МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

РАБОЧАЯ ПРОГРАММА

дисциплины

«Спецглавы математики»

Направление подготовки 22.03.02 МЕТАЛЛУРГИЯ

Профиль Технология литейных процессов

Квалификация выпускника бакалавр

Нормативный период обучения <u>4 года</u> Форма обучения <u>очная</u> Год начала подготовки 2021

Автор программы

/ Шунин Г.Е./

Заведующий кафедрой Высшей математики и физико-математического моделирования

Руководитель ОПОП

/Батаронов И.Л./

/Печенкина Л.С./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Формирование y обучающихся знаний фундаментальных математических законах И методах, используемых ДЛЯ анализа, Развитие моделирования и решения прикладных инженерных задач. практических навыков решения вычислительных задач с использованием систем компьютерной математики.

1.2. Задачи освоения дисциплины

- 1.2.1 получить представление о математическом моделировании как особом способе исследования и описания физических явлений и процессов, об основных математических моделях и математических методах, используемых при их исследовании.
- 1.2.2 научиться использовать основные понятия и методы векторного анализа и теории поля, дифференциальных уравнений в частных производных, теории рядов и гармонического анализа для исследования основных физико-математических моделей.
- 1.2.3 овладеть навыками применения системы компьютерной математики при решении стандартных и прикладных математических задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Спецглавы математики» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Спецглавы математики» направлен на формирование следующих компетенций:

ОПК-1 — Способен решать задачи профессиональной деятельности, применяя методы моделирования, математического анализа, естественнонаучные и общеинженерные знания.

УК-1 — Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход при решении поставленных задач

Компетенция	Результаты обучения, характеризующие сформированность компетенции		
ОПК-1	знать понятия и методы векторного анализа и теории		
	поля, основные уравнения математической физики и		
	постановку краевых задач, элементы теории рядов и		
	гармонического анализа, основные аналитические и		
	численные методы решения краевых задач.		
	уметь применять математические методы и		
	вычислительную технику для решения практических		
	задач		
	владеть навыками применения математических		

	методов, деятельно	используемых сти	В	профессиональной
УК-1	информаци математики уметь осуп синтез инс стандартн владеть	-	системь терной критич цимой и матема исполи	і в области математики еский анализ и при решении

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Спецглавы математики» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Duran yang gung pagama	Всего	Семестры
Виды учебной работы	часов	4
Аудиторные занятия (всего)	72	36
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	36	18
Лабораторные работы (ЛР)	18	18
Самостоятельная работа	36	36
Курсовая работа	+	+
Часы на контроль	-	-
Виды промежуточной аттестации - зачет,		ı
экзамен	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

	T-I J						
№	Наименование	Солеруулине разлела	Лек-	Прак	Лаб.	CPC	Всего,
Π/Π	темы	Содержание раздела		зан.	зан.	CIC	час
		3 семестр					
1	Векторный анализ	Скалярное поле. Поверхности и	10	6	4	6	26
	и основы теории	линии уровня скалярного поля.					
	поля	Векторное поле. Векторные линии.					
		Производная по направлению и					

		градиент. Криволинейные и поверхностные интегралы первого и второго родов. Циркуляция векторного поля. Поток векторного поля через поверхность. Дивергенция и ротор векторного поля. Их физический смысл. Формулы Остроградского-Гаусса и Стокса. Формулы Грина. Дифференциальные операции второго порядка. Специальные виды скалярных и векторных полей. Основная теорема векторного анализа. Криволинейные координаты в векторном анализе.				
		Дифференциальные операции в цилиндрических и сферических координатах.				
2	Уравнения математической физики	Пространственно-временной континуум. Основные динамические уравнения. Задача Коши. Уравнения непрерывности, теплопроводности и упругих колебаний струны. Уравнения электромагнитного поля Максвелла. Скалярные и векторные уравнения Лапласа и Пуассона. Векторные и скалярные уравнения Даламбера и Гельмгольца.Векторные и скалярные уравнения диффузии. Понятие о дифференциальных уравнениях в частных производных. Классификация квазилинейных уравнений в частных производных второго порядка. Задача Коши для уравнений гиперболического и параболического типов. Краевая задача для эллиптических уравнений. Смешанная краевая задача для уравнений гиперболического и параболического и параболического типов. Корректность постановки краевых задач.	0	4	6	18
3		Понятие функции комплексного переменного. Числовые ряды. Сходимость и сумма ряда. Абсолютная и условная сходимость. Признаки сходимости числовых рядов. Функциональные ряды. Область сходимости. Дифференцирование и	6	4	6	28

		интегрирование функциональных рядов. Степенные ряды. Ряд Тейлора. Вычисление определённых интегралов и решение дифференциальных уравнений с помощью рядов. Тригонометрические ряды Фурье. Комплексная форма ряда Фурье. Интеграл Фурье. Преобразование Фурье.					
числен методь	ные	Линейные уравнения. Принцип суперпозиции. Уравнения с разделяющимися переменными. Метод разделения переменных Фурье. Собственные функции и собственные значения линейных операторов. Постановка задач на собственные значения дифференциальных операторов. Задача Штурма-Лиувиля. Понятие о специальных функциях. Общая схема метода разложения по собственным функциям. Понятие функционала и его вариации. Экстремум функционала. Уравнение Эйлера-Лагранжа. Методы конечных разностей, Ритца, Галёркина и конечных элементов.		6	4	6	22
		Итого	36	18	18	36	108

5.2 Перечень лабораторных работ

- 1. Знакомство с универсальными системами компьютерной математики. Выполнение дифференциальных и интегральных операций векторного анализа (4 часа).
 - 2. Аппроксимация функций (4 часа).
- 3. Аналитическое и численное решение обыкновенных дифференциальных уравнений и простейших дифференциальных уравнений в частных производных (4 часа).
- 4. Аналитическое и численное решение краевых задач для основных уравнений математической физики (6 часа).

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы в 4 семестре для очной формы обучения.

Примерная тематика курсовой работы: «Решение краевых задач математической физики с помощью систем компьютерной математики»

Курсовая работа включает в себя теоретическую и расчётную части. В теоретической части рассматриваются сущность метода конечных элементов

и возможности конечно-элементных комплексов программ. В расчётной части рассматривается физико-математическая модель (определяется индивидуальным заданием), формулируется соответствующая краевая задача и находится её решение в заданной области с помощью выбранного подходящего конечно-элементного комплекса программ.

Примерные варианты индивидуальных заданий:

- 1. Двухмерные краевые задачи электростатики.
- 2. Трёхмерные краевые задачи электростатики.
- 3. Двухмерные краевые задачи стационарной теплопередачи.
- 4. Двухмерные краевые задачи нестационарной теплопередачи.
- 5. Трёхмерные краевые задачи стационарной теплопередачи. Задачи, решаемые при выполнении курсовой работы:
 - а) Осуществить поиск необходимой информации по теме работы;
 - б) Систематизировать найденную информацию;
 - в) Осуществить обзор литературных источников по заданной теме;
 - г) Выработать умения решать прикладные задачи

Предусматривается также в 4 семестре индивидуальные домашние задания (ИДЗ) по разделам «Векторный анализ и основы теории поля» и «Элементы теории рядов и гармонического анализа».

С помощью индивидуальных заданий проверяется умение студентов решать стандартные и прикладные задачи.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	знать понятия и методы векторного анализа и теории поля, основные уравнения математической физики и постановку краевых задач, элементы теории рядов и	теоретические вопросы в ИДЗ и отчётах по лабораторным работам	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	гармонического анализа, основные аналитические и численные методы решения краевых задач.			
	уметь применять математические методы и вычислительную технику для решения практических задач	практических задач в	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

	владеть навыками применения	Решение прикладных	Выполнение работ	Невыполнение
	математических методов,	задач в конкретной	в срок,	работ в срок,
	используемых в	предметной области в	предусмотренный в	предусмотренный
	профессиональной деятельности	ИДЗ и на	рабочих	в рабочих
		лабораторных работах	программах	программах
УК-1	знать специализированные базы	Ответы на	Выполнение работ	Невыполнение
	знаний и информационно-	теоретические	в срок,	работ в срок,
	справочные системы в области	вопросы в ИДЗ и	предусмотренный в	предусмотренный
	математики, системы	отчётах по	рабочих	в рабочих
	компьютерной математики	лабораторным	программах	программах
		работам		
	уметь осуществлять поиск,	Решение стандартных	Выполнение работ	Невыполнение
	критический анализ и синтез	практических задач в	в срок,	работ в срок,
	информации необходимой при	ИДЗ и на	предусмотренный в	предусмотренный
	решении стандартных и	лабораторных работах	рабочих	в рабочих
	прикладных математических		программах	программах
	задач			
	владеть навыками	Решение прикладных	Выполнение работ	Невыполнение
	использования систем	задач в конкретной	в срок,	работ в срок,
	компьютерной математики при	предметной области в	предусмотренный в	предусмотренный
	решении стандартных и	ИДЗ и на	рабочих	в рабочих
	прикладных задач	лабораторных работах	программах	программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в семестре для очной формы обучения по двух балльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ОПК-1	знать понятия и методы векторного анализа и теории поля, основные уравнения математической физики и постановку краевых задач, элементы теории рядов и гармонического анализа, основные аналитические и численные методы решения краевых задач.	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь применять математические методы и вычислительную технику для решения практических задач владеть навыками применения математических	Решение стандартных практических задач Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач Продемонстрирован верный ход решения в большинстве задач	Задачи не решены Задачи не решены
	методов, используемых в			

	профессиональной деятельности			
УК-1	знать специализированные базы знаний и информационно-справочные системы в области математики, системы компьютерной математики.	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	уметь осуществлять поиск, критический анализ и синтез информации необходимой при решении стандартных и прикладных математических задач	Решение стандартных практических задач	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
	владеть навыками использования систем компьютерной математики при решении стандартных и прикладных задач	Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

1. Какое из уравнений Максвелла является дифференциальной формой закона электромагнитной индукции Фарадея?

a)
$$div \mathbf{E} = \rho, \delta$$
 $div \mathbf{E} = 0, \mathbf{B}$ $rot \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \Gamma$ $rot \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{B}}{\partial t}$

- 2. При выводе уравнения колебаний струны используется:
- а) закон сохранения энергии, б) закон сохранения заряда, в) второй закон Ньютона, г) закон сохранения массы.
- 3. Стационарная теплопередача при наличии внутренних источников тепла описывается уравнением

a)
$$\frac{\partial T}{\partial t} = a^2 \Delta T$$
, 6) B) $\Delta T = -f$, Γ) $\Delta T = 0$.

$$a(x,y)\frac{\partial u}{\partial x} + b(x,y)\frac{\partial u}{\partial y} + c(x,y,u)u = f(x,y)$$

- 4. Дифференциальное уравнение является:
 - а) линейным обыкновенным дифференциальным уравнением первого порядка,
- б) линейным дифференциальным уравнением в частных производных первого порядка,
- в) квазилинейным дифференциальным уравнением в частных производных первого порядка,
- г) нелинейным дифференциальным уравнением в частных производных первого порядка.
 - 5. Определите тип уравнения $a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial x^2} = f(x,y,u)$, если b^2 -ac>0.
 - а) смешанный, б) эллиптический, в) параболический, г) гиперболический.

6. Определить тип линейного дифференциального уравнения в частных производных

$$x\frac{\partial^2 U}{\partial x^2} - 2\sqrt{xy}\frac{\partial^2 U}{\partial x \partial y} + y\frac{\partial^2 U}{\partial y^2} + \frac{1}{2}\frac{\partial U}{\partial y} = 0.$$

- а) смешанный, б) эллиптический, в) параболический, г) гиперболический.
- 7. Определить тип уравнения и тип краевой задачи

$$\begin{cases} u_{tt} = a^{2}u_{xx}, \\ u(x,0) = \mu(x), u_{t}(x,0) = v(x), \\ u_{x}(0,t) = u_{x}(l,t) = 0 \end{cases}$$

- а) эллиптический, краевая задача второго рода, б) параболический, смешанная краевая задача, в) гиперболический, задача Коши, г) гиперболический, смешанная краевая задача.
- 8. Решением задачи Коши для волнового уравнения $u_{tt} = 4u_{xx}$ с начальными условиями

$$u(x,0) = 2\sin(x), u_t(x,0) = 0$$
 будет

a)
$$u(x,t) = (\sin(x-2t) + \sin(x+2t))$$
, $\delta u(x,t) = (\sin(x-2t) - \sin(x+2t))$,

- B) $u(x,t) = (\cos(x-2t) + \cos(x+2t)), \Gamma) u(x,t) = (\cos(x-2t) \sin(x+2t)),$
- 9. Решение краевой задачи для уравнения у"+y=0 с граничными условиями у(0)=у(π)=0 будет
 - a) $\sin(3x)$, δ) $\cos(3x)$, β) $\sin(x)$, γ) $\cos(x)$.
- 10. Собственными значениями и собственными функциями задачи Штурма-Лиувилля

$$y$$
"+ λy =0, y (0)= y (π)=0 являются

- 11. Решение смешанной краевой задачи для волнового уравнения $u_{tt}=u_{xx}$ с граничными условиями u(0,t)=u(1,t)=0 и начальными условиями $u(x,0)=x(1-x),\ u_t(x,0)=0$ имеет вид

$$\sum_{\substack{\mathbf{a} \ \mathbf{n} = \mathbf{1} \\ \mathbf{a} \ \mathbf{n}}}^{\infty} a_n \sin(\pi \mathbf{n} \mathbf{x}) \cos(\pi \mathbf{n} \mathbf{t}), \quad \sum_{\substack{\mathbf{n} = \mathbf{1} \\ \mathbf{B} \ \mathbf{n} = \mathbf{1}}}^{\infty} a_n \sin(\pi \mathbf{n} \mathbf{x}) \sin(\pi \mathbf{n} \mathbf{t}), \quad \sum_{\substack{\mathbf{n} = \mathbf{1} \\ \mathbf{B} \ \mathbf{n} = \mathbf{1}}}^{\infty} a_n \cos(\pi \mathbf{n} \mathbf{x}) \cos(\pi \mathbf{n} \mathbf{t}), \quad \sum_{\substack{\mathbf{n} = \mathbf{1} \\ \mathbf{n} = \mathbf{1}}}^{\infty} a_n \cos(\pi \mathbf{n} \mathbf{x}) \sin(\pi \mathbf{n} \mathbf{t}).$$

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Найти эквипотенциальные поверхности и семейство линий наибыстрейшего возрастания скалярного поля

$$u = x^2 + y^2 - z^2$$
.

- 2. Найти производную скалярного поля $u(x,y,z) = x^2 \operatorname{arctg}(y+z)$ в точке M(2,1,1) по направлению вектора l=3i-4k.
- 3. Найти поток векторного поля $\mathbf{a}=(2y-5x)\mathbf{i}+(x-1)\mathbf{j}+(2xy+2z)\mathbf{k}$ через замкнутую поверхность S: 2x+2y-z=4, x=0, y=0, z=0 (нормаль внешняя), используя формулу Остроградского-Гаусса.
 - 4. Найти потенциал векторного поля $a=2xyi+(x^2-2yz)j-y^2k$.
 - 5. Определить вид векторного поля $a = (yz-xy)i + (xz-x^2/2+yz^2)j + (xy+yz)^2k$.
 - 6. Найти общее решение дифференциального уравнения в частных производных:

$$3\frac{\partial^2 u(x,y)}{\partial x^2} - 2\frac{\partial^2 u(x,y)}{\partial y^2} = 0.$$

7. Найти фундаментальное решение уравнения Лапласа:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

8. Найти общее решение уравнения Пуассона:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2.$$

9. Решить методом Даламбера задачу Коши для волнового уравнения

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, -\infty < x < \infty, t > 0,$$

с начальными условиями

$$u(0)=\sin(x), u_t(0)=0.$$

10. Определить тип и привести к каноническому виду дифференциальное уравнение в частных производных второго порядка

$$\frac{\partial^2 u(x,y)}{\partial x^2} + 4 \frac{\partial^2 u(x,y)}{\partial y \partial x} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0$$

11. Найти собственные значения и собственные функции краевой задачи с периодическими граничными условиями

$$y'' + \lambda y = 0$$
, $y(0) = y(1)$, $y'(0) = y'(1)$, $x \in [0,1]$.

12. Решить краевую задачу методом конечных разностей. Сравнить с точным решением. Провести анализ сходимости аппроксимации

$$e^x \frac{d^2 \varphi}{dx^2} + e^x \frac{d\varphi}{dx} = -2x;$$
 $\frac{d\varphi}{dx}(\mathbf{0}) = 0, \varphi(\mathbf{1}) = 4.$

7.2.3 Примерный перечень заданий для решения прикладных задач

1. Магнитное поле, создаваемое электрическим током силы I, текущим по бесконечному проводу, определяется формулой $\mathbf{H}(P) = 2I \frac{-y\mathbf{i} + x\mathbf{j}}{x^2 + y^2}$. Вычислить div $\mathbf{H}(P)$ и $\mathrm{rot}\mathbf{H}(P)$.

Определить вид этого поля.

- 2. Определить суммарный электрический заряд, распределенный по поверхности пластины $|x| \le a, |y| \le b, |z| \le c$ если поверхностная плотность заряда в точке P(x, y, z) равна $k\sqrt[3]{|xyz|}$, где k > 0 коэффициент пропорциональности.
- 3. Бесконечная плоская пластина толщиной h равномерно заряжена по объёму с плотностью r. Пользуясь формулой Остроградского-Гаусса найти напряжённость **E** электрического поля вне пластины.
- 4. Пользуясь формулой Стокса найти напряжённость **H** магнитного поля создаваемого бесконечно длинным тонким проводником с током I.
- 5. Найти траекторию движения частицы с зарядом ${\bf q}$ и начальной скоростью ${\bf v}_0$ в однородном постоянном электрическом поле с напряжённостью ${\bf E}$.
 - 6. Вывести из уравнений Максвелла закон сохранения заряда.
- 7. Сформулировать краевую задачу о проникновении переменного магнитного поля в правое полупространство с проводимостью σ , если начиная с момента времени t=0 на поверхности x=0 поддерживается напряжённость $H=H_0\sin(\omega t)$, ω -частота поля.
- 8. Один конец стержня x=0 теплоизолирован, а другой x=1 поддерживается при температуре равной нулю. В начальный момент времени t=0 температура во всех точках стержня равна T_0 . Найти распределение температуры при t>0.
- 9. Решите одномерную задачу стационарной теплопроводности в полом цилиндре с внутренним и внешним радиусами, равными соответственно 0.5 и 2. Температуру на внутренней и внешней поверхностях задайте равными 100 и 200 соответственно. Покажите,

что полученное решение одномерно. Сравните численное решение с точным решением.

10. Найти стационарное распределение температуры u в прямоугольной пластине $0 \le x \le 1$, $0 \le y \le 2$ которая нагревается от источников тепла с мощностью Q(x, y), если

$$u(0,y) = u(1,y) = 0$$
, $\partial u/\partial n|_{y=0} = -1$, $[\partial u/\partial n]_{y=2} = 1$; $Q(x,y) = 3$.

11. Рассчитайте распределение температуры в поперечном сечении длинного цилиндра. Теплопроводность равна 2.2. Граничные условия следующие: одна половина внешней поверхности цилиндра теплоизолирована, в то время как другая омывается жидкостью с температурой 500, коэффициент теплоотдачи равен 22. В половине сечения с теплоизолированной границей происходит выделение тепло с S=2000, в другой половине источниковый член S равен 0.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Скалярные и векторные поля. Их геометрические характеристики.
- 2. Производная по направлению и градиент от скалярного поля. Оператор Гамильтона.
- 3. Дивергенция и ротор векторного поля.
- 4. Виды векторных полей. Теорема Гельмгольца.
- 5. Криволинейные интегралы первого и второго рода.
- 6. Поверхностные интегралы первого и второго рода.
- 7. Объёмные интегралы от скалярных и векторных полей.
- 8. Формулы Остроградского-Гаусса и Стокса.
- 9. Основные динамические уравнения. Задача Коши.
- 10. Уравнения непрерывности, теплопроводности и колебаний струны.
- 11. Дифференциальная форма уравнений Максвелла. Сила Лоренца. Закон сохранения заряда.
- 12. Стационарные уравнения Максвелла-Лоренца. Скалярные и векторные уравнения Лапласа, Пуассона.
- 13. Электромагнитные волны. Скалярные и векторные волновые уравнения. Уравнение Гельмгольца.
- 14. Квазистационарные уравнения Максвелла. Скалярные и векторные уравнения диффузии.
- 15. Основные уравнения математической физики: Лапласа, Пуассона, волновое и теплопроводности.
- 16. Классификация квазилинейных уравнений в частных производных второго порядка.
- 17. Задача Коши для уравнений гиперболического и параболического типов.
- 18. Краевая задача для эллиптических уравнений.
- 19. Смешанная краевая задача для уравнений гиперболического и параболического типов. Корректность постановки краевых задач.
- 20. Решение уравнения колебаний бесконечной струны методом Даламбера.
- 21. Понятие о функциях комплексного переменного.
- 22. Понятие числового ряда. N-частичная сумма. Сходимость и сумма ряда. Необходимое условие сходимости.
- 23. Ряд геометрической прогрессии. Его п-частичная сумма Условие сходимости и сумма ряда.
- 24. Гармонический ряд и ряд Дирихле.

- 25. Достаточные признаки сходимости для знакоположительных рядов: признак сравнения, предельный признак сравнения, признак Даламбера, признак Коши, интегральный признак.
- 26. Знакопеременные и знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость.
- 27. Понятие функционального ряда. Область сходимости. Равномерная сходимость. Признак Веерштрасса.
- 28. Дифференцирование и интегрирование функциональных рядов.
- 29. Степенные ряды. Радиус сходимости.
- 30. Ряды Тейлора и Маклорена. Разложение основных элементарных функций в ряд Маклорена.
- 31. Приложения степенных рядов: решение дифференциальных уравнений, интегрирование функций, вычисление сумм числовых рядов.
- 32. Тригонометрические ряды. Ряды Фурье.
- 33. Комплексная форма ряда Фурье.
- 34. Интеграл Фурье в действительной форме.
- 35. Интеграл Фурье для чётных и нечётных функций. Косинус и синус преобразования Фурье.
- 36. Интеграл Фурье в комплексной форме. Прямое и обратное преобразование Фурье.
- 37. Общий вид линейного дифференциального оператора второго порядка. Линейные неоднородные и однородные уравнения. Принцип суперпозиции.
- 38. Метод разделения переменных Фурье.
- 39. Задача об охлаждении пластины.
- 40. Задача Дирихле для уравнения Лапласа в круге.
- 41. Колебания закреплённой струны.
- 42. Собственные функции и собственные значения линейных операторов.
- 43. Задача Штурма-Лиувиля. Понятие о специальных функциях.
- 44. Общая схема метода собственных функций.
- 45. Понятие функционала и его вариации. Экстремум функционала.
- 46. Сущность метода Ритца.
- 47. Сущность метода Галёркина.
- 48. Сущность метода конечных элементов.
- 49. Сущность метода конечных разностей.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачёт с оценкой проводится по тест-билетам, которые содержат 4 вопроса и 4 задачи. Каждый правильный ответ на вопрос оценивается 1 баллом, задача оценивается в 1-2 балла (1 балл за правильный ход решения и 1 баллов за верный ответ). Максимальное количество баллов—12.

1. Оценка «Не зачтено» ставится в случае, если студент набрал менее 9

баллов.

2. Оценка «Зачтено» ставится в случае, если студент набрал от 9 до12 баллов

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Векторный анализ и основы теории поля	ОПК-1, УК-1	Тест-билет, зачёт, ИДЗ, защита лабораторных работ, отчёт, опрос.
2	Уравнения математической физики	ОПК-1, УК-1	Тест-билет, зачёт, ИДЗ, защита лабораторных работ, курсовая работа, отчёт, опрос.
3	Элементы теории рядов и гармонического анализа	ОПК-1, УК-1	Тест-билет, зачёт, ИДЗ, отчёт, опрос.
4	Аналитические и численные методы решения краевых задач.	ОПК-1, УК-1	Тест-билет, зачёт, защита лабораторных работ, курсовая работа, отчёт, опрос.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Пискунов Н.С. Ч. 2. Дифференциальное и интегральное исчисления. учебное пособие. Т. 2. Изд. стер. М.: Интеграл-Пресс, 2001. 544 с..
- 2. Сборник задач по математике для втузов : В 4 т.: Учеб. пособие. Т. 3 / Под ред А.В.Ефимова, А.С.Поспелова. 4-е изд., перераб. и доп. М. : Физматиздат, 2002. 576 с.
- 3. Чудесенко В.Ф. Сборник заданий по специальным курсам высшей математики: Типовые расчеты: Учеб. пособие. 5-е изд., стереотип. СПб.; М.; Краснодар: Лань, 2010. 192 с.
- 4. Шунин Г.Е., Кострюков С.А., Пешков В.В. Введение в конечно-элементный анализ: учебное пособие /ФГБОУ ВО "Воронеж. гос. техн. ун-т". -Воронеж: Воронежский государственный технический университет, 2017. 204 с.
- 5. Кострюков С.А., Пешков В.В., Шунин Г.Е. Основы вариационного исчисления: Учеб. пособие. Воронеж: ФГБОУ ВПО "Воронежский государственный технический университет", 2011. 165 с.
- 6. Нечаев В.Н., Шуба А.В. Методы математической физики: Учеб. пособие. Ч.1. Воронеж: ГОУВПО "Воронежский государственный технический университет", 2009. 177 с.
- 7. Кострюков С.А., Пешков В.В., Шунин Г.Е., Шунина В.А. Практикум по численным методам [Электронный ресурс]: учебное пособие / ФГБОУ ВО "Воронеж. гос. техн. ун-т", каф. высш. математики и физ.-мат. моделирования. Воронеж: Воронежский государственный технический университет, 2017. 256 с.
- 8. Черненко В. Д. Высшая математика в примерах и задачах. Том 2: учебное пособие для вузов [Электронный ресурс]. СПб, Политехника, 2016. –572 с. 978-5-7325-1105-5. Режим доступа: http://www.iprbookshop.ru/59560.html
- 9. Киреев И. В., Кнауб Л. В., Левчук Д. В., Нужин Я. Н. Тензорный анализ и дифференциальная геометрия: учеб. пособие. Красноярск: Сибирский федеральный университет, 2017. –102 с. 978-5-7638-3622-6. Режим доступа: http://www.iprbookshop.ru/84148.html

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

1	Операционные системы, средства просмотра Web,	Лицензионные: Windows XP и выше; свободно распространяемые: Internet Explorer 7 и выше,
	поисковые системы, средства работы с текстовой, графической и	Chrome, Google, Yandex, Open Office, Acrobat Reader
	видео информацией	
2	Системы компьютерной математики	Лицензионные: Maple 14; свободно распространяемые:Wolfram Alpha (Cloud), Maxima, MathStudio, студенческие версии Flexpde, Elcut
3	Научная библиотека и ЭИОС ВГТУ	Ошибка! Недопустимый объект гиперссылки.

	Электронные	http://www.elabory.ru
4	библиотеки,	http://www.iprbookshop.ru
	профессиональные	http://eqworld.ipmnet.ru
	базы данных и	http://dic.academic.ru
	информационные	http://m.mathnet.ru
	справочные системы	

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

9.1	Лекции: специализированное помещение для проведения лекций, оборудованное компьютером с видеопроектором.		
9.2	Лабораторные занятия: специализированная лаборатория, оборудованная персональными компьютерами с выходом в Интернет.		
9.3	Практические занятия: специализированное помещение для проведения практических занятий, оборудованное компьютерами с выходом в Интернет.		

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Спецглавы математики» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков применения математического аппарата для решения стандартных и прикладных задач. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются с помощью вычислительной техники в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсовой работы изложена в учебнометодическом пособии. Выполняться этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой работы, защитой курсовой работы.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно
	фиксировать основные положения, выводы, формулировки,
	обобщения; помечать важные мысли, выделять ключевые слова,
	термины. Проверка терминов, понятий с помощью энциклопедий,
	словарей, справочников с выписыванием толкований в тетрадь.
	Обозначение вопросов, терминов, материала, которые вызывают
	трудности, поиск ответов в рекомендуемой литературе. Если
	самостоятельно не удается разобраться в материале, необходимо
	сформулировать вопрос и задать преподавателю на лекции или на

	THOUSTHINGOROM DOLLGTHIN
П	практическом занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с конспектом
занятие	лекций, подготовка ответов к контрольным вопросам, просмотр
	рекомендуемой литературы. Прослушивание аудио- и видеозаписей
	по заданной теме, выполнение расчетно-графических заданий,
	решение задач по алгоритму.
Лабораторная	Лабораторные работы позволяют научиться применять теоретические
работа	знания, полученные на лекции при решении конкретных задач. Чтобы
	наиболее рационально и полно использовать все возможности
	лабораторных работ для подготовки к ним необходимо: следует
	разобрать лекцию по соответствующей теме, ознакомится с
	соответствующим разделом учебника, проработать дополнительную
	литературу и источники, решить задачи и выполнить другие
	письменные задания.
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения
работа	учебного материала и развитию навыков самообразования.
	Самостоятельная работа предполагает следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов, курсовой работы;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные
	перед зачетом, экзаменом два-три дня эффективнее всего
	использовать для повторения и систематизации материала.