МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

И.о. декана факультета энергетики и систем

управления

энергетинд

_/А.В. Бурковский/

управления

рпия 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Введение в аналитику данных»

Направление подготовки 13.03.02 Электроэнергетика и электротехника

Профиль Электромеханика

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2023

Автор программы

Заведующий кафедрой искусственного интеллекта

и цифровых технологий

Н.А. Рындин

П.Ю. Гусев

Руководитель ОПОП

А.В. Тикунов

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Целью дисциплины является формирование у студентов системного представления об аналитике данных как области знаний и практической деятельности, овладение базовыми методами анализа данных, понимание этапов аналитического процесса, а также развитие навыков применения инструментов аналитики для решения задач в сфере искусственного интеллекта и цифровизации.

1.2. Задачи освоения дисциплины

- ознакомить студентов с основами аналитики данных, включая этапы подготовки, обработки и интерпретации данных;
- научить выявлять закономерности в данных с использованием статистических методов и алгоритмов машинного обучения;
- сформировать навыки работы с инструментами и библиотеками анализа данных (например, Pandas, NumPy, Scikit-learn, Matplotlib);
- развить способность формулировать аналитические задачи на основе проблем профессиональной деятельности;
- обеспечить практический опыт построения аналитических моделей для естественных и искусственных систем.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Введение в аналитику данных» относится к дисциплинам части, формируемой участниками образовательных отношений (дисциплина по выбору) блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Введение в аналитику данных» направлен на формирование следующих компетенций:

ПК-1 — Способен выполнять научно-исследовательские и опытноконструкторские разработки по отдельным разделам темы с использованием современных методов сбора и анализа данных и современных программноаппаратных комплексов.

Компетенция	Результаты обучения, характеризующие сформированность компетенции			
ПК-1	знать основные этапы аналитического процесса и их			
	взаимосвязь; основные методы и подходы анализа			
	данных; принципы построения и валидации моделей			
	машинного обучения; методы визуализации и			
	интерпретации результатов анализа			
	уметь формулировать аналитические задачи на основе			

реальных проблем; применять статистические и
машинные методы анализа данных; использовать
инструменты Python для обработки и анализа данных;
интерпретировать результаты анализа в контексте
прикладной задачи
владеть навыками работы с библиотеками Python
(Pandas, NumPy, Scikit-learn, Matplotlib); техниками
предобработки и очистки данных; приемами построения,
настройки и оценки моделей машинного обучения;
методами визуализации данных и представления
результатов

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Введение в аналитику данных» составляет 3 зачетные единицы.

Распределение трудоемкости дисциплины по видам занятий:

Очная форма обучения

Вид учебной работы	Всего часов	Семестры 5
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	18	18
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	54	54
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:	108	108
академические часы	3	3
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Введение в аналитику данных	Понятие и роль аналитики данных. Виды аналитики: описательная, диагностическая, предсказательная, предписывающая.	2 4		6	12
2	Аналитический процесс и источники данных	Этапы аналитического цикла. Сбор данных, типы источников, открытые и закрытые данные.	2 4		6	12
3	Предобработка и очистка данных	Работа с пропущенными значениями, выбросами, типами данных. Принципы качественной подготовки данных.	2	4	6	12
4	Разведочный	Методы первичного анализа.	2	4	6	12

	анализ данных (EDA)	Визуализация и обобщение данных.				
5	Базовые статистические методы в аналитике данных	Средние значения, дисперсия, корреляция, статистические тесты.	2	4	6	12
6	Машинное обучение для аналитики данных	Основные понятия, типы задач, обучение с учителем и без учителя.	2	4	6	12
7	Классификация и регрессия	Логистическая регрессия, деревья решений, kNN, метрики качества.	2	4	6	12
8	Кластеризация и понижение размерности	K-Means, DBSCAN, PCA, t-SNE и их применение в практике.	2	4	6	12
9	Оценка и валидация моделей	Кросс-валидация, переобучение, недообучение, выбор модели.	2	4	6	12
	<u> </u>	Итого:	18	36	54	108

5.2. Перечень лабораторных работ

- 1. Обзор инструментов анализа данных в Python. Установка, настройка, обзор Jupyter Notebook, библиотеки для аналитики.
- 2. Загрузка и первичная обработка данных. Работа с CSV, Excel, API. Очистка и преобразование данных.
- 3. Исследовательский анализ данных. Построение графиков, изучение распределений, корреляции.
- 4. Основы статистики на практике. Реализация статистических тестов, вывод статистических закономерностей.
- 5. Построение моделей классификации. Реализация логистической регрессии и дерева решений на реальных данных.
- 6. Построение моделей регрессии. Линейная регрессия, оценка качества модели, визуализация результатов.
- 7. Методы кластеризации и понижения размерности. Применение K-Means, PCA и t-SNE на многомерных данных.
- 8. Оценка качества моделей и кросс-валидация. Метрики, confusion matrix, ROC-кривые.
- 9. Проектная работа: аналитика в реальном кейсе. Применение полного цикла аналитики от данных до модели.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1. Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

\\IIC u	гтестован».	T	T -	
Компетенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-1	знать основные этапы аналитического процесса и их взаимосвязь; основные методы и подходы анализа данных; принципы построения и валидации моделей машинного обучения; методы визуализации и интерпретации результатов анализа	активная работа на практических занятиях	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь формулировать аналитические задачи на основе реальных проблем; применять статистические и машинные методы анализа данных; использовать инструменты Python для обработки и анализа данных; интерпретировать результаты анализа в контексте прикладной задачи	решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками работы с библиотеками Python (Pandas, NumPy, Scikit-learn, Matplotlib); техниками предобработки и очистки данных; приемами построения, настройки и оценки моделей машинного обучения; методами визуализации данных и представления результатов	решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2. Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются <u>в пятом</u> семестре для очной формы обучения по двухбалльной системе:

«зачтено»;

«не зачтено».

100000000000000000000000000000000000000	Результаты обучения, характеризующие	Критерии	20	П
Компетенция	сформированность компетенции	оценивания	Зачтено	Не зачтено
ПК-1	знать основные этапы	Тест	Выполнение теста	Выполнение менее
	аналитического процесса		на 70-100%	70%
	и их взаимосвязь;			
	основные методы и			
	подходы анализа данных;			
	принципы построения и			
	валидации моделей			
	машинного обучения;			
	методы визуализации и			
	интерпретации			
	результатов анализа			
	уметь формулировать	Решение стандартных	Продемонстрирова	Задачи не решены
	аналитические задачи на	практических задач	н верный ход	
	основе реальных		решения в	
	проблем; применять		большинстве задач	
	статистические и			
	машинные методы			
	анализа данных;			
	использовать			
	инструменты Python для			
	обработки и анализа			
	данных;			
	интерпретировать			
	результаты анализа в			
	контексте прикладной			
	задачи			
	владеть навыками	Решение прикладных	Продемонстрирова	Задачи не решены
	работы с библиотеками	задач в конкретной	н верный ход	
	Python (Pandas, NumPy,	предметной области	решения в	
	Scikit-learn, Matplotlib);		большинстве задач	
	техниками			
	предобработки и очистки			
	данных; приемами			
	построения, настройки и			
	оценки моделей			
	машинного обучения;			
	методами визуализации			
	данных и представления			
1	результатов			

7.2. Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1. Примерный перечень заданий для подготовки к тестированию

- 1. Что из перечисленного лучше всего описывает задачу регрессии?
 - а) Классификация изображений
 - b) Прогнозирование цен на жильё
 - с) Разделение клиентов на сегменты
 - d) Обнаружение выбросов

- 2. Что такое пропущенные значения в данных?
 - а) Ошибки округления
 - b) Дублирующиеся записи
 - с) Отсутствие значений в некоторых ячейках
 - d) Неверный формат даты
- 3. Какой из следующих алгоритмов применяется для кластеризации?
 - а) Линейная регрессия
 - b) K-средних (k-means)
 - с) Случайный лес
 - d) Наивный байесовский классификатор
- 4. Какой метод используется для оценки качества модели?
 - a) PCA
 - **b)** Кросс-валидация
 - c) One-hot кодирование
 - d) Стандартизация
- 5. Что такое EDA?
 - а) Метод машинного обучения
 - b) Алгоритм кластеризации
 - с) Разведочный анализ данных
 - d) Способ заполнения пропусков
- 6. Что измеряет коэффициент детерминации R^2?
 - а) Ошибку модели
 - b) Сходимость алгоритма
 - с) Долю объяснённой дисперсии
 - d) Уровень значимости
- 7. Какой источник данных является структурированным?
 - а) Видео
 - b) Таблица Excel
 - с) Пост в соцсети
 - d) Запись разговора
- 8. Какой из методов уменьшает количество признаков?
 - а) Регрессия
 - b) Классификация
 - с) РСА (метод главных компонент)
 - d) К-ближайших соседей
- 9. Что делает One-hot кодирование?
 - а) Удаляет пропущенные значения
 - b) Сортирует данные
 - с) Преобразует категориальные признаки в бинарные
 - d) Нормализует данные

- 10. В каком случае модель переобучается?
 - а) Недостаточно данных
 - b) Низкая ошибка на обучающей и тестовой выборке
 - с) Высокая точность на обучающей и низкая на тестовой выборке
 - d) Все признаки нормализованы

7.2.2. Примерный перечень заданий для решения стандартных задач

- 1. Дано: выборка размера 10, среднее значение = 50, стандартное отклонение = 5. Чему равен коэффициент вариации?
 - a) 0.05
 - b) 10
 - c) 0.1
 - d) 5
- 2. Если модель имеет точность (ассигасу) 90% при дисбалансе классов (95% одного класса), то это может быть:
 - а) Хорошая модель
 - b) Переобучение на доминирующий класс
 - с) Случайная ошибка
 - d) Высокий recall
- 3. Какой показатель уменьшится при увеличении количества признаков без регуляризации?
 - a) Bias
 - b) Variance
 - с) Ошибка на тесте
 - d) Линейность
- 4. В задаче классификации используется матрица ошибок. Что такое Precision?
 - a) TP/(TP+FN)
 - b) TP/(TP+FP)
 - c) TN/(TN + FP)
 - d) FP/(TP+FP)
- 5. Какой метод уменьшает дисперсию, не увеличивая смещения?
 - а) L1-регуляризация
 - b) Линейная регрессия
 - с) Случайный лес
 - d) Градиентный спуск
- 6. Вы применили нормализацию. Какой результат ожидается?
 - а) Все признаки целочисленные
 - b) Признаки имеют один и тот же вес
 - с) Значения признаков приведены к одному масштабу
 - d) Модель становится более точной автоматически

- 7. При РСА осталось 2 компоненты из 10. Что это значит?
 - а) Удалены все признаки
 - b) Удалены выбросы
 - с) Данные проецированы в 2D-пространство
 - d) Считан центр тяжести
- 8. Если линейная регрессия имеет отрицательный коэффициент, это значит:
 - а) Нет связи
 - b) Связь обратно пропорциональна
 - с) Ошибка модели
 - d) Признак должен быть удалён
- 9. Выборка: 5, 7, 9, 10, 12. Найти медиану:
 - a) 9.5
 - b) 9
 - c) 10
 - d) 8
- 10. Какова цель стратифицированной кросс-валидации?
 - а) Ускорить обучение
 - b) Сохранить пропорции классов в фолдах
 - с) Увеличить размер обучающей выборки
 - d) Отсортировать данные

7.2.3. Примерный перечень заданий для решения прикладных задач

- 1. У вас есть набор пользовательских логов. Какие шаги предпринять для подготовки данных к анализу?
 - а) Визуализировать данные
 - b) Очистить, структурировать и извлечь ключевые признаки
 - с) Построить модель
 - d) Применить кластеризацию
- 2. Вы анализируете тексты отзывов. Какой тип признаков можно использовать?
 - а) Временные ряды
 - b) **TF-IDF** или частоты слов
 - с) Коэффициенты линейной регрессии
 - d) Гистограмма
- 3. При построении модели обнаружено много выбросов. Что делать?
 - а) Игнорировать
 - b) Удалить всё
 - с) Проанализировать и принять решение: удалить, заменить или оставить
 - d) Построить регрессию

- 4. Для сегментации клиентов вы используете кластеризацию. Что будет результатом?
 - а) Классы
 - b) Прогноз
 - с) Группы клиентов по схожести
 - d) Удаление аномалий
- 5. Вы хотите сократить размер данных без потери информации. Что использовать?
 - а) Нормализация
 - b) PCA
 - c) SMOTE
 - d) KNN
- 6. У вас несбалансированные классы. Как можно решить проблему?
 - а) Удалить малый класс
 - b) Использовать oversampling или undersampling
 - с) Применить линейную регрессию
 - d) Преобразовать признаки
- 7. Модель плохо работает на новых данных. Что делать?
 - а) Увеличить количество признаков
 - b) Уменьшить глубину дерева
 - с) Перепроверить переобучение и провести регуляризацию или собрать больше данных
 - d) Ничего
- 8. При разработке дашборда вы замечаете перегрузку графиков. Что делать?
 - а) Увеличить размер шрифта
 - b) Упростить визуализации и структурировать информацию
 - с) Убрать подписи
 - d) Добавить больше графиков
- 9. Нужно оценить, насколько хорошо модель различает классы. Какой метрикой воспользоваться?
 - a) Accuracy
 - b) ROC-AUC
 - c) MSE
 - d) RMSE
- 10. У вас есть временные ряды. Что не стоит делать при разделении на обучающую и тестовую выборку?
 - а) Учитывать порядок
 - b) Использовать TimeSeriesSplit
 - с) Случайно перемешивать данные
 - d) Делить по времени

7.2.4. Примерный перечень вопросов для подготовки к зачету

- 1. Что такое аналитика данных и какие задачи она решает?
- 2. Опишите этапы аналитического процесса и объясните роль источников данных.
- 3. Какие методы применяются для очистки и предобработки данных? Приведите примеры.
- 4. Что такое разведочный анализ данных (EDA)? Какие графические и числовые методы в него входят?
- 5. Объясните различие между описательной и инференциальной статистикой. Какие базовые статистические меры вы знаете?
- 6. Что такое машинное обучение и как оно применяется в аналитике данных? Приведите примеры задач.
- 7. В чём разница между задачами классификации и регрессии? Приведите примеры моделей для каждой задачи.
- 8. Что такое кластеризация и понижение размерности? Для чего они используются?
- 9. Какие методы используются для оценки и валидации моделей машинного обучения? Объясните, зачем это нужно.
- 10. Назовите основные типы ошибок в моделях машинного обучения и объясните, как их можно избежать.

7.2.5. Примерный перечень вопросов для подготовки к экзамену

Не предусмотрено учебным планом.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 20 вопросов. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов — 20.

- 1. Оценка «Не зачтено» ставится в случае, если студент набрал менее 15 баллов.
- 2. Оценка «Зачтено» ставится в случае, если студент набрал от 15 до 20 баллов.

7.2.7. Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Введение в аналитику данных	ПК-1	Тест, стандартные практические задачи, прикладные задачи
2	Аналитический процесс и источники данных	ПК-1	тест, стандартные практические задачи, прикладные задачи

3	Предобработка и очистка данных	ПК-1	тест, стандартные практические задачи, прикладные задачи
4	Разведочный анализ данных (EDA)	ПК-1	тест, стандартные практические задачи, прикладные задачи
5	Базовые статистические методы в аналитике данных	ПК-1	Тест, стандартные практические задачи, прикладные
6	Машинное обучение для аналитики данных	ПК-1	Тест, стандартные практические задачи, прикладные задачи
7	Классификация и регрессия	ПК-1	Тест, стандартные практические задачи, прикладные задачи
8	Кластеризация и понижение размерности	ПК-1	Тест, стандартные практические задачи, прикладные задачи
9	Оценка и валидация моделей	ПК-1	Тест, стандартные практические задачи, прикладные задачи

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методике выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методике выставления оценки при проведении промежуточной аттестации.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Перечень учебной литературы, необходимой для освоения дисциплины

1. Хачумов, М. В. Введение в интеллектуальный анализ данных : учебное пособие / М. В. Хачумов. — Москва : РТУ МИРЭА, 2023. — 123 с. — ISBN 978-5-7339-2073-3. — Текст : электронный // Лань : электронно-

- библиотечная система. URL: https://e.lanbook.com/book/398240 (дата обращения: 20.05.2025). Режим доступа: для авториз. пользователей.
- 2. Котельников, Е. В. Введение в машинное обучение и анализ данных : учебное пособие / Е. В. Котельников, А. В. Котельникова. Киров : ВятГУ, 2023. 68 с. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/390698 (дата обращения: 20.05.2025). Режим доступа: для авториз. пользователей.
- 3. Баженов, А. Н. Введение в анализ данных с интервальной неопределенностью : учебное пособие / А. Н. Баженов. Санкт-Петербург : СПбГПУ, 2022. 92 с. ISBN 978-5-7422-7910-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/430142 (дата обращения: 20.05.2025). Режим доступа: для авториз. пользователей.
- 8.2. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Базы данных и поисковые системы:

- электронный фонд правовой и нормативно-технической документации http://does.cntd.ru/
- поисковая система Яндекс https://www.yandex.ru/
- поисковая система Google https://www.google.ru/
- база знаний Энциклопедия_анализа_данных http://www.machinelearning.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Лекционная аудитория с проекционным оборудованием, компьютерный класс с доступом к сети «Интернет».

10.МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Введение в аналитику данных» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Освоение дисциплины оценивается на зачете.

Вид учебных	По
занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоению учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом три дня эффективнее всего использовать для повторения и систематизации материала.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

			Подпись
№ п/п	Перечень вносимых изменений	Дата внесения изменений	заведующего кафедрой, ответственной за реализацию дисциплины