МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан ФМАТ-/ В.И. Ряжских / <u>« » 2019 г.</u>

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля) «Гидравлика»

Направление подготовки 15.03.05 — Конструкторско-технологическое обеспечение машиностроительных производств Профиль Технология машиностроения Квалификация выпускника Бакалавр Нормативный период обучения 4 года / 4 г. и 11 м. Форма обучения Очная / Заочная Год начала подготовки 2019 г.

Автор программы

/Попова О.И. /

Заведующий кафедрой автоматизированного оборудования машиностроительного производства

Петренко В.Р./

Руководитель ОПОП

55

/Смоленцев Е.В./

Воронеж 2019

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1 Цель изучения дисциплины

- получение знаний по устройствам и принципам действия гидроприводов машиностроительного оборудования;
- получение знаний по основам физических закономерностей статики, кинематики и динамики жидкой (газообразной) среды, применению этих закономерностей при решении практических задач гидравлических и пневматических систем, используемых в машиностроении.

1.2 Задачи освоения дисциплины

- усвоить материалы о физических свойствах рабочей среды гидравлических и пневматических систем; основных законов механики жидких и газообразных сред, основ моделирования гидромеханических явлений;
- усвоить принципы действия основных узлов, входящих в гидравлическую систему машиностроительного оборудования;
- получить навыки применения математических моделей гидромеханических явлений и процессов при проектировании конструкций, входящих в гидравлическую техническую систему машиностроительного оборудования.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Гидравлика» относится к обязательным дисциплинам базовой части (Б1.Б.) блока Б1 учебного плана.

Предварительная подготовка обучающегося требует освоения дисциплин базовой части блока Б1: «Физика», «Теория механизмов и машин», «Детали машин и основы конструирования; «Электротехника и электроника».

Параллельное изучение обязательных дисциплин вариативной части (Б1.В.ОД): «Оборудование машиностроительного производства», «Металлообрабатывающие станки», «Режущий инструмент».

Освоение данной дисциплины необходимо как предшествующее изучению дисциплин: «Расчет и конструирование станков», «Конструкторскотехнологическое обеспечение гибких производственных систем», «Оборудование автоматизированных машиностроительных производств», «Расширение технологических возможностей станков и станочных комплексов».

3 ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Гидравлика» направлен на формирование компетенции:

ОПК-1 — Способность использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемо-

го качества, заданного количества при наименьших затратах общественного труда.

Компетен-	Результаты обучения, характеризующие
ция	сформированность компетенции
ОПК-1	Знать основные физические свойства жидкостей и газов, зако-
	ны их кинематики, статики и динамики, силы, действующие в
	жидкостях;
	знать гидромеханические процессы, гидравлические жидкости,
	используемые в гидравлических системах оборудования, их ос-
	новные свойства.
	Уметь использовать для решения типовых задач законы гид-
	равлики, проектировать гидравлические системы;
	уметь использовать прикладные программные средства для
	выполнения расчетов жидких и газовых потоков в гидравличе-
	ских системах;
	уметь выбирать гидравлические жидкости, их эксплуатировать
	и регенерировать;
	уметь разрабатывать текстовые и графические документы по
	гидросистемам, входящим в состав конструкторской, техноло-
	гической и эксплуатационной документации машиностроитель-
	ного оборудования.
	Владеть приемами постановки задач по разработке гидравли-
	ческих и пневматических систем металлообрабатывающего и
	кузнечно-прессового оборудования для их решения коллекти-
	вами специалистов;
	владеть методами анализа гидравлических схем современного
	металлообрабатывающего и кузнечно-прессового оборудова-
	ния.

4 ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Гидравлика» составляет 3 зачетныеединицы.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы	Всего	Семестры			
	часов	6			
Аудиторные занятия (всего)	54	54			
В том числе:					
Лекции	18	18			
Практические занятия (ПЗ)	18	18			
Лабораторные работы (ЛР)	18	18			

Самостоятельная работа	54	54		
Курсовой проект	-	-		
Контрольная работа	-	-		
Вид промежуточной аттестации	Зачет	Зачет		
Общая трудоемкость, часов	108	108		
Зачетных единиц	3	3		

Заочная форма обучения

Заочная форма обучения не предусмотрена

Вид учебной работы	Всего	Семестры			
	часов				
Аудиторные занятия (всего)					
В том числе:					
Лекции					
Практические занятия (ПЗ)					
Лабораторные работы (ЛР)					
Самостоятельная работа					
Курсовой проект					
Контрольная работа					
Вид промежуточной аттестации – зачет с					
оценкой					
Общая трудоемкость, часов					
Зачетных единиц					

5 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

No	Наименова-	Содержание раздела	И		зан.		
Π/	ние темы		Іекции	IKT. IT.		7)	го,
П			Лек	Практ занят.	Лаб.	CPC	Всего
1	Гидропнев-	Гидропневмопривод как фактор					
	мооборудо-	автоматизации металлорежущих					
	вание	станков станочных комплексов и					
	в металлор-	КШО	2	2	2.	6	12
	ежущих		2	2	2	0	12
	станках и						
	КПО						

2	T	To a 6					
3	Требования к рабочим жидкостям и газам, их характеристики и свойства	творение в жидкостях газов. Механическая смесь воздуха с жидкостью. Образование пены. Влияние нерастворенного воздуха на работу гидросистемы. Сжимаемость жидкостей. Теплопроводность и теплоемкость жидкостей. Характеристики масел, применяемых в гидросистемах. Принципы выбора рабочих жидкостей. Принципы выбора рабочих сред для гидро- и пневмосистем.	2	2	2	6	12
3	Силы, дей- ствующие в жидкостях, методы описания движения жидкостей	Силы, действующие в жидкостях. Закон Паскаля. Абсолютный и относительный покой жидких сред. Модель идеальной невязкой жидкости. Уравнение энергии жидкости. Общая интегральная форма уравнений и момента количества движения.	2	2	2	6	12
4	Общее уравнение энергии	Уравнение неразрывности (сплошности) жидкости. Одномерное движение жидкостей. Элементы тока жидкости. Методы описания движения жидкости. Законы и уравнения гидростатики и гидродинамики жидкостей. Уравнение Бернулли. Уравнение Вентури. Число Рейнольдса. Удельная энергия жидкости.	2	2	2	6	12
5	Характери- стика и рас- чет трубо- проводов	Расчет сечения трубопровода. Режимы течения жидкости. Расчет потерь напора при движении жидкости по длине трубопровода. Ламинарный режим течения. Турбулентный режим течения. Основные характеристики турбулентности. Зоны турбулентного течения жидкости в трубопро-	2	2	2	6	12

		D					
		водах. Виды контактирующих с					
		жидкостью поверхностей трубо-					
		проводов. Эквивалентная шеро-					
		ховатость стенок трубопровода.					
6	Гидравли-	Местные гидравлические потери.					
	ческие по-	Потери в золотниковых распре-					
	тери	делителях. Вход в трубу. Вне-	2	2	2		10
	1	запное сужение трубопровода.	2	2	2	6	12
		Внезапное расширение трубо-					
		провода. Сложение потерь.					
7	Кавитация	Способы борьбы с кавитацией.					
,	жидкости	Практическое использование					
	жидкости	эффекта кавитации. Гидравличе-					
		ский удар в гидроузлах. Ско-					
		рость ударной волны. Гидравли-					
		ческий удар в отводах. Гидрав-					
		лический удар в силовых гидро-					
		цилиндрах. Гидравлический удар	2	2	2	6	12
		в насосах. Гидравлический удар		_			
		в сливных магистралях. Способы					
		снижения величины ударного					
		давления. Компенсаторы гидрав-					
		лического удара. Клапанные га-					
		сители гидравлического удара.					
		Гидродинамическое давление					
		струи жидкости на стенку.					
8	Насосные	Поршневые, шестиренчатые и					
	установки	центробежные насосы. Гидро-					
	3	устройства и аппаратура, приме-					
		няемые в гидросистемах. Гид-					
		равлические аккумуляторы. Ти-					
		пы щелевых фильтров и филь-					
		трующие материалы. Схемы					
		фильтрации. Место для установ-	2	2	2	6	12
				2	2	O	12
		ки фильтра. Критерии для оцен-					
		ки качества фильтрации. Коэф-					
		фициент пропускания. Коэффи-					
		циент отфильтровывания. Про-					
		пускная способность, давление и					
		расход жидкости. Загрязнение					
		фильтрующего элемента.					
9	Вспомога-	Гидравлические дроссели и гид-					
	тельное	рораспределители. Вспомога-	2	2	2	6	12
	оборудова-	тельная аппаратура и устройства	_	_	_	U	12
	ние гидро-	гидросистем. Фильтрация рабо-					

систем	чей жидкости Методы фильтра-					
	ции. Тонкость фильтрации. Осо-					
	бенности расчета и выбора ис-					
	точников питания гидросистем.					
	Тепловой баланс гидросистемы.					
	Охлаждающие устройства.					
	Итого	18	18	18	54	108

заочная форма обучения

Заочная форма обучения не предусмотрена

№ п/ п	Наименование темы	Содержание раздела	Лекции	Практ. за- нят.	Лаб. зан.	CPC	Всего, час
		Итого					

5.2 Перечень лабораторных работ

- 1. Исследование вязкости жидкости.
- 2. Определение коэффициента вязкости жидкости методом Пуазейля.
- 3. Исследование гидростатического давления.
- 4. Определение зависимости потерь на трение в трубе от режима течения жидкости.
- 5. Построение напорной линии и пьезометрической линии (по уравнению Бернулли).
- 6. Определение коэффициента потерь на трение по длине трубопровода (коэффициента Дарси).
 - 7. Определение величины напора.
 - 8. Определение эквивалентной шероховатости трубопровода.

5.3 Перечень практических работ

- 1. Расчет мощности и подачи насоса. Выбор насоса для объемного гидропривода.
 - 2. Выбор распределителей и фильтра для объемного гидропривода.
 - 3. Расчет гидролиний (магистралей) для объемного гидропривода.
 - 4. Расчет потерь давления в гидросистеме объемного гидропривода.
 - 5. Расчет КПД гидропривода.
 - 6. Выбор силовых гидроцилиндров для объемного гидропривода.
 - 7. Расчет и выбор гидромотора для объемного гидропривода.
- 8. Определение объема бака рабочей жидкости для объемного гидропривода.
 - 9. Тепловой расчет гидросистемы для объемного гидропривода.

6 ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

6.1. Курсовое проектирование

Выполнение курсовой работы (проекта) учебным планом не предусмотрено.

6.2. Контрольные работы для обучающихся заочной формы обучения

По данному профилю заочная форма обучения не предусмотрена.

7 ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля знаний

Результаты текущего контроля знаний и межсессионной аттестации по формированию компетенции на данном этапе оцениваются в течение шестого семестра по следующей системе:

«аттестован»;

«не аттестован».

Компе-	Результаты обучения, ха-	Критерии	Аттестован	Не аттесто-
тенция	рактеризующие сформиро-	оценивания		ван
	ванность компетенции			
ОПК-1	Знать основные физические	Активная работа на	Выполнение	Невыполне-
	свойства жидкостей и газов,	практических заня-	работ в срок,	ние работ в
	законы их кинематики, стати-	тиях, отвечает на	предусмот-	срок, преду-
	ки и динамики, силы, дей-	теоретические во-	ренный в ра-	смотренный
	ствующие в жидкостях.	просы при защите	-	рабочей
		лабораторных работ	грамме	программе
	Знать гидромеханические	Активная работа на	Выполнение	Невыполне-
	процессы, гидравлические	практических заня-	работ в срок,	ние работ в
	жидкости, используемые в		предусмот-	срок, преду-
	гидравлических системах обо-	1	ренный в ра-	смотренный
	рудования, их основные свой-	просы при защите	-	рабочей
	ства.	лабораторных работ	грамме	программе
	Уметь использовать для ре-	Активная работа при	Выполнение	Невыполне-
	шения типовых задач законы	выполнении и защите	работ в срок,	ние работ в
	гидравлики, проектировать	практических и лабо-	предусмот-	срок, преду-
	гидравлические системы;	раторных работ	ренный в ра-	смотренный
			бочей про-	в рабочей
			грамме	программе

ства дл тов жи	использовать при- не программные сред- пя выполнения расче- ндких и газовых пото- гидравлических систе-	Активная работа при выполнении и защите практических и лабораторных работ	Выполнение работ в срок, предусмотренный в рабочей	Невыпол- нение ра- бот в срок, преду- смотрен-
мах			программе	ный в ра- бочей про- грамме
	выбирать гидравличе-	Активная работа при выполнении и защи-	Выполнение работ в срок,	Невыпол- нение ра-
	ть и регенерировать;	те практических и лабораторных работ	предусмот- ренный в рабочей программе	бот в срок, преду- смотрен- ный в ра- бочей про- грамме
вые и ты по дящим ской, т плуата ции	разрабатывать тексто- графические докумен- гидросистемам, вхо- в состав конструктор- ехнологической и экс- ционной документа- машиностроительного ования.	Активная работа при выполнении и защите практических и лабораторных работ	Выполнение работ в срок, предусмотренный в рабочей программе	Невыпол- нение ра- бот в срок, преду- смотрен- ный в ра- бочей про- грамме
ки задаравлич ских с тывают прессоя для их	•	Активная работа при выполнении и защите практических и лабораторных работ	Выполнение работ в срок, предусмотренный в рабочей программе	Невыпол- нение ра- бот в срок, преду- смотрен- ный в ра- бочей про- грамме
Владет гидрав. менног вающе	ь методами анализа пических схем совре- то металлообрабаты-	Активная работа при выполнении и защите практических и лабораторных работ	Выполнение работ в срок, предусмотренный в рабочей программе	Невыпол- нение ра- бот в срок, преду- смотрен- ный в ра- бочей про- грамме

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля освоения дисциплины и оценивание уровня полученных умений и навыков по формируемой компетенции на данном этапе осуществляется в период сессии после 6 семестра, оценки выставляются по следующим критериям:

«зачет», «незачет».

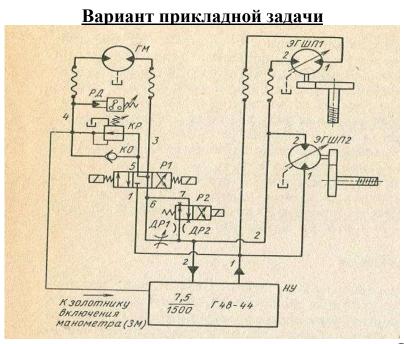
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценива- ния	Зачет	Незачет
ОПК-1	Знать основные физические свойства жидкостей и газов, законы их кинематики, статики и динамики, силы, действующие в жидкостях.		Выполнение задания от 100 до 60 %	В задании менее 60 % правильных ответов
	Знать гидромеханические процессы, гидравлические жидкости, используемые в гидравлических системах оборудования, их основные свойства.	Задание	Выполнение задания от 100 до 60 %	В задании менее 60 % правильных ответов
	Уметь использовать для решения типовых задач законы гидравлики, проектировать гидравлические системы;	Задание	Выполнение задания от 100 до 60 %	В задании менее 60 % правильных ответов
	Уметь использовать прикладные программные средства для выполнения расчетов жидких и газовых потоков в гидравлических системах	Задание	Выполнение задания от 100 до 60 %	В задании менее 60 % правильных ответов
	Уметь выбирать гидравлические жидкости, их эксплуатировать и регенерировать;	Задание	Выполнение задания от 100 до 60 %	В задании менее 60 % правильных ответов
	Уметь разрабатывать текстовые и графические документы по гидросистемам, входящим в состав конструкторской, технологической и эксплуатационной документации машиностроительного оборудования.	Задание	Выполнение задания от 100 до 60 %	В задании менее 60 % правильных ответов
	Владеть приемами постановки задач по разработке гидравлических и пневматических систем металлообрабатывающего и кузнечно-прессового оборудования для их решения коллективами специалистов;	Задание	Выполнение задания от 100 до 60 %	В задании менее 60 % правильных ответов
	Владеть методами анализа гидравлических схем современного металлообрабатывающего и кузнечно-прессового оборудования.	Задание	Выполнение задания от 100 до 60 %	В задании менее 60 % правильных ответов

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

Тестирование по дисциплине не предусмотрено.

7.2.2 Примерный перечень заданий для решения стандартных задач


- 1. Определить число Рейнольдса и режим движения воды в водопроводной трубе диаметром d=300 мм, если расход Q = 0,136 м/с. Коэффициент кинематической вязкости для воды (при t=10 °C) $v=1,306\cdot10$ м²/с.
- 2. Из напорного бака вода течет по трубе диаметром $d_1 = 20$ мм, затем вытекает в атмосферу через насадку с диаметром выходного отверстия $d_2 = 10$ мм. Избыточное давление воздуха в баке $p_0 = 0.18$ МПа; высота H = 1.6 м. Пренебрегая потерями энергии, определить скорости течения воды в трубе v_1 и на выходе из насадка.
- 3. Как изменится плотность бензина, если температура окружающей среды повысится с 20 до 85 0 С. Принять плотность бензина при температуре 20 0 С равной 800 кг/м³. Коэффициент температурного расширения для нефтепродуктов 6 х 10^{-4} град⁻¹.
- 4. Определить плотность воды и нефти при температуре 6 $\,^{0}$ С, если известно, что 15 л воды при 6 $\,^{0}$ С имеют массу 16 кг, а масса того же объема нефти равна 8.2 кг.
- 5. Определить расход и скорость вытекания воды температурой 5 0 C из круглого малого отверстия диаметром 20 мм в боковой стенке резервуара больших размеров. Напор над центром отверстия 100 см.
- 6. Плотность масла АМГ-10 при температуре 20 °C составляет 850 кг/м³. Определить плотность масла при повышении температуры до 60 °C и увеличении давления с атмосферного ($p_1 = 0,1$ МПа) до $p_2 = 8,7$ МПа. Модуль объемной упругости масла $E_0 = 1305$ МПа, температурный коэффициент $\beta t = 0,0008$ 1/град.
- 7. Канистра, заполненная бензином, и не содержащая воздуха, нагрелась на солнце до температуры 50°С. На сколько повысилось бы давление бензина внутри канистры, если бы она была абсолютно жесткой? Начальная температура бензина 20 °С. Модуль объемной упругости бензина принять равным E_o =1300 МПа, коэффициент температурного расширения βt = 8 10 $^{-4}$ 1/град.
- 8. Определить давление p_0 воздуха в напорном баке по показанию ртутного манометра. Какой высоты H должен быть пьезометр для измерения

того же давления p_0 ? Высоты h = 2.6 м; $h_1 = 1.8$ м; $h_2 = 0.6$ м. Плотность ртути $\rho = 13600$ кг/м3, воды $\rho = 1000$ кг/м³.

- 9. Определить силу F, действующую на шток гибкой диафрагмы, если ее диаметр D=200 мм, показания вакуумметра $p_{\text{вакуум.}}=0.05$ МПа, высота h=1 м. Площадью штока пренебречь. Найти абсолютное давление в левой полости, если $h_a=740$ мм. рт. ст.
- 10. По трубопроводу диаметром d=150 мм перекачивается нефть плотностью $\rho=800$ кг/м 3 в количестве 1200 т. в сутки. Определить секундный объемный расход нефти Q и среднюю скорость ее течения υ .
- 11. Вентиляционная труба d=0,1 м имеет длину $\ell=100$ м. Определить потери давления, если расход воздуха, подаваемый по трубе, равен Q = 0,078 м³/с. Давление на выходе равно атмосферному ($p_{\text{атм.}}=0,1$ МПа). Местные сопротивления по пути движения воздуха отсутствуют. Кинематическая вязкость воздуха при t=20 °C составляет $v=15,7\cdot10$ -6 м ²/с. Средняя шероховатость выступов $\Delta=0,2$ мм, плотность воздуха $\rho=1,18$ кг/м³.

7.2.3 Примерный перечень заданий для решения прикладных задач

Предусмотрено выполнение анализа гидравлической схемы металлообрабатывающего оборудования.

Гидравлическая схема токарного патронного станка с ЧПУ мод. 16K20PФ3

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Гидравлический привод металлорежущих станков, преимущества и недостатки.
 - 2. Особенности гидроприводов автоматизированного оборудования.
 - 3. Гидравлические жидкости, эксплуатационные характеристики.
 - 4. Минеральные масла, марки и характеристики.
- 5. Важнейшие физические свойства жидкостей (плотность, вязкость, сжимаемость)
- 6. Физические свойства жидкостей (температурное расширение, растворимость газов).
 - 7. Принцип выбора рабочих жидкостей гидроприводов.
 - 8. Основные законы гидродинамики. Уравнение неразрывности.
 - 9. Основные законы гидродинамики. Уравнение Бернулли.
 - 10. Основные законы гидродинамики. Принцип Вентури.
 - 11. Зоны турбулентного движения жидкости.
 - 12. Потери напора жидкости по длине трубопровода.
 - 13. Эквивалентная шероховатость трубопроводов.
 - 14. Графическое определение коэффициента Дарси.
- 15. Местные потери напора жидкости (расширение трубы, вход в трубу).
 - 16. Расчет простого трубопровода.
 - 17. Характеристика трубопроводов.
 - 18. Мероприятия по предотвращению кавитации.
- 19. Основные законы гидродинамики. Уравнение Бернулли. 2. Основное уравнение гидростатики.
- 20. Основные законы гидродинамики. Уравнение неразрывности. 2. Закон Паскаля. Гидравлический пресс.
- 21. Ламинарное и турбулентное движение жидкости. Число Рейнольдса.
 - 22.Потери напора жидкости по длине трубопровода.
 - 23. Местные потери напора жидкости.
- 24. Графическое определение коэффициента Дарси. 2. Гидродинамика. Основные понятия.
 - 25. Минеральное масло. Эксплуатационные характеристики.
 - 26. Описание движения жидкости. Метод Эйлера.
 - 27. Элементы потока жидкости.
 - 28. Число Рейнольдса.
 - 29. Удельная энергия жидкостей (е).
- 30. Гидравлические аккумуляторы. Схема и принцип действия грузового аккумулятора.
 - 31. Пружинный гидравлический аккумулятор.
 - 32. Понятие о кавитации.
 - 33. Способы торможения плунжеров в гидроцилиндрах.
 - 34. Основные параметры насосов.

- 35. Гидродвигатели возвратно-поступательных движений (симметричный гидроцилиндр)
 - 36. Мероприятия по предотвращению кавитации.
- 37. Гидродвигатели возвратно-поступательных движений (несимметричный гидроцилиндр)
 - 38. Плунжерные гидроцилиндры.
 - 39. Суммирующие и телескопические гидроцилиндры.
 - 40. Мембранные и сильфонные гидроцилиндры.
 - 41. Схема и принцип действия однопластинчатого гидродвигателя.
 - 42. Устройство и принцип действия гидравлических дросселей.
- 43. Аппаратура управления и регулирования. Назначение, классификация.
 - 44. Шестеренные насосы. Устройство и принцип действия.
 - 45. Несимметричные гидроцилиндры.
 - 46. Гидравлические дроссели. Конструкции и принцип действия.
 - 47. Насосная установка. Устройство и принцип действия.
 - 48. Насосная установка. Устройство и принцип действия.
 - 49. Физико-механические процессы в насосных установках.
 - 50. . Шестеренные насосы. Устройство и принцип действия.
 - 51. Устройство и принцип работы центробежного насоса.
 - 52. Поршневой насос одиночного действия.
 - 53.Поршневой насос двойного действия.
 - 54. Устройство и принцип работы объемного гидропривода.
 - 55. Клапаны, классификация, назначение, принцип действия.
 - 56. Гидрораспределители. Классификация и назначение.
 - 57. Золотниковый гидрораспределитель. Устройство и принцип работы.
 - 58. Диспергаторы, устройство и принцип действия.
 - 59. Деаэрация. Применение вакуумирующих устройств.
 - 60. Соединения трубопроводов. Уплотнения.
 - 61. Контрольно-измерительная аппаратура.
 - 62. Виды фильтров для очистки жидкости.
 - 63. Очистка рабочей жидкости гидроприводов. Классы чистоты.
 - 64. Очистка воздуха, контактирующего с рабочей жидкостью.
 - 65. Гидравлические баки, конструкция и принцип действия.
 - 66. Деаэрация. Применение вакуумирующих устройств.
 - 67. Виды фильтров для очистки рабочих жидкостей.
- 68. Следящий гидропривод с копировальным устройством. Устройство и принцип действия.
 - 69. Гидравлические баки. Конструкция и принцип действия.
 - 70. Диспергаторы. Устройство и принцип действия.
 - 71. Виды фильтров для очистки рабочей жидкости.
 - 72. Соединения трубопроводов. Уплотнения.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Экзамен учебным планом не предусмотрен.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится в соответствии с календарным графиком в конце шестого семестра. При промежуточной аттестации по дисциплине учебным планом предусмотрена следующая форма контроля знаний — зачет.

В течение семестра проводится зачет лабораторных и практических работ в устной и письменной форме. К промежуточной аттестации допускаются обучающиеся, получившие оценку «зачтено» по каждой выполненной лабораторной и практической работе.

Фонд оценочных средств промежуточной аттестации разработан в форме задания, которое состоит из теоретического вопроса, стандартной и прикладной задачи. Максимальное количество набранных баллов — 30. За правильный ответ на вопрос — 10 баллов, за каждую правильно решенную задачу 10 баллов: 5 баллов за решение, 5 баллов за правильный ответ. По результатам зачета выставляются оценки.

«Зачтено», если задание выполнено от 16 до 30 баллов.

«Не зачтено», если задание выполнено менее 16 баллов.

7.2.7 Паспорт оценочных материалов

No	Контролируемые разделы (те-	Кол контролируе-	Наименование опе-
Π/Π	мы) дисциплины		ночного средства
11, 11		(или ее части)	по того вредетва
1	Гидропневмооборудование в	ОПК-1	зачет, устный опрос
	металлорежущих станках и КПО		
2	Требования к рабочим жидко- стям и газам, их характери- стики и свойства	ОПК-1	зачет, устный и письменный опрос
3	Силы, действующие в жидко- стях, методы описания движе- ния жидкостей	ОПК-1	зачет, устный и письменный опрос
4	Общее уравнение энергии	ОПК-1	зачет, устный и письменный опрос
5	Характеристика и расчет трубопроводов	- ОПК-1	зачет, устный и письменный опрос
6	Гидравлические потери	ОПК-1	зачет, устный и письменный опрос
7	Кавитация жидкости	ОПК-1	зачет, устный и письменный опрос
8	Насосные установки	ОПК-1	зачет, устный и письменный опрос
9	Вспомогательное оборудование гидросистем	ОПК-1	зачет, устный и письменный опрос

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Проверка знаний на лабораторных и практических занятиях, которая проводится в форме фронтального устного опроса, фиксируется преподавателем и доводится до сведения каждого обучающегося. Проверка правильности выполнения практической и лабораторной работы, итогом которой является оценка «зачтено» или «не зачтено», характеризует практическую освоенность материала по теме лабораторной или практической работы.

Проверка знаний при промежуточной аттестации проводится в виде индивидуального устного опроса по изученным разделам дисциплины и выполненным с положительной оценкой лабораторным и практическим работам.

Фонд оценочных средств промежуточной аттестации состоит из теоретического вопроса, стандартной и прикладной задачи.

Ответ на вопрос осуществляется в устной или письменной форме, решение стандартных и прикладных задач - на бумажном носителе. Время подготовки ответа на вопрос — 20 мин, решение задач - 30 мин. Затем преподавателем осуществляется проверка общего задания и выставляется оценка по промежуточной аттестации.

При проведении Зачета допускается использование справочной литературы.

Для успешной сдачи зачета необходимо выполнить следующие рекомендации:

- готовиться следует систематически, в течение всего периода освоения данной дисциплины;
- пользоваться не только рекомендованными источниками по теоретическому материалу, но и сведениями из дополнительной и методической литературы, знаниями, полученными по ранее освоенным дисциплина.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

8.1.1 Основная литература

- 1. Ткаченко Ю.С. Гидравлика [Электронный ресурс]: учеб. пособие. Электрон. текстовые и граф. данные (1,86 Мб) / Ю.С. Ткаченко. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2016. 1 электрон. опт. диск (CD-ROM): цв. Режим доступа: http://catalog.vorstu.ru.
- 2. Иванов, Л.А. Гидравлика [Электронный ресурс]: учеб. пособие / Л.А. Иванов, В.М. Пачевский. 3-е изд., перераб. и доп. (Допущено УМО). –

Электрон. текстовые, граф. дан. — Воронеж: ГОУВПО «Воронежский государственный технический университет», 2009. 158 с. — 1 диск. — Режим доступа: http://catalog.vorstu.ru.

8.1.2 Дополнительная литература

- 1. Кудинов В.А. Гидравлика: учеб. пособие [Текст] / В.А. Кудинов, Э.М.Карташов. М.: Высшая школа, 2008. 17 экз.
- 2. Гидравлика, гидромашины и гидроприводы: учеб. для машиностр. вузов / Т. М. Башта и др. М.: Машиностроение, 1982. 423 с. 10 экз.

8.1.3 Методические разработки

- 1. Валюхов, С.Г. и др. Гидравлика: лабораторный практикум: учеб. пособие [Текст] / С.Г. Валюхов, В.В. Бородкин, Ю.А. Булыгин; ФГОУВПО «ВГТУ», 2012. 134 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем
 - 1) Текстовый редактор Microsoft Word
 - 2) Табличный процессор Microsoft Excel
 - 3) Компас-3D

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебный корпус № 1, кафедра АОМП:

- ауд. 01.5/1: узлы металлорежущего оборудования;
- ауд. 01.1/1: плоскошлифовальный станок с гидроприводом стола. Плакаты.
- ауд. 01.10/1: Оборудование для кузнечнопрессового производства. Учебно-методические материалы, инструменты, оборудование. Технические средства обучения.

10 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Гидравлика» читаются лекции, проводятся практические и лабораторные занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы направлены на изучение основных свойств жидкостей и газов; основ статики, кинематики и динамики жидкостей и газов; изучение гидравлики трубопровода.

Практические занятия направлены на выполнение расчета объемного гидропривода. Расчет мощности и подачи насоса. Выбор насоса. Выбор распределителей и фильтра. Расчет гидролиний (магистралей). Расчет потерь давления в гидросистеме объемного гидропривода. Расчет КПД гидропривода. Выбор силовых гидроцилиндров. Расчет и выбор гидромотора. Определение объема бака рабочей жидкости для объемного гидропривода. Тепловой расчет гидросистемы.

Текущий контроль осуществляется при защите каждой выполненной лабораторной и практической работы, при положительном результате защиты в течение семестра лабораторных и практических работ обучающийся получает допуск к промежуточной аттестации по дисциплине.

Освоение дисциплины оценивается при промежуточной аттестации, которая проводится в форме Зачета.

D			
Вид учебных	Деятельность студента		
занятий			
Лекция	Написание конспекта лекций:		
	- кратко, схематично, последовательно фиксировать		
	основные положения, формулировки, обобщения, графики		
	и схемы, выводы;		
	- выделять важные мысли, ключевые слова, термины.		
	Проверка терминов, понятий с помощью энциклопедий,		
	словарей, справочников с выписыванием толкований в тет-		
	радь. Обозначение вопросов, терминов, материала, кото-		
	рые вызывают трудности, поиск ответов в рекомендуемой		
	литературе. Если самостоятельно не удается разобраться в		
	материале, необходимо сформулировать вопрос и задать		
	преподавателю на консультации, на практической или ла-		
	бораторной работе.		
Лабораторные	Конспектирование рекомендуемых источников. Рабо-		
работы	та с конспектом лекций, подготовка ответов к контроль-		
	ным вопросам, просмотр рекомендуемой литературы.		
	При выполнении лабораторных работ применяется		
	метод решения творческой задачи группой студентов, ко		
	торый предлагает ее членам коллективную работу и об-		
	суждение проблем, затем оценку и выбор нужного вариан-		
	та принятия решения.		
Практические	Работа с конспектом лекций, подготовка ответов к кон-		
занятия	трольным вопросам, просмотр рекомендуемой литературы.		
	Выполнение расчетно-графических заданий, решение задач		
	по алгоритму.		

Подготовка к текущей и промежуточной аттестации

На всех этапах текущей и промежуточной аттестации по дисциплине необходимо ориентироваться на конспекты лекций, основную и рекомендуемую литературу, выполненные лабораторные и практические работы.

Работа обучающегося при подготовке к текущей и промежуточной аттестации должна включать: изучение учебных вопросов; распределение времени на подготовку; консультирование у преподавателя по трудно усвояемым вопросам; рассмотрение наиболее сложных из них в дополнительной литературе, или других информационных источниках, предложенных преподавателем.

АННОТАЦИЯ

к рабочей программе дисциплины _«Гидравлика»

Направление подготовки 15.03.05 — Конструкторско-технологическое обеспечение машиностроительных производств
Профиль Металлообрабатывающие станки и комплексы Квалификация выпускника Бакалавр
Нормативный период обучения 4 года / Форма обучения Очная / Год начала подготовки 2018 г.

Цели дисциплины

- получение знаний по устройствам и принципам действия гидроприводов машиностроительного оборудования;
- получение знаний по основам физических закономерностей статики, кинематики и динамики жидкой (газообразной) среды, применению этих закономерностей при решении практических задач гидравлических и пневматических систем, используемых в машиностроении.

Задачи освоения дисциплины

- усвоить материалы о физических свойствах рабочей среды гидравлических и пневматических систем; основных законов механики жидких и газообразных сред, основ моделирования гидромеханических явлений;
- усвоить принципы действия основных узлов, входящих в гидравлическую систему машиностроительного оборудования;
- получить навыки применения математических моделей гидромеханических явлений и процессов при проектировании конструкций, входящих в гидравлическую техническую систему машиностроительного оборудования.

Перечень формируемых компетенций: ОПК-1.

ОПК-1 — Способность использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда.

Общая трудоемкость дисциплины ЗЕТ: <u>3</u>.

Форма итогового контроля по дисциплине: <u>зачет.</u>

Бланк внесения изменений

3. Попова О.И. Расчет объемного гидропривода [Электронный ресурс]: учеб. пособие. — Электрон. текстовые и граф. данные (2 Мб) / О.И. Попова, М.И. Попова, С.Л. Новокщенов. — Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2019. — 1 электрон. опт. диск (CD-ROM): цв. — Режим доступа: http://catalog.vorstu.ru.