АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ Б1.В.ОД.2 «ФИЗИЧЕСКАЯ ХИМИЯ МАТЕРИАЛОВ И ПРОЦЕССОВ ЭЛЕКТРОННОЙ ТЕХНИКИ»

направления подготовки 28.03.02 «Наноинженерия» профиль «Инженерные нанотехнологии в приборостроении»

Общая трудоемкость изучения дисциплины составляет 3 зач. ед. (108 час.)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является приобретение знаний об основных принципах термодинамики и их применении к описанию физических и химических процессов, физико-химических закономерностях протекания равновесных термодинамических процессов, химическом и фазовом равновесии.

2. МЕСТО ДИСЦИПЛИНЫ В УЧЕБНОМ ПРОЦЕССЕ

Дисциплина Б1.В.ОД.2 «Физическая химия материалов и процессов электронной техники» является обязательной дисциплиной вариативной части дисциплин $\Phi\Gamma$ OC ВО по направлению подготовки бакалавров 28.03.02 «Наноинженерия», профиль «Инженерные нанотехнологии в приборостроении».

Дисциплина изучается во втором семестре. В процессе её изучения используются базовые знания, полученные обучающимися при изучении дисциплины Б1.Б.4 «Физика», Б1.Б.5 «Химия». В свою очередь, «Физическая химия материалов и процессов электронной техники», как предшествующая дисциплина, обеспечивает базовый уровень для изучения дисциплины Б1.Б.17 «Физико-химические основы нанотехнологии», Б1.Б.18 «Материаловедение наноматериалов и наносистем», Б1.В.ОД.5 «Материалы электронной техники», Б1.В.ОД.6 «Физика конденсированного состояния».

3. ОСНОВНЫЕ ДИДАКТИЧЕСКИЕ ЕДИНИЦЫ

№ п/п	Наименование раздела дисциплины	Неделя семест-	Виды учебной нагрузки и их трудоемкость в часах				
			Лекции	Практ	Лаб.	CPC	Всего
		Pa	лекции	занятия	работы	CIC	часов
1	Основные принципы термодинамики	1—4	4			12	16
2	Физико-химические закономерности проте-	5, 6	2		4	10	16
	кания равновесных термодинамических про-						
	цессов						
3	Основы учения о химических потенциалах	7, 8	2			8	10
4	Химическое равновесие	9, 10	2		4	8	14
5	Термодинамика растворов и фазовых равно-	11—14	4		4	12	20
	весий						
6	Основы теории поверхностных явлений	15, 16	2			10	12
7	Электрохимия	17, 18	2		6	12	20
Итого часов:			18		18	72	108

Компетенции обучающегося, формируемые в результате освоения дисциплины:

способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять метод математического анализа и экспериментального исследования (ОПК-1).

В результате освоения дисциплины обучающийся должен знать:

физико-химические закономерности протекания равновесных термодинамических процессов; термодинамические принципы описания фаз; термодинамические основы теории растворов и фазовых равновесий; основы учения о химических потенциалах (ОПК-1);

уметь:

применять принципы термодинамики к описанию термодинамических процессов; анализировать диаграммы состояния термодинамических систем; рассчитывать технологические параметры получения кристаллических фаз с необходимыми концентрацией и типом точеных дефектов; проводить фазовый анализ наноразмерных систем (ОПК-1);

владеть:

методами термодинамического анализа химических и фазовых равновесий и выбора оптимальных условий проведения технологических процессов получения материалов (ОПК-1).