МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

Декан факультета_

Небольсин В.А.

«31» августа

РАБОЧАЯ ПРОГРАММА

дисциплины

«Химия»

Направление подготовки 14.03.01 Ядерная энергетика и теплофизика

Профиль Техника и физика низких температур

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2021

Автор программы

/В.А. Небольсин/

Заведующий кафедрой химии и химической технологии материалов

./О.Б. Рудаков/

Руководитель ОПОП

/О.В. Калядин/

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Формирование у обучающихся компетенций, заключающихся способности использовать основные законы и понятия химии В профессиональной деятельности, планировать проводить необходимые эксперименты и интерпретировать их результаты, выбирать и соответствующие методы моделирования применять химических процессов, формирование мышления, ориентации культуры научно-технической информации в тех областях техники и восприятия физики низких температур, которые связаны с химией.

1.2. Задачи освоения дисциплины

Овладение теоретическими знаниями о строения атома, химических свойствах элементов и их соединений периодической системы Менделеева, типов химической связи в соединениях и типов межмолекулярных взаимодействий; изучение законов термодинамики и кинетики для решения вопроса о возможности осуществления химических реакций в заданных условиях; овладение методами решения химических задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Химия» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Химия» направлен на формирование следующих компетенций:

ОПК-1 - Способен использовать базовые знания естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования

Компетенция	Результаты обучения, характеризующие сформированность компетенции				
ОПК-1	Знать основные теоретические представления о				
	строении атома, молекулы, вещества, о природе				
	химической связи в молекулах, зависимость химических				
	свойств веществ от их строения, химическую				
	термодинамику и кинетику, растворы,				
	электрохимические и физико-химические процессы,				
	используемые профессиональной деятельности.				
	Уметь анализировать и применять химические				

законы	для	решения	теоретических	задач;	нахо	одити
взаимос	вязь	между	положением	элеме	ентов	B I
периоди	ческо	ой системе,	положением	элемента	а в	ряду
напряже	ний	металлов,	таблице расти	воримост	И	
Владетн	•	навыками	примен	ения	ме	годон
экспери	мента	льного	исследовани	я xi	имиче	еских
процесс	ОВ					

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Химия» составляет 10 з.е. Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

o man dopina ooy temin			
Dyggy ywys by o y mobory y	Всего	Семе	стры
Виды учебной работы	часов	1	2
Аудиторные занятия (всего)	90	54	36
В том числе:			
Лекции	36	18	18
Практические занятия (ПЗ)	18	18	-
Лабораторные работы (ЛР)	36	18	18
Самостоятельная работа	189	45	144
Курсовая работа	+		+
Часы на контроль	81	45	36
Виды промежуточной аттестации -	+	+	+
экзамен	T	Т	T
Общая трудоемкость:			
академические часы	360	144	216
зач.ед.	10	4	6

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

очная форма обучения							
№ π/π	Наименование темы	Содержание раздела	Лек ц	Прак зан.	Лаб. зан.	CPC	Все го, час
1	Теоретические основы химии: основные понятия и законы химии. Классы неорганических соединений.	Введение в курс химии. Взаимосвязь химии с другими науками. Значение химических знаний для студентов, специализирующихся в области физики низких температур. Основные понятия и законы химии. Номенклатура, классификация, получение и химические свойства оксидов, оснований, кислот и солей.	2	4	4	17	27
2	Строение атома и периодическая система элементов Д.И. Менделеева.	Ядерная модель атома. Двойственная природа электрона. Уравнение Шрёдингера. Волновая функция электрона Квантовые числа. Классификация электронных состояний, электронные уровни, подуровни и орбитали. Три принципа распределения в много-электронных атомах. Электронные и	6	4		17	27

			1	1	ı	ı	
3	Химическая связь. Реакции окисления - восстановления.	электронографические формулы. Периодическая система элементов Д.И. Менделеева и электронная структура атомов. Современная формулировка периодического закона. Периодически изменяющиеся свойства атомов элементов (атомные радиусы, энергии ионизации и сродства к электрону, электроотрицательность, валентность). Изменение химических свойств элементов и их соединений в группах и периодах Квантово-механическая теория химической связи. Модель Гейтлера-Лондона. Ковалентная связь с позиций метода валентных связей (МВС), её характеристики: энергии образования и разрыва связей, полярность, направленность, кратность, насыщенность.					
		Гибридизация атомных орбиталей. Донорно-акцепторный механизм образования ковалентной связи. Валентность с точки зрения МВС. Ионная связь. Представления о методе молекулярных орбиталей (ММО). Металлическая связь. Водородная связь. Реакции окисления восстановления: межмолекулярное окисление- восстановление, внутримолекулярное окисление-восстановление	6	4	4	17	31
4	Основы химической термодинамики.	Первый закон термодинамики. Равновесные и обратимые процессы. Зависимость теплового эффекта химической реакции от температуры. Расчёты тепловых эффектов химических реакций по таблицам стандартных значений теплот образования веществ. Самопроизвольные и несамопроизвольные процессы. Второй закон термодинамики. Энтропия. Принцип возрастания энтропии. Энтропия и термодинамическая вероятность. Химическое равновесие. Закон действующих масс в гомогенных и гетерогенных системах. Влияние температуры на химическое равновесие.	4	6	10	17	37
5	Кинетика химиче- ских реакций.	Скорость гомогенных и гетерогенных химических реакций. Зависимость скорости реакции от концентрации реагентов. Влияние температуры на скорость реакции: правило Вант-Гоффа, уравнение Аррениуса. Энергия активации. Механизм химических реакций. Смещение химического равновесия (принцип Ле-Шателье).	2	-	4	17	23
6	Дисперсные системы. Растворы.	Общие свойства растворов: способы выражения концентрации растворов; давление насыщенного пара бинарных растворов (законы Рауля и Генри). Осмотическое давление. Активность. Растворы электролитов. Теория электролитической диссоциации Аррениуса. Степень диссоциации. Константа диссоциации. Сильные электролиты. Равновесия в растворах электролитов. Ионное произведение воды. Водородный показатель (рН). Произведение растворимости (ПР). Гидролиз солей.	6	-	6	17	29
7	Электрохимические процессы. Коррозия и защита металлов от коррозии.	Возникновение скачка потенциала на границе металл-раствор (двойной электрический слой). Гальванические элементы. Потенциалы металлических и газовых электродов. Вычисление ЭДС. Концентрационные гальванические элементы. Электролиз. Законы Фарадея. Явление поляризации. Катодные процессы. Анодные процессы с растворимым и нерастворимым анодом. Применение электролиза. Классификация коррозионных процессов. Химическая коррозия. Электрохимическая коррозия.	6	-	4	17	27

		Защита металлов от коррозия					
8	Хим я металлов.	Получение металлов. Физические свойства металлов. Химические свойства металлов: взаимодействие с неметаллами, водой, щелочами, солями, кислотами. Окислительно-восстановительные свойства d-металлов.	2	-	4	17	23
9	Химическая идентификация веществ.	Виды и методы анализа: химические, физические, физико-химические. Качественный и количественный анализ. Гравиметрический и титраметрический анализы.	2	-		23	25
10	Курсовая работа					30	30
		Итого	36	18	36	189	279

5.2 Перечень лабораторных работ

1 семестр:

- 1. Основные понятия и законы химии.
- 2. Реакции окисления-восстановления.
- 3. Термохимические измерения
- 4. Термическая устойчивость карбонатов.

2 семестр:

- 1. Скорость химических реакций. Химическое равновесие.
- 2. Реакции обмена в растворах электролитов. Гидролиз солей
- 3. Электрохимические процессы.
- 4. Общие свойства металлов. Окислительно-восстановительные свойства d-элементов.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы во 2 семестре для очной формы обучения.

Примерная тематика курсовой работы: «Анализ физико-химических свойств и методов получения индивидуальных веществ. Вычисление термодинамических функций заданного индивидуального вещества в интервале температур 100-500 К. Расчеты константы равновесия и теплового эффекта заданной химической реакции».

Задачи, решаемые при выполнении курсовой работы:

- а) Осуществить поиск литературных источников по теме работы;
- б) Систематизация и анализ найденной информации;
- в) Получение навыков решения прикладных задач с химической тематикой.

Курсовая работа включает в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО

ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	Знать основные теоретические представления о строении атома, молекулы, вещества, о природе химической связи в молекулах, зависимость химических свойств веществ от их строения, химическую термодинамику и кинетику, растворы, электрохимические и физико—химические процессы, используемые профессиональной деятельности	Активная работа на практических и лабораторных занятиях	Выполнение работ в срок, предусмотренн ый в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь анализировать и применять химические законы для решения теоретических задач; находить взаимосвязь между положением элементов в периодической системе, положением элемента в ряду напряжений металлов, таблице растворимости	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть моделированием и методами экспериментального исследования химических процессов, навыками применения методов математической обработки результатов.	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренн ый в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 1, 2 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе-	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-1	знать	Тест	Выполнение	Выполнение	Выполнение	В тесте
	(переносится из		теста на 90-	теста на 80-	теста на 70-	менее 70

раздела 3 рабочей		100%	90%	80%	правильных ответов
программы) уметь (переносится из раздела 3 рабочей программы)	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
владеть (переносится из раздела 3 рабочей программы)	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. В перечне формул кислот: 1) HNO₃ 2) H_2SO_3 3) HBr 4) H_3PO_4 5) HCl укажите номера тех, которые образуют кислые соли. (2, 4)
 - 2. Укажите, в каком из приведенных рядов
 - 1) CO₂, SO₂, Al₂O₃
 - 2) CaO, N₂O₅, Al₂O₃
 - 3) MgO, ZnO, Al₂O₃
 - 4) CO, NO₂, Fe₂O₃

все вещества взаимодействуют со щелочами. (1)

- 3. Укажите квантовое число: 1) главное 2) орбитальное 3) магнитное или 4) спиновое, уровень которого в электронной оболочке атома определяет энергетический уровень. (1)
- 4. Для атома с электронной формулой внешних электронов $4s^24p^1$ укажите атомный номер элемента. (31)
- 5. Куда сместится равновесие реакции 2NO+O₂=2NO₂ в результате увеличения в системе давления. (В сторону прямой реакции)
- 6. Для обратимой реакции $CaCO_3(\kappa) \leftrightarrow CaO(\kappa) + CO_2(\Gamma)$; $\Delta H^\circ = 177,5$ кДж укажите направление смещения равновесия (1 влево, 2 вправо, 3 не смещается) при повышении температуры. (2 вправо)
- 7. Расположите следующие химические элементы: 1) F, 2) Na, 3) C, 4) О в порядке возрастания их электроотрицательности. (Na, C, O, F)
- 8. Определить порядковый номер в Периодической системе элемента, имеющего электронную структуру, выраженную формулой: $1s^22s^22p^63s^23p^63d^34s^2$. (23)
- 9. К какому типу химической связи относится связь между атомами в молекулах: а) КІ, б) Вг₂, в) металла Sn. (а- ионная; б- ковалентная неполярная; в -металлическая)
 - 10. Из каких солей Pb(NO₃)₂, Al₂(SO₄)₃, CuSO₄, AgNO₃, ZnSO₄- металл

может быть вытеснен никелем ($Pb(NO_3)_2$, $CuSO_4$, $AgNO_3$)

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. При окислении 2 г двухвалентного металла образовалось 2,8 г оксида. Определите количество провзаимодействовавшего кислорода и атомную массу.
- 2. В обратимой реакции $2SO_2(\Gamma)+O_2(\Gamma)\square 2SO_3(\Gamma)$ равновесие установилось при следующих концентрациях веществ (моль/л): $[O_2] = 0.3$; $[SO_2] = 0.7$; $[SO_3] = 0.5$. Вычислите константу равновесия реакции. (1,7)
- 3. Вычислите электродный потенциал цинка, опущенный в раствор его соли с активностью ионов $Zn_2+0,001$ моль/л. (-0,85)
- 4. Из 2,0 г двухвалентного металла образовалось 2,8 г оксида. Определите: число атомов в химической формуле оксида. (2)
- 5. При окислении 2,81 г кадмия получено 3,21 г оксида кадмия. Вычислить эквивалент кадмия. (56,2)
- 6. Вычислить эквивалент H₂SO₄ в реакциях обмена, в результате которых образуется: а) кислые соли MeHSO₄; б) нормальные соли MeSO₄. (a) 98, б) 49)
- 7. Начальные концентрации исходных веществ реакции, протекающей по уравнению $2NO+O_2=2NO_2$ равны NO=0.06 моль/л, $O_2=0,10$ моль/л. Вычислить концентрации O_2 и NO_2 , когда NO станет равным 0.04 моль/л. $(O_2=-0,01$ моль/л, $NO_2=0,02$ моль/л.)
- 8. Во сколько раз увеличится скорость химической реакции при повышении температуры от 40 до 200 °C, принимая температурный коэффициент скорости реакции равным 2. (216 или 65536 раз)
- 9. Вычислить константу равновесия К для обратимой реакции $CO+H_2O=CO_2+H_2$, если начальные концентрации исходных веществ равны CO=0.10 моль/л, $H_2O=0.40$ моль/л, а в равновесии образовалось $CO_2=0.08$ моль/л (1)
 - 10. Вычислить титр 0,1 н. раствора NaCl. (0,00585 г/мл)

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1.Составить электронные и электрографические формулы кремния в нормальном и возбужденном состояниях (... $3S^2 3p^2$; ... $3S^1 3p^3$)
- 2. При взаимодействии SiF_4 с HF образуется сильная H_2SiF_6 , которая диссоциирует на ионы H^{+1} и SiF^{2-} . Почему не протекает подобная реакция между CF^4 и F? Каков тип гибридизации AO Si в ионе SiF_6^{2-} . (нет валентных орбиталей на валентном уровне; sp^3d^2)
- 3. Вычислить тепловой эффект реакции $Si + 4HCl(\Gamma) \rightarrow SiCl_4 + 2H_2 \uparrow$ при 298 K, если энтальпии образования участников реакции равны: $\Delta H^0_{298}(HCl) = -92,31$ кДж/моль; $\Delta H^0_{298}(SiCl_4) = -662,200$ кДж/моль. (-293 кДж)
- 4. Возможна ли реакция $SiCl_4 + H_2 \rightarrow SiCl_2 + 2HCl(\Gamma)$ при 298K, если даны термодинмические функции участников реакции:

вещество	$\Delta { m H^0}_{ m 298}$ 248 КДж/моль	$S^{0}_{298} \text{Дж/(моль·К)}$
SiCl ₄	-662,200	331,340
H_2	0	130,570
$HC1(\Gamma)$	-92,31	186,786

(Реакция невозможна)

- 5.Увеличится или уменьшится энтропия реакции $SiCl_4(\Gamma) + 2H_2(\Gamma) \rightarrow Si(TB) + 4HCl(\Gamma)$? Вывод сделать, не вычисляя изменение энтропии реакции. (Увеличится)
- 6. Вычислить исходную концентрацию тетрахлорида кремния, если при наступлении равновесия реакции $SiCl_4 + H_2 \leftrightarrow SiCl_2 + 2HCl$ установились концентрации: $[SiCl_4] = 3$ моль/л; $[H_2] = 1$ моль/л; $[H_2] = 0.8$ моль/л . (3,4 моль/л)
- 7.Как изменится скорость прямой реакции $SiH_4 + Cl_2 \rightarrow SiH_3Cl + HCl$, если объем реакционного сосуда увеличить в 2 раза: а) уменьшится в 2 раза; б) уменьшится в 4 раза в) возрастет в 2 раза; г) возрастет в 4 раза; (уменьшится в 4 раза)
- 8..Записать константу равновесия реакции Si (TB)+ 4HCl (Γ) \leftrightarrow SiCl₄ (Γ) + 2H₂ (Γ) и определить, куда сместится равновесие при увеличении общего давления системы? (K= [SiCl₄] [H₂]²/ [HCl]⁴; вправо)
- 9. Какое из перечисленных воздействий приведет к изменению значения константы равновесия химических реакций: а) изменение давления; б) изменение температуры; в) замена катализатора; г) изменение концентраций реагирующих веществ. (б)
- 10. Какие процессы идут на катоде и аноде при электролитическом нанесении меди на пластины кремния из раствора CuSO₄ с медным анодом? (восстановление; окисление)

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Основные понятия химии: атом, молекула, простые и сложные вещества, относительные атомные и молекулярные массы, моль, валентность, эквивалент.
- 2. Основные законы химии: закон постоянства состава, закон эквивалентов, закон
- 3. Авогадро. Классы неорганических соединений: оксиды, основания, кислоты, соли (получения и свойства)
- 4. Квантово-механическая модель строения атома: опыты Резерфорда, постулаты теории Бора, ее недостатки. Уравнение Шредингера. Квантовые числа: главное, орбитальное, магнитное и спиновое
- 5. Распределение электронов в многоэлектронных атомах (принцип минимума энергии, принцип Паули, правило Гунда). Электронные и электронографические формулы (s-p-d-f-элементы).
- 6. Периодический закон Д.И.Менделеева и периодическая система. Периодическая система Д.И.Менделеева в свете представлений о сложном строении атома.
- 7. Периодически изменяющиеся свойства элементов: энергия ионизации (ионизаци онный потенциал), сродство к электрону, электроотрицательность. Изменение валентности в группах и периодах.

Металлические и неметаллические свойства элементов и их соединений в периодической системе.

- 8. Химическая связь. Современные представления о механизме образования. химической связи. Основные положения метода валентных связей (МВС) и характеристики ковалентной связи: энергия образования, энергия разрыва связи, длина связи, полярность связи, направленность связи, насыщенность связи.
- 9. Гибридизация атомных орбиталей. Кратные связи. δ , π —связи. Донорноакцепторный механизм образования ковалентной связи. Валентность элементов с точки зрения метода валентных связей.
- 10. Ионная связь. Условия образования связи, особенности веществ с ионным типом связи.
- 11. Метод молекулярных орбиталей (ММО). .Металлическая связь. Межмолекуляр ные взаимодействия. Водородная связь. Комплексообразование.
- 12. Окислительно-восстановительные процессы. Степень окисления. Основные типы реакций окисления-восстановления. Окислительно-восстановительный эквивалент.
- 13. Первый закон термодинамики. Внутренняя энергия. Энтальпия. Теплоемкость, ее зависимость от температуры. Теплоты хим. реакций и закон Гесса, его следствие.
- 14. Равновесие и обратимые процессы. Самопроизвольные и несамопроизвольные процессы. Второй закон термодинамики. Энтропия. Изменение энтропии в обратимом и необратимом процессах. Принцип возрастания энтропии.
- 15. Термодинамические потенциалы (F, G). Критерии возможности самопроизвольного процесса и равновесия в закрытых системах.
- 16. Химическое равновесие. Закон действующих масс. Константы равновесия.
 - 17.Влияние температуры на химическое равновесие.
- 18. Общие понятия о скорости химических реакций. Скорость химической реакции. Гомогенные, гетерогенные системы, зависимость скорости реакции от температуры. Энергия активации
- 19. Уравнение Аррениуса. Катализаторы. Химическое равновесие. Константа равновесия: влияние изменения внешних факторов на химическое равновесие. Принцип ЛеШателье.
- 20. Классификация и общие свойства растворов. Способы выражения концентрации растворов. Теория образования растворов.
- 21. Растворы неэлектролитов. Законы Рауля и Генри. Повышение температуры кипения и понижение температуры замерзания. Осмотическое давление. Закон Вант Гоффа.
- 22. Растворы электролитов. Основные положения теории электролитической диссоциации растворов Аррениуса. Диссоциация солей, кислот, оснований.
 - 23. Сильные и слабые электролиты. Реакции обмена в растворах

электролитов. Константа диссоциации слабых электролитов. Закон разведения Оствальда.

- 24. Произведение растворимости. Ионное произведение воды. Водородный показатель pH.
- 25. Гидролиз солей. 9. Электрохимические процессы. Понятие об электродном потенциале. Формула Нернста.
- 26. Водородный электрод. Стандартные электродные потенциалы металлов в водных растворах (ряд напряжений металлов). Катодные и анодные процессы при работе гальванического элемента.
- 27. Электролиз. Катодные и анодные процессы. Электролиз растворов и расплавов солей. Законы электролиза Фарадея. Последовательность разряда ионов на электродах. Применение электролиза.
- 28. Общие свойства металлов (получение, физические и химические свойства (металлов).
 - 29. Характеристика d-элементов, их физические и химические свойства.
- 30. Коррозия металлов. Коррозия химическая и электрохимическая. Атмосферная коррозия. Способы защиты от коррозии.
 - 31. Химические и физико- химические методы анализа.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Освоение дисциплины оценивается в 1 и 2 семестрах на экзаменах при ответе на выбранный студентом билет, в котором два теоретических вопроса и задача. Подготовка ответа не более 45 минут. Студенту задаётся дополнительный вопрос по теме, которая не нашла отражения в билете. Ответ на билет и дополнительный вопрос на 90 -100% - отлично

на 80 - 90% - хорошо на 70 - 80% - удовлетвор. менее 70% - неудовлетворит.

или: Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов (5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов — 20. 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов. 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов 3. Оценка «Хорошо» ставится в случае, если студент набрал от 11 до 15 баллов. 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

	7.217 Huenopi odeno mbia me		
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Основные понятия и законы химии. Классы неорганических соединений.	ОПК-1	Тест, контрольная работа, защита лабораторных работ, требования к курсовому проекту.
2	Строение атома и периодическая	ОПК-1	Тест, защита лабораторных

	система элементов Д.И. Менделеева		работ, требования к курсовому проекту.
3	Химическая связь. Реакции окисления-восстановления	ОПК-1	Тест, защита лабораторных работ, требования к курсовому проекту.
4	Основы химической термодинамики	ОПК-1	Тест, защита лабораторных работ, требования к курсовому проекту.
5	Кинетика химических реакций.	ОПК-1	Тест, защита лабораторных работ, требования к курсовому проекту.
6	Дисперсные системы. Растворы	ОПК-1	Тест, защита лабораторных работ, требования к курсовому проекту.
7	Электрохимические процессы. Коррозия и защита металлов от коррозии.	ОПК-1	Тест, защита лабораторных работ, требования к курсовому проекту.
8	Химия металлов	ОПК-1	Тест, защита лабораторных работ, требования к курсовому проекту.
9	Химическая идентификация веществ	ОПК-1	Тест, защита лабораторных работ, требования к курсовому проекту.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсовой работы, курсового проекта или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
 - 1. Коровин Н.В. Общая химия: учебник. М.: Высш. шк., 2010.- 558 с.
- 2. Глинка Н.Л. Общая химия: учебник для бакалавров. / Н.Л. Глинка; под ред. В.А. Попкова, А.В Бабкова. -18-е изд., перераб и доп.- М.: Изд-во Юрайт, 2012.- 898 с.
- 3. Глинка Н.Л. Задачи и упражнения по общей химии: учебное пособие для вузов / Н.Л. Глинка; под ред. В. А. Рабиновича, Х. М. Рубиной. М.: ИнтегралПресс, 2011.- 240 с.
- 4. Глинка Н.Л. Общая химия: учебник. / Н.Л. Глинка; под ред. А.И. Ермаковой. М.: Интеграл-Пресс, 2005.- 730 с.
- 5. Корнеева В.В. Методические указания для самостоятельной подготовки и выполнения лабораторных работ № 1-6 по дисциплине «Химия» / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ», 2015.- 50 с.
- 6. Корнеева В.В. Методические указания для самостоятельной подготовки и выполнения лабораторных работ № 7-10 по дисциплине «Химия» / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ», 2015.-39 с.
- 7. Корнеева В.В. Методические указания и контрольные задания для входного контроля знаний по теме «Классы неорганических соединений». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ» Электрон., 2012.- 40 с.
- 8. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Основные понятия и законы химии» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ» Электрон., 2012.- 35 с.
- 9. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Строение атомов и периодический закон» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ», 2016.- 40 с.
- 10. Корнеева В.В. Методические указания и контрольные задания для проверки самостоятельной работы и контроля знаний по теме «Реакции окисления восстановления» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А., Сушко Т.И. Воронеж: ГОУВПО «ВГТУ», 2010.- 32 с.
- 11. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Скорость химических реакций химическое равновесие» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ» Электрон., 2012.- 30 с.
- 12. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Растворы» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ», 2015.- 39 с.
- 13. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Общие свойства металлов.

Электрохимические процессы». / Корнеева А.Н., Небольсин В.А. Воронеж: ГОУВПО «ВГТУ»., 2009.- 38 с.

14. Маршалкин, М. Ф. Химия [Электронный ресурс]: учебное пособие / М. Ф. Маршалкин, И. С. Григорян, Д. Н. Ковалев. — Электрон. текстовые данные. — Ставрополь: Северо-Кавказский федеральный университет, 2015. — 228 с. — 27-8397. — Режим доступа: http://www.iprbookshop.ru/63225.html 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Перечень программного обеспечения, используемого при осуществлении образовательного процесса:

- приложение Microsoft Power Point;
- текстовый редактор Microsoft Office Word.

Перечень информационно-справочных систем:

- единая информационная образовательная среда университета «ЭИОС» ВГТУ»;
 - электронная библиотечная система;
 - научная электронная библиотека eLIBRARY.RU.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Материально-техническая база для осуществления образовательного процесса по дисциплине, имеющаяся в распоряжении ВГТУ:

- для проведения занятий лекционного типа, практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, специализированная учебная аудитория 303/1, 417/2, 419/2 с комплектом учебной мебели;
- для самостоятельной работы обучающихся читальный зал и библиотечные каталоги научно-технической библиотеки ВГТУ; мультимедийное оборудование (ноутбук, проектор).

Перечень программных продуктов, используемых при проведении различных видов занятий – презентации в Power Point по темам курса.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Химия» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета параметров химических реакций. Занятия проводятся путем

решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсовой работы изложена в учебно-методическом пособии. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой

курсовой работы, защитой курсовой работы.

Вид учебных	Деятельность студента
занятий	деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.