МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета информационных технологий и комиьютерной безопасности

Гусев П.Ю. «21» декабря 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Искусственный интеллект в программно-информационных системах»

Направление подготовки 09.04.01 Информатика и вычислительная техника

Профиль Искусственный интеллект

Квалификация выпускника магистр

Нормативный период обучения 2 года / 2 года и 5 м.

Форма обучения очная / заочная

Год начала подготовки 2022

Автор программы

/П.Ю. Гусев/

Заведующий кафедрой

Компьютерных

интеллектуальных

технологий проектирования

Руководитель ОПОП

/М.И. Чижов/

/М.И. Чижов/

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Изучение основ применения методов искусственного интеллекта в информационных системах

1.2. Задачи освоения дисциплины

- изучение основных понятий и методов искусственного интеллекта;
- постановка задач применения методов искусственного интеллекта в сквозных технологиях;
 - изучение основ машинного обучения.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Искусственный интеллект в программноинформационных системах» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Искусственный интеллект в программно-информационных системах» направлен на формирование следующих компетенций:

ОПК-9 - Способен разрабатывать алгоритмы и программные средства для решения задач в области создания и применения искусственного интеллекта

ПК-5 - Способен выбирать, разрабатывать и проводить экспериментальную проверку работоспособности программных компонентов систем искусственного интеллекта по обеспечению требуемых критериев эффективности и качества функционирования

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-9	Знать актуальные методы обработки и анализа данных, методы алгоритмов машинного обучения в области применения;
	Уметь применять методы машинного обучения при решении задач в различных прикладных областях Владеть навыками использования библиотек языка Python для построения интеллектуальных систем.
ПК-5	Знать методы тестирования компонентов систем искусственного интеллекта Уметь разрабатывать критерии оценки работоспособности компонентов систем искусственного интеллекта Владеть навыками проверки работоспособности программных компонентов

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Искусственный интеллект в программно-информационных системах» составляет 2 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Duran varabyaŭ nabativ	Всего	Семестры
Виды учебной работы	часов	2
Аудиторные занятия (всего)	34	34
В том числе:		
Лекции	18	18
Лабораторные работы (ЛР)	16	16
Самостоятельная работа	38	38
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость: час	72	72
зач.ед.	2	2

заочная форма обучения

Виды учебной работы	Всего	Семестры
Виды учеоной расоты	часов	2
Аудиторные занятия (всего)	20	20
В том числе:		
Лекции	8	8
Лабораторные работы (ЛР)	12	12
Самостоятельная работа	48	48
Часы на контроль	4	4
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость: час	72	72
зач.ед.	2	2

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

		o man wopma ooy iciinn				
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Искусственный интеллект	Искусственный интеллект: краткая история и современный взгляд.	4	4	6	14
2	Решаемые задачи и используемые методы.	Искусственный интеллект: примеры кейсов сквозных технологий и их использования в информационных системах	4	4	6	14
3	Математические методы, применяемые в ИИ	Обзор математических методов для решения задач искусственного интеллекта, применяемых в информационных системах	4	2	6	12
4	Машинное обучение как ветвь искусственного интеллекта.	Методы машинного обучения.	2	2	6	10
5	Терминология и инструментарий –обзор.	Терминология в искусственном интеллекте. Среды разработки искусственного интеллекта. Программное обеспечение искусственного интеллекта	2	2	6	10
6	Признаки в ИИ	Признак и виды признаков.	2	2	8	12
	<u> </u>	Итого	18	16	38	72

заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Искусственный интеллект	Искусственный интеллект: краткая история и современный взгляд.	2	2	8	12
2	Решаемые задачи и используемые методы.	Искусственный интеллект: примеры кейсов сквозных технологий и их использования в информационных системах	2	2	8	12
3	Математические методы, применяемые в ИИ	Обзор математических методов для решения задач искусственного интеллекта, применяемых в информационных системах	2	2	8	12
4	Машинное обучение как ветвь искусственного интеллекта.	Методы машинного обучения.	2	2	8	12
5	Терминология и инструментарий –обзор.	Терминология в искусственном интеллекте. Среды разработки искусственного интеллекта. Программное обеспечение искусственного интеллекта	-	2	8	10
6	Признаки в ИИ	Признак и виды признаков.	-	2	8	10
	Итого				48	68

5.2 Перечень лабораторных работ

Установка и настройка программного окружения

Методы анализ данных

Визуализация данных

Методы машинного обучения

Создание нейронной сети

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-9	Знать актуальные методы обработки и анализа данных, методы алгоритмов машинного обучения в области применения;	Количество лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

	Уметь применять методы машинного обучения при решении задач в различных прикладных областях	Количество лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками использования библиотек языка Рython для построения интеллектуальных систем.	Количество лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПК-5	Знать методы тестирования компонентов систем искусственного интеллекта	Количество лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь разрабатывать критерии оценки работоспособности компонентов систем искусственного интеллекта	Количество лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками проверки работоспособности программных компонентов	Количество лабораторных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний оцениваются в 2 семестре для очной формы обучения, 2 семестре для заочной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ОПК-9	Знать актуальные методы обработки и анализа данных, методы алгоритмов машинного обучения в области применения;	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь применять методы машинного обучения при решении задач в различных прикладных областях	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	Владеть навыками использования библиотек языка Python для построения интеллектуальных систем.	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ПК-5	Знать методы тестирования компонентов систем	Тест	Выполнение теста на 70-100%	Выполнение менее 70%

искусс интелл	твенного иекта			
критер работо компол	атывать рии оценки оспособности нентов систем ственного	Решение стандартных практических задач	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
провер работо	оки оспособности иммных	Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1 Специальные программы, помогающие программистам, называются:
- (А) Эвристические процессоры
- (В) Символические программисты
- +(С) Интеллектуальные инструменты программирования
- (D) Распознаватели программ
- 2 Экспертная система отличается от программы базы данных тем, что только экспертная система:
 - (А) Содержит декларативные знания
 - +(В) Содержит процедурные знания
 - (С) Возможность извлечения сохраненной информации
 - (D) Ожидает, что пользователи сделают свои собственные выводы
- 3 Если английского философа Томаса Гоббса можно назвать «дедушкой» искусственного интеллекта, то кого можно назвать его отцом?
 - + (A) A.M. Turning
 - (B) John McCarthy
 - (C) Allen Newell
 - (D) Herbert Simon
- 4 Texas Instruments Incorporated производит недорогую машину LISP под названием:
 - (A) The Computer-Based Consultant
 - + (B) The Explorer
 - (C) Smalltalk
 - (D) The Personal Consultant
 - 4 B LISP функция (copy-list <list>)
- +(A) Возвращает новый список, равный <list>, путем копирования >лемента верхнего уровня <list>
 - (В) Возвращает длину <списка>
 - (C) Возвращает t, если st> пуст
 - (Г) Ничего из вышеперечисленного
 - 6 «Рука» робота также известна как его:
 - (А) Концевой эффектор
 - (Б) Привод

- +(С) Манипулятор
- (D) Сервомеханизм
- 7 Какой термин используется для описания субъективной или здравой части решения проблемы?
 - +(А) Эвристика
 - (Б) Критический
 - (С) Основанный на ценности
 - (Г) Аналитический
- 8 Известны характеристики компьютерной системы, способной мыслить, рассуждать и обучаться.
 - (А) Машинный интеллект
 - (Б) Человеческий интеллект
 - +(С) Искусственный интеллект
 - (Г) Виртуальный интеллект
- 9 Какой этап производственного процесса был описан как «преобразование функции в форму»?
 - +(А) Дизайн
 - (Б) Распространение
 - (С) Управление проектами
 - (Г) Выездное обслуживание
 - 10 Искусственный интеллект
- (А) Воплощение интеллектуальных способностей человека в компьютере
- (В) Набор компьютерных программ, которые производят выходные данные, которые считались бы отражением интеллекта, если бы они были созданы людьми.
- С) Изучение умственных способностей посредством использования умственных моделей, реализованных на компьютере.
 - $+(\Gamma)$ Все вышеперечисленное

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Какой вид планирования состоит из последовательных представлений разных уровней плана?
 - +(А) Иерархическое планирование
 - (В) Неиерархическое планирование
 - (С) Планирование проекта
 - (Г) Все вышеперечисленное

Первая широко используемая коммерческая форма искусственного интеллекта (ИИ) используется во многих популярных продуктах, таких как микроволновые печи, автомобили и подключаемые печатные платы для настольных ПК. Это позволяет машинам обрабатывать расплывчатую информацию с ловкостью, имитирующей человеческую интуицию. Как называется этот ИИ?

- (А) Булева логика
- (Б) Человеческая логика

- +(С) Нечеткая логика
- (Г) Функциональная логика
- 3. Формирование методов обучения, соответствующих моделям обучения отдельных учащихся, является целью:
 - (А) Поддержка принятия решений
 - (Б) Автоматическое программирование
 - +(С) Интеллектуальное компьютерное обучение
 - (Г) Экспертные системы
 - 4. Что изначально называл «игрой в имитацию» ее создатель?
 - +(А) Тест Тьюринга
 - (Б) ЛИСП
 - (С) Теоретик логики
 - (Г) Кибернетика
- 5. Основной метод, который люди используют для восприятия окружающего мира:
 - (А) Чтение
 - (Б) Письмо
 - (С) Говоря
 - $+(\Gamma)$ видеть
 - 6. Какая из этих школ не была среди первых лидеров исследований ИИ?
 - (А) Дартмутский университет
 - +(Б) Гарвардский университет
 - (С) Массачусетский технологический институт
 - (Г) Стэнфордский университет
- 7. Cray X-MP, IBM 3090 и соединительную машину можно охарактеризовать как
 - (A) SISD
 - **+**(Б) SIMD
 - (C) MISD
 - (Г) МИМД
- 8. Программы поддержки принятия решений призваны помочь менеджерам:
 - (А) Бюджетные прогнозы
 - (Б) Визуальные презентации
 - +(С) Деловые решения
 - (D) График отпусков
 - 9. Машины LISP также известны как:
 - (А) Рабочие станции ИИ
 - (В) Терминалы с разделением времени
 - +(С) Супермини-компьютеры
 - (Г) Ничего из вышеперечисленного
- 10. PROLOG это язык программирования ИИ, который решает задачи с помощью символической логики, известной как исчисление предикатов. Он был разработан в 1972 году в Марсельском университете

группой специалистов. Можете ли вы назвать человека, который возглавлял эту команду?

- +(А) Ален Колмерауэр
- (В) Никлаус Вирт
- (С) Сеймур Пейперт
- (Г) Джон Маккарти

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. В LISP функция оценивает <object> и присваивает это значение невычисленному <sconst>.
 - (A) (constant <sconst> <object>)
 - +(B) (defconstant <sconst> <object>)
 - (C) (eva <sconst> <object>)
 - (D) (eva <object> <sconst>)
- 2. Программирование робота путем его физического перемещения по желаемой траектории называется:
 - (А) Контактное управление
 - +(В) Непрерывное управление траекторией
 - (С) Контроль зрения робота
 - (D) Контроль выбора и размещения
- 3. Конференция, положившая начало революции ИИ в 1956 году, проходила по адресу:
 - +(А) Дартмут
 - (Б) Гарвард
 - (В) Нью-Йорк
 - (Г) Стэнфорд
- 4. Когда вводится функция верхнего уровня, процессор LISP делает/делает
 - (А) Он считывает введенную функцию
 - (Б) Он оценивает функцию и операнды функции
 - (В) Он печатает результаты, возвращаемые функцией
 - $+(\Gamma)$ Все вышеперечисленное
 - 5. Чтобы вызвать систему LISP, вы должны ввести
 - (A) AI
 - (B) LISP
 - (C) CL (Common Lisp)
 - +(D) Оба (b) и (c)
- 6. МСС исследует улучшение отношений между людьми и компьютерами с помощью технологии под названием:
 - (А) Компьютерный дизайн
 - +(Б) Человеческий фактор
 - (С) Параллельная обработка
 - (Γ) Все вышеперечисленное
 - 7. Expert Ease был разработан под руководством:
 - (А) Джон Маккарти
 - +(В) Дональд Мичи

- (С) Лофти Заде
- (D) Алан Тьюринг
- 8. В своей знаковой книге «Кибернетика» Норберт Винер предложил способ моделирования научных явлений с использованием не энергии, а:
 - (А) Математика
 - (Б) Интеллект
 - +(В) Информация
 - (Г) История
- 9. DEC заявляет, что она помогла создать «первую в мире экспертную систему, регулярно используемую в промышленной среде» под названием XCON или:
 - +(A) PDP-11
 - (B) R1
 - (C) VAX
 - (D) MAGNOM

Правильный ответ

- 10. B LISP функция (list-length <list>)
- (A) Возвращает новый список, равный st>, путем копирования элемента верхнего уровня st>
 - +(Б) Возвращает длину <списка>
 - (B) Возвращает t, если list> пуст
 - (Г) Все вышеперечисленное

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Что такое искусственный интеллект
- 2. Как давно возникло понятие искусственного интеллекта
- 3. Рост количества данных и его влияние на развитие искусственного интеллекта
 - 4. Влияние развития техники на ИИ
 - 5. Примеры применения ИИ в промышленности
 - 6. Примеры применения ИИ в интернет-сервисах
 - 7. ИИ в сфере услуг, торговли, логистики
 - 8. Искусственный интеллект как подсистема информационной системы
 - 9. Математический аппарат искусственного интеллекта
 - 10. Нейронные сети: история появления и современное использование
 - 11. Современные нейронные сети, применение
 - 12. Машинное обучение: основные термины
 - 13. Машинное обучение: решаемые задачи и инструментарий
 - 14. Что такое признак
 - 15. Прикладное ПО, используемое для решения задач ИИ

7.2.5 Примерный перечень заданий подготовки к экзамену

Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается

1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов — 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов.

4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Искусственный интеллект	ОПК-9, ПК-5	Тест, защита лабораторных работ
2	Решаемые задачи и используемые методы.	ОПК-9, ПК-5	Тест, защита лабораторных работ
3	Математические методы, применяемые в ИИ	ОПК-9, ПК-5	Тест, защита лабораторных работ
4	Машинное обучение как ветвь искусственного интеллекта.	ОПК-9, ПК-5	Тест, защита лабораторных работ
5	Терминология и инструментарий –обзор.	ОПК-9, ПК-5	Тест, защита лабораторных работ
6	Признаки в ИИ	ОПК-9, ПК-5	Тест, защита лабораторных работ

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
- 1 Машинное обучение: новый искусственный интеллект [Текст]: [перевод с английского] / Алпайдин Этем; Фонд развития пром-сти. Москва: Издательская группа "Точка", 2017. 193 с.: ил. (Завтра это будут знать все). Библиогр.: с. 185-191. ISBN 978-5-9908700-8-6
- 2 Machine Learning: регрессионные методы интеллектуального анализа данных [Электронный ресурс]: Учебное пособие / Л. И. Воронова, В. И. Воронов ; Л. И. Воронова, В. И. Воронов. Machine Learning: регрессионные методы интеллектуального анализа данных; 2024-02-26. Москва : Московский технический университет связи и информатики, 2018. 82 с.
- 3 Анализ данных [Электронный ресурс] : Учебно-методическое пособие / Г. В. Шнарева, Ж. Г. Пономарева ; Г. В. Шнарева, Ж. Г. Пономарева. Анализ данных ; 2024-12-06. Симферополь : Университет экономики и управления, 2019. 129 с.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное ПО:

- Microsoft Word
- Intellij PyCharm

Свободное программное обеспечение:

- LibreOffice

Отечественное ПО:

- СУБД Линтер

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- http://www.edu.ru/
- Образовательный портал ВГТУ

Информационные справочные системы:

- http://window.edu.ru
- https://wiki.cchgeu.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.

Учебные лаборатории (г. Воронеж, ул. Плехановская, д. 11):

- 210/2.
- 213/2.
- -215/2.

Дисплейный класс, оснащенный компьютерными программами для проведения лабораторного практикума.

Кабинеты, оборудованные проекторами и интерактивными досками.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Искусственный интеллект в программноинформационных системах» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с метоликами, приведенными в указаниях к выполнению работ.

соответствии с методиками, приведенными в указаниях к выполнению работ.			
Вид учебных	Деятельность студента		
занятий			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно		
	фиксировать основные положения, выводы, формулировки,		
	обобщения; помечать важные мысли, выделять ключевые слова,		
	термины. Проверка терминов, понятий с помощью энциклопедий,		
	словарей, справочников с выписыванием толкований в тетрадь.		
	Обозначение вопросов, терминов, материала, которые вызывают		
	трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо		
	сформулировать вопрос и задать преподавателю на лекции или на		
	практическом занятии.		
Лабораторная	Лабораторные работы позволяют научиться применять теоретические		
работа	знания, полученные на лекции при решении конкретных задач. Чтобы		
P	наиболее рационально и полно использовать все возможности		
	лабораторных для подготовки к ним необходимо: следует разобрать		
	лекцию по соответствующей теме, ознакомится с соответствующим		
	разделом учебника, проработать дополнительную литературу и		
	источники, решить задачи и выполнить другие письменные задания.		
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения		
работа	учебного материала и развитию навыков самообразования.		
	Самостоятельная работа предполагает следующие составляющие:		
	- работа с текстами: учебниками, справочниками, дополнительной		
	литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций, олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в		
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не		
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные		
	перед зачетом три дня эффективнее всего использовать для повторения		
	и систематизации материала.		