot i_{\text{out}} \cdot f}.$$
 (15)

Если рассчитать значения L_{min} во всем диапазоне возможных коэффициентов заполнения (от 0 до 1), то окажется,

что наибольшая величина индуктивности получится при значении D равном 0,5. Следовательно, мы можем упростить формулу (15), приведя ее к виду:

$$L_{\min} = 0.063 \frac{U_{\text{out}}}{i_{\text{out}} \cdot f}.$$
 (16)

А теперь мы вернемся к выражению (1) и вспомним, что величина индуктивности ограничена «снизу» не только условием непрерывности тока, но также и величиной предельного тока ключевого транзистора. Рассчитать ее можно по формуле:

$$L_{\min} = 0.25 \frac{U_{\text{out}}}{i_{\text{VT} \max} \cdot f}, \qquad (17)$$

где i_{VT_max} — максимально возможный ток ключевого транзистора.

Как уже было сказано, по формуле (15) рассчитывается критическая, то есть минимально возможная, величина индуктивности. Для обеспечения стабильности схемы полученную величину индуктивности рекомендуется увеличить в 7... 10 раз по сравнению с вычисленной. После этого необходимо произвести расчет по формуле (17) и убедиться, что принятая величина индуктивности по крайней мере на 15...20 процентов больше рассчитанной по формуле (17), то есть обеспечивается токовый запас. Максимально допускаемый ток силового ключа можно найти в технической документации на конкретный элемент. Если в составе микросборки уже содержится силовой транзистор, нужно найти в технической документации относящийся к нему параметр «сигтеnt limit» (максимально допустимый ток).

Еще один важный элемент схемы, величину которого нужно научиться рассчитывать, — это выходной конденсатор

 C_{out} . Именно выходной конденсатор определяет величину выходных пульсаций повышающего преобразователя.

В режиме непрерывного тока дросселя «добавка» напряжения выходного конденсатора будет определяться величиной разрядного тока в индуктивном элементе. Предполагая, что энергия магнитного поля, накопленная в индуктивном элементе, полностью переходит в энергию электрического поля конденсатора, а также учитывая, что изменение индуктивного тока Δi_L на порядок меньше входного тока i_{in} (7), величина конденсатора вычисляется таким образом:

$$C_{\text{out}} > \frac{i_{\text{out}}}{f \cdot \Delta U_{\text{out}}},$$
 (18)

где ΔU_{out} — размах пульсации выходного напряжения стабилизатора

Выбирать выходной конденсатор необходимо и по величине ESR (последовательного активного сопротивления). Рекомендуется придерживаться следующего соотношения:

$$ESR < \frac{\Delta U_{out}}{\Delta i_{L}}.$$
 (19)

Чем чревато для работы преобразователя наличие ESR? Это — полезный или вредный параметр? Однозначно можно сказать — вредный, и вот почему. На любом активном сопротивлении выделяется мощность в виде тепла, которое рассеивается в окружающем пространстве. Не исключение и ESR конденсаторов, через которые в работающей схеме протекают зарядные и разрядные токи. Вследствие этого конденсатор разогревается, причем температура внутри корпуса может превысить допустимое значение. Особенно опасен разогрев электролитических конденсаторов, когда закипевший внутри элек-

тролит разрывает оболочку элемента со звуком пистолетного выстрела.

Опасность повреждения конденсаторов вследствие наличия ESR можно снизить, включив на выходе преобразователя не один, а несколько параллельных элементов. К слову, в типовых схемах преобразователей, построенных на основе готовых микросхем, часто встречается параллельное соединение двух-трех конденсаторов с одинаковым номиналом. Причина тому — не отсутствие у составителей технической документации необходимого элемента, а именно стремление снизить ESR, повысить надежность схемы, облегчить ее тепловой режим. Пренебрегать этой рекомендацией не стоит, но и неоправданно увеличивать число параллельных элементов — тоже плохо. В этом случае может увеличиться паразитная индуктивность монтажа, а также, что немаловажно для профессионала, вырастут габариты и стоимость.

В настоящее время в качестве выходных конденсаторов повышающих преобразователей используются три типа: алюминиевые, танталовые и с диэлектриком на основе органического полупроводника. Алюминиевые конденсаторы всем хорошо знакомы — они имеют низкую стоимость, широко распространены, однако ESR у них, по сравнению с двумя остальными типами, самое высокое. Более того, алюминиевые конденсаторы имеют низкое отношение емкости к объему, что говорит об их «габаритности». Танталовые конденсаторы и конденсаторы с органическим диэлектриком более компактны, имеют низкое ESR, высокую температурную стабильность, что позволяет использовать их для изготовления плат с поверхностным монтажом, работающих в жестких эксплуатационных условиях. Однако эти конденсаторы имеют более высокую стоимость.

В качестве диода VD, если позволяет величина максимального обратного напряжения, лучше использовать диоды с барьером Шоттки. Эти диоды обладают небольшим падением напряжения в прямом направлении, высоким быстродействием

и тем самым повышают общий КПД преобразователя. Разработчику необходимо выбрать диод, подходящий по величине прямого тока, обратного напряжения и конструктивному исполнению корпуса. В последнее время появились также микросхемы управления синхронными «бустерами», в которых диод VD зашунтирован р-канальным транзистором MOSFET. Эта мера улучшает КПД преобразователя, заставляет его работать более эффективно.

Расчет тепловых потерь диода в повышающем стабилизаторе производится по формуле:

$$P_{\rm C} = U_{\rm f} \cdot i_{\rm out}, \tag{20}$$

где U_f — прямое падение напряжения на диоде.

Динамическими потерями при расчете повышающей схемы обычно пренебрегают, так как их вклад в данном случае невелик.

Выбор ключевого транзистора VT, в качестве которого рекомендуется применять MOSFET с п-каналом, осуществляется по величине максимального тока индуктивного элемента, рассчитанного по формуле (7). После этого нужно оценить тепловой режим транзистора, воспользовавшись следующей формулой:

$$P_{VT} = \left(\frac{i_{out}}{1-D}\right)^2 \cdot R_{ds(on)} \cdot D + \frac{1}{2}U_{out}\left(\frac{i_{out}}{1-D}\right)^2 \cdot (t_r + t_f) \cdot f. (21)$$

Первое слагаемое этой формулы представляет собой статические потери на сопротивлении «сток-исток» открытого транзистора, а второе — динамические потери при его переключении. При расчете по формуле (21) нужно подставлять максимальный коэффициент заполнения D, который обеспечивается схемой преобразователя.

О конструктивном расчете индуктивных элементов мы говорили в предыдущей главе, поэтому здесь повторяться не будем. Поскольку индуктивные элементы в повышающем и понижающем преобразователях, работают в условиях однополярных токов, с высоким подмагничиванием, поэтому необходимо обеспечить снижение величины остаточной индукции с помощью немагнитного зазора. Вычисление тепловых потерь в дросселе «бустера» проводят по формуле:

$$P_{n} = \left(\frac{i_{out}}{1 - D}\right)^{2} \cdot R_{L} + P_{core}, \qquad (22)$$

где R_L — активное сопротивление обмотки дросселя; P_{core} - обобщенные потери на гистерезис и токи Фуко в магнитопроводе.

3. ЛАБОРАТОРНОЕ ЗАДАНИЕ

3.1. Создать принципиальную схему повышающего преобразователя, изображенную на рис. 6.

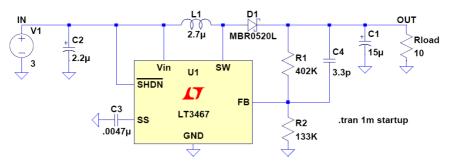


Рис. 6. Принципиальная схема повышающего преобразователя

3.2. После проведения моделирования вывести форму сигналов на аноде диода D1 и напряжения на нагрузке (Rload).

- 3.2.1. Изменить сопротивление нагрузки на 33 и 330 Ом, посмотреть форму напряжения на катоде D1. Объяснить причину изменения формы напряжения.
- 3.2.2. Изменить номинал резисторов обратной связи R1, R2 на 115 кОм и 13,3 кОм соответственно и посмотреть величину напряжения на выходе источника.

Изменить номинал резисторов R1, R2 на 412 кОм и 13,3 кОм и посмотреть величину выходного напряжения.

Объяснить причину изменения.

4. УКАЗАНИЯ ПО ОФОРМЛЕНИЮ ОТЧЕТА И КОНТРОЛЬНЫЕ ВОПРОСЫ

- 4.1. Отчет по лабораторной работе должен содержать:
- наименование и цель работы;
- распечатку принципиальной электрической схемы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Б.Ю. Семенов. Силовая электроника: от простого к сложному. М.: СОЛОН-Пресс, 2005.-416 с.
- 2. М. Браун. Источники питания. Расчет и конструирование.: Пер. с англ. К.: "МК-Пресс", 2007. 288 с.
- 3. Андреков И.К. Проектирование и технология блоков питания мобильных радиостанций: учеб. пособие / И.К. Андреков. Воронеж: ГОУВПО "Воронежский государственный технический университет", 2009. 156 с.

СОДЕРЖАНИЕ

1.	Лабораторная работа №1	
2.	Лабораторная работа №215	
3.	Библиографический список	2

ИССЛЕДОВАНИЕ РАБОТЫ ПОНИЖАЮЩЕГО ПРЕОБРАЗОВАТЕЛЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине «Проектирование вторичных источников питания РЭС» для студентов направления 11.03.03 «Конструирования и технология электронных средств» (профиль «Проектирование и технология радиоэлектронных средств») всех форм обучения

Составители: канд. техн. наук И.С. Бобылкин, канд. техн. наук А. В. Турецкий.

Компьютерный набор А. В. Турецкого

Подписано к изданию		
Учизд. л	•	

ФГБОУ ВО «Воронежский государственный технический университет» 394026 Воронеж, Московский просп., 14